Name:					
_					

Class:		

2019

Higher School Certificate

Trial Examination

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black pen
- NESA approved calculators may be used
- A reference sheet is provided
- In Questions 11–14, show relevant mathematical reasoning and/or calculations

Total marks - 70

Section I - 10 marks (pages 2-6)

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II - 60 marks (pages 7-10)

- Attempt Questions 11-14
- Allow about 1 hour and 45 minutes for this section

Section I

Write your answers on the multiple choice answer sheet provided.

- 1. The solution to the equation $2^x + 2^{x+1} = 8$ is:
 - (A) x = 1
 - (B) $x = 3 \log_2 3$
 - (C) $x = \log_2 5$
 - (D) $x = \frac{1}{4}$
- 2. A polynomial equation has roots α , β and γ , where

$$\alpha + \beta + \gamma = 0$$
; $\alpha\beta\gamma = 1$; $\alpha\beta + \alpha\gamma + \beta\gamma = 1$

Which polynomial equation has roots α , β and γ

- (A) $x^3 + x 1 = 0$
- (B) $x^3 + x + 1 = 0$
- (C) $x^3 x + 1 = 0$
- (D) $x^3 x 1 = 0$
- 3. *D, C,* and *E* are points on a circle with centre *A*. *DC* is parallel to *AE*. *AD* intersect *CE* at *F*. \angle DFE = 105°

The value of $\angle FAE$ is

- (A) 75°
- (B) 52.5°
- (C) 70°
- (D) 105°

4. Consider the function $f(x) = e^{x+2}$ and its inverse function $f^{-1}(x)$. What is the value of $f^{-1}(e^2)$?

(A)
$$f^{-1}(x) = e^{-(e^2)-2}$$

(B)
$$f^{-1}(x) = e^{(e^2)+2}$$

(C)
$$f^{-1}(x) = 0$$

(D)
$$f^{-1}(x) = 4$$

- 5. The value of $\lim_{x\to 3} \frac{x-3}{\sqrt{x+1}-2}$ is:
 - (A) 4
 - (B) 0
 - (C) Not defined
 - (D) 1
- 6. The graph describes the velocity v of a particle at time t.

Which of the following statements is true?

- (A) The particle is at the origin at A and B.
- (B) The particle moves in a positive direction and changes direction after 3 seconds.
- (C) The particle has a negative acceleration throughout the last second of its trajectory.
- (D) The particle returns to the origin after 4 seconds and comes to rest.

7. A particle is moving along a straight line so that initially its displacement is x = 1, its velocity is v = 2, and its acceleration is $\alpha = 4$.

Which is a possible equation describing the motion of the particle?

- (A) $v = x^2 + 2x + 4$
- (B) $v^2 = 4(x^2 2)$
- (C) $v = 2 + 4 \ln x$
- (D) $v = 2\sin(x 1) + 2$
- 8. The following curve is the graph of the function $y = e^{\sin x}$

The graph is translated vertically and horizontally so that the resulting graph describes an even function which touches the *x*-axis, as shown:

A possible equation for the resulting graph is:

- (A) $y = e^{\sin\left(x \frac{\pi}{2}\right)} e$
- (B) $y = e^{\sin(x + \frac{3\pi}{2})} \frac{1}{e}$
- (C) $y = e^{\sin(x + \frac{\pi}{2})} \frac{1}{e}$
- (D) $y = e^{\sin\left(x + \frac{3\pi}{2}\right)} e$

9. The following curve is the graph of which of the following function?

(A)
$$y = -3\sin^{-1}\frac{x}{2}$$

(B)
$$y = -3\cos^{-1} 2x$$

(C)
$$y = 3\cos^{-1} 2x$$

(D)
$$y = \frac{1}{2}\cos^{-1}3x$$

- 10. Let $f(x) = ax^m$ and $g(x) = bx^n$, where a, b, m and n are positive integers. For both f and g, the domain is all real x.
- If f'(x) is a primitive of g(x), then which one of the following must be true?

(A)
$$\frac{m}{n}$$
 is an integer

(B)
$$\frac{n}{m}$$
 is an integer

(C)
$$\frac{a}{b}$$
 is an integer

(D)
$$\frac{b}{a}$$
 is an integer

Section II begins on the next page

Section II

60 marks

Attempt Questions 11-14

Allow about 1 hour and 45 minutes for this section

Start each question on a new page. Extra paper is available.

In Questions 11–14, your responses should include relevant mathematical reasoning and/ or calculations.

Question 11 (15 marks) Start a new page.

(a) Find the exact value of $\int_{0}^{\frac{\pi}{2}} \cos x \sin^2 x dx$

2

(b)

The points D, C lie on a semicircle with AB as diameter. AC, BD produced intersect at F; AD, BC intersect at E.

- (i) Prove that *CEDF* is a cyclic quadrilateral.
- (ii) Prove that FE is perpendicular to AB.
- (c) Let α , β and γ , be the three angles of a given triangle.
 - (i) Show that $tan(\alpha + \beta) = -tan \gamma$

(ii) Hence, or otherwise, prove that: $\tan \alpha + \tan \beta + \tan \gamma = \tan \alpha \times \tan \beta \times \tan \gamma$

1

2

1

- (d) (i) Show that the equation ln(x) = cos x has a solution between x = 1 and x = 2
 - (ii) Using one application of Newton's Method, with x = 1.5 as your initial value, find a better estimate for this solution. Present your answer accurate to three decimal places.

1

2

- (e) The velocity, v, measured in centimetres per second, of a particle moving in simple harmonic motion along the x axis, is given by $v^2 = 16x 4x^2 + 20$
 - (i) Show that $\ddot{x} = -4(x-2)$
 - (ii) Find the maximum speed of the particle.

Question 12 (15 marks) Start a new page.

- Find a general solution to the equation $\sin 3x = \cos 2x$ where x is measured in radians. (a)
- 2
- (b) Air is escaping from a spherical balloon at the rate of 2 cm³ per second. How fast is the surface area of the balloon shrinking when the radius is 2cm?
- 3
- If there exists a non-zero constant term in the expansion of $\left(x^2 \frac{1}{\sqrt{x}}\right)^n$, show that n is a (c) multiple of 5.

From a group of 6 men and 7 women, a committee of 5 people is to be formed. (d)

- 2
- What is the probability that in the committee there is at least one man and at least one woman?
- 2
- (ii) Three particular women and two particular men are chosen to be on the committee and the committee members are seated at random around a circular table. What is the probability that the two men are not seated next to each other?
- (e) Points A and B are located d metres apart on a horizontal plane. A projectile is fired from A towards B with initial velocity u m/s at angle α to the horizontal. At the same time, another projectile is fired from B towards A with initial velocity w ms⁻¹ d at angle β to the horizontal, as shown in the diagram. The projectiles collide when they both reach their maximum height.

The equations of motion of a projectile fired from the origin with initial velocity V m/s at angle θ to the horizontal are: $x = Vt \cos \theta$ and $y = Vt \sin \theta - \frac{1}{2}gt^2$ (Do NOT prove this)

- 1
- Show that the projectile fired from A reaches its maximum height at time $t = \frac{u \sin \alpha}{a}$ (i)

(ii) Show that $u \sin \alpha = w \sin \beta$

1

The distance between A and B, is given by: $d = \frac{uw}{g}\sin(\alpha + \beta)$ (iii)

Question 13 (15 marks) Start a new page.

(a) John stands at point A and sees a tower due north. The angle of elevation from A to the top of the tower is 20°. He then walks in a straight line 70 m to point B and notices the tower is now positioned at a bearing of 330° from him. The angle of elevation from point B to the top of the tower is now 25°.

4

1

3

Copy the diagram on to your answer sheet showing points *A*, *B* and *T* and relevant lengths and bearings.

Calculate the height of the tower, correct to 1 decimal place.

(b) P is the point of intersection between x = 0 and $x = \frac{\pi}{2}$ of the graphs of $y = \sec x$ and $y = 2\cos x$, as shown.

- (i) Verify that the x-coordinate of *P* is $\frac{\pi}{4}$
- (ii) The shaded region makes a revolution about the x-axis. Show that the volume of the resulting solid is $\frac{\pi^2}{2}$ cubic units.

(c) Use mathematical induction to prove that for all positive integers $n \ge 1$:

 $1 \times 2^{0} + 2 \times 2^{1} + 3 \times 2^{2} + ... + n \times 2^{n-1} = 1 + (n-1) \times 2^{n}$

(d) Four fair dice are rolled. Any die showing 6 is left alone, while the remaining dice are rolled again.

3

1

3

- (i) Find the probability (correct to 2 decimal places) that after the first roll of the dice, exactly one of the four dice is showing 6.
- (ii) Find the probability (correct to 2 decimal places) that after the second roll of the dice exactly two of the four dice are showing 6.

Question 14 continues over the page

Question 14 (15 marks) Start a new page.

(a) (i) Find $\int \frac{1}{x \ln x} dx$ using the substitution $u = \ln x$

The curve above is the graph of the function $y = \frac{1}{x \ln x}$

- (ii) The area shaded is bounded by the curve, the x axis and the lines x=2 and x=p is 1 square unit. Using part (i), or otherwise, show that $p=2^e$.
- 3

(b) $P(2ap,ap^2)$ and $Q(2aq,aq^2)$ are two variable points on a parabola $x^2=4ay$.

- (i) If the variable chord PQ is always parallel to the line y=x, show that p+q=2.
- (ii) The normals at P and Q meet at N. Prove that the locus of N is a straight line. [You may assume that the gradient of the tangent at P is p.]
- 3

(c) Consider the function $f(x) = x + \sqrt{x^2 + 1}$

- (i) Copy the graph of f(x) and sketch the graph of $f^{-1}(x)$, the inverse function of f(x), on the same axes.
- (ii) Show that $f^{-1}(x) = \frac{1}{2} \left(x \frac{1}{x} \right)$

3

(iii) By comparing the graphs of f(x) and $f^{-1}(x)$, or otherwise, show that:

$$\int_{0}^{1} \left(x + \sqrt{x^{2} + 1} \right) dx = \frac{1}{2} \left(1 + \sqrt{2} + \ln(1 + \sqrt{2}) \right)$$

END OF EXAMINATION

Name: _	 	 	

2019

Class: _____

Higher School Certificate

Trial Examination

Mathematics Extension 1 SOLUTIONS

Section I B, A, C, C, A, B, C, C, B

Write your answers on the multiple choice answer sheet provided.

1.

$$2^x + 2^x \times 2 = 8$$

$$2^x \times 3 = 8$$

$$2^x = \frac{8}{3}$$

$$x = \log_2\left(\frac{8}{3}\right)$$

$$x = \log_2 8 - \log_2 3$$

$$x = 3 - \log_2 3$$

2. A polynomial equation has roots α , β and γ , where

$$\alpha + \beta + \gamma = -B$$

$$\alpha + \beta + \gamma = -B$$
 $\alpha \beta + \alpha \gamma + \beta \gamma = C; \alpha \beta \gamma = -D$

$$B = 0$$

$$C = 1$$

$$D = -1$$

$$x^3 + x - 1 = 0$$

3.

$$3x = 105$$

$$x = 35$$

$$\angle FAE = 2x = 70$$

Not to scale

4.
$$y = e^{x+2}$$

$$x = e^{y+2}$$

$$y = \ln(x) - 2$$

$$f^{-1}(x) = \ln(x) - 2$$

$$f^{-1}(e^2) = \ln(e^2) - 2 = 0$$

$$\lim_{x \to 3} \frac{x-3}{\sqrt{x+1}-2}$$

$$\lim_{x \to 3} \frac{x-3}{\sqrt{x+3}}$$

$$\lim_{x \to 3} \frac{x - 3}{\sqrt{x + 1} - 2} \times \frac{\sqrt{x + 1} + 2}{\sqrt{x + 1} + 2}$$

$$\lim_{x \to 3} \frac{(x-3)(\sqrt{x+1}+2)}{x+1-4}$$

$$\lim_{x \to 3} \frac{(x-3)\left(\sqrt{x+1}+2\right)}{x-3}$$

$$\lim_{x\to 3} \frac{(x-3)\left(\sqrt{x+1}+2\right)}{x-3}$$

$$\lim_{x\to 3} \left(\sqrt{x+1} + 2\right)$$

$$\lim_{x\to 3} \left(\sqrt{4} + 2\right) = 4$$

6. The particle moves in a positive direction and changes direction after 3 seconds.

 $v = 2\sin(x - 1) + 2$ $v^2 = 4[\sin(x - 1) + 1]^2$ At x=1 V=2

Use
$$a = \frac{d}{dx} \frac{v^2}{2} = \frac{d}{dx} 2 \left[\sin(x - 1) + 1 \right]^2$$

$$a = 4[\sin(x-1) + 1]\cos(x-1)$$

At x=1 a=4

8. The following curve is the graph of the function $y = e^{\sin x}$

 $-1 \le \sin x \le 1$

Maximum point is at y = e

$$\left(\frac{\pi}{2},e\right)$$

$$\left(\frac{\pi}{2},e\right)$$
 Minimum point is at $y=e^{-1}$ $\left(\frac{3\pi}{2},\frac{1}{e}\right)$

$$\left(\frac{3\pi}{2},\frac{1}{e}\right)$$

The graph is translated vertically $\frac{1}{e}$ and horizontally $\frac{\pi}{2}$

9. The following curve is the graph of the function:

At
$$x = 0$$
 $y = -\frac{3\pi}{2}$ So $y = -3\cos^{-1} 2x$

So
$$y = -3\cos^{-1} 2x$$

10.

Given
$$f'(x) = \int g(x) dx$$
,

$$amx^{m-1}=\frac{b}{n+1}x^{n+1}$$

$$m-1=n+1\dots(1)$$
 (equate powers)

$$am = \frac{b}{n+1}\dots(2)$$
 (equate coefficients)

Solving simultaneous equations:

$$m(n+1)=\frac{b}{a}$$

Since m, n+1 are both integers (i.e. $\in \mathbb{Z}^+$),

$$\Rightarrow m(n+1) \in Z^+$$

$$\therefore \frac{b}{a} = m(n+1) \in Z^+$$

$$\Rightarrow D$$

MATHEMATICS Extension 1 : Questio	n	
Suggested Solutions (a) $\int_{0}^{\frac{\pi}{2}} (\cos x \sin^{2} x) dx$ $= \left[\frac{\sin^{3} x}{3}\right]^{\frac{\pi}{2}}$ $= \frac{1}{3}$ $= \frac{1}{$	Marks	Marker's Comments (1) for Integrating (1) for correct Substitution and evaluation provided the expression wasn't made simpler.
LFCB+LACB= 180' (angle Sum of a straight angle) : LFCB= 180-90 = 90° LFDA= 180 Langle Sum of a straight angle) : LFDA= 180-90 = 90° : LFCB+LFDA= 180° : CEDF is a cyclic gnadrilateral.		

MATHEMATICS Extension 1 : Questi		
Suggested Solutions	Marks	Marker's Comments
A some and the second s		
X		
AND THE RESIDENCE OF THE PROPERTY OF THE PROPE		
i d+B+Y=180 (angle Sum of a triangle)		- Must have all
		or part of this
$: d + \beta = 180 - \gamma$		
· +.11.0 - +. 1100 x)		line in your proof.
:- ton(d+B) = ton(180-8)		
= - ton 8 (ton is negative in 2nd quadrant)		
The green,		
		1) for expanding
i tan(d+p) = tand + tanp = -tanx		tan (d-B)
1-tand tans		(ax ca · b)
'tlife staty t		1 finishing the
: tand + tanp = tandtanptanx - tanx		proof off.
: tand + tanp + tan Y = tand tanp tan Y		
and the second s		
d) let f(x) = Lnx - Losse		
$f(1) = 0 - \cos 1$		Must show the
= -0.54		value for both
f(z) = 4n2 - 6s2		fli) and f(z)!
$= \cdot $		Total and the
70		
: There lies a solution between x=1 and x=2		

MATHEMATICS Extension 1 : Qu		
Suggested Solutions	Marks	Marker's Comments
$ii) f'(x) = \frac{1}{x} + \sin x$		- (1)
3.2 = 1.5 - f(1.5) f'(1.5) = 1.299		
e) i $v^2 = 16x - 4x^2 + 20$		
$\frac{2}{2}\sqrt{2} = 8x - 2x^{2} + 10$ $\frac{d}{dx}(\frac{1}{2}x^{2}) = 8 - 4x$	and the purpose of the second	of for multiplying half
=-4(x-2) :. $\dot{x}=-4(x-2)$	Marie Company	O for differentiating
$ii) \ \dot{x} = 0 \rightarrow x = 2.$	SACRET SA	-(1) x=2
$\frac{1}{2} \cdot \sqrt{\frac{1}{2}} = \frac{16(2) - 4(2)^{2} + 20}{16(2) - 4(2)^{2} + 20}$ $= 32 - 16 + 20$ $= 36$		
:. V= t b cm/s :. Max Speed = 6 cm/s.	2000001.05 STAN	
	00000000000000000000000000000000000000	

Extension 1 TR Question 12	IAL	Term 3 2019		JRAHS
(a)	22			
SIT	$13x = \cos 2x$			
\2	$\left(-3x\right) = \cos x$		1	For expressing the given equation in a form that will enable one to obtain
$\frac{\pi}{2} - 3x$	$=2\pi n\pm 2x, n$	$\in Z$		the general solution.
3 <i>x</i> ±	$2x = \frac{\pi}{2} - 2\pi i$	ı		
$x = \frac{\pi}{10} - \frac{2\pi}{5}$	$\frac{n}{}$ or $x =$	$\frac{\pi}{2} - 2\pi n$	1	For both correct solution
(i)				To our correct solution
$\cos 2x = \cos\left(\frac{\pi}{2} - 3x\right)\right) =$	$\Rightarrow x = \frac{2\pi n}{5} + \frac{1}{3}$	$\frac{\pi}{10} or \ x = \frac{\pi}{2} - 2\pi n$		
(ii)		$n\pi + (-1)^n \frac{\pi}{n}$		
$\sin 3x = \sin \left(\frac{\pi}{2} - 2x\right)$	$\Rightarrow x =$	$=\frac{nn+(1)^{n}2}{3+(-1)^{n}2}$		
(iii) $\sin\left(\frac{\pi}{2} - 2x\right) = \sin 3$	$3x \Rightarrow x$	$=\frac{\frac{\pi}{2} - n\pi}{2 + (-1)^n 3}$		
(iv)				
sin(2	$(x+x)=\cos 2$	2x		
\Rightarrow 4 sin ³ x -	$-2\sin^2 x - 3\sin^2 x$	$\sin x + 1 = 0$		
$\Rightarrow \sin x =$: 1 or sin x =	$=\frac{-1\pm\sqrt{5}}{4}$		This step is needed for the 1 st mark
$\Rightarrow x = \frac{\pi}{2} \text{or } x = \frac{\pi}{10} (or \ 18)$	3^{0}) or $\frac{3\pi}{10}$ (6	or 54°) [acute angles]		
So formulate the general solution	ons!!!!!			

$$V = \frac{4}{3}\pi r^3$$

$$\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt}$$

$$\Rightarrow -2 = 4\pi r^2 \times \frac{dr}{dt}$$

$$\therefore \frac{dr}{dt} = -\frac{1}{8\pi}$$

But

$$A=4\pi r^2$$

$$\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$$

$$= 8\pi r \times \left(-\frac{1}{8\pi}\right)$$

$$= -\gamma$$

When
$$r = 2$$
, $\frac{dA}{dt} = -2$

Therefore the balloon is shrinking at $2 cm^2 / s$

Note:

$$V = \frac{4}{3}\pi r^3 = \frac{1}{3}Ar$$

$$\frac{dV}{dr} \neq \frac{1}{3}A$$

For recognising that the rate of volume change is negative AND showing use of the related rates concept.

1

- Find the rate of change of the area.
- For answering the question i.e. rate at which the balloon shrinks

Maximum 2 marks if negative rate AND/OR concluding statement omitted.

(c) $ \left(x^2 - \frac{1}{\sqrt{x}}\right)^n = \sum_{k=0}^n \binom{n}{k} (x^2)^k \left(-\frac{1}{\sqrt{x}}\right)^{n-k} $		
$T_{k+1} = \binom{n}{k} (x^2)^k \left(-\frac{1}{\sqrt{x}} \right)^{n-k}$ $= \binom{n}{k} x^{2k} (-1)^{n-k} x^{-\frac{1}{2}(n-k)}$	1	For the compact form of the binomial expansion or the general term, including the consideration for the negative in the 2 nd term of the binomial.
For non-zero constant $\frac{5}{2}k - \frac{1}{2}n = 0$ Which gives $n = 5k$	1	For correctly equating the power of the term in x to zero.
But $k \in \mathbb{Z}$, and hence n is a multiple of 5		
Note: If $T_{k+1} = \binom{n}{k} (x^2)^{n-k} \left(-\frac{1}{\sqrt{x}}\right)^k$, then $n = \frac{5k}{4} = 5(\frac{k}{4})$, which still implies that n is a multiple of 5		
(d) Sample space with no restrictions: $\binom{13}{5} = 1287$	1	Sample space - no restrictions
$P(1M, 1W) = 1 - (P(all M) + P(all W))$ $= 1 - \frac{\binom{6}{5} + \binom{7}{5}}{\binom{13}{5}}$ $= \frac{140}{143}$	1	Correct probability
OR (4M, 1W), (3M, 2W), (2M, 3W), (1M, 4W)		
$P = \frac{\binom{6}{4} \times \binom{7}{1} + \binom{6}{3} \times \binom{7}{2} + \binom{6}{2} \times \binom{7}{3} + \binom{6}{1} \times \binom{7}{4}}{\binom{13}{5}}}{\frac{1287}{1287}}$		
$=\frac{140}{143}$		

(ii)	With no restrictions, 5 people in a circle can Be arranged in 4! Ways.	1	For sample space
	Men can be together in 2! Ways		
	Women can be arranged in 3! Ways		
	$\therefore P(men\ NOT\ together) = 1 - P(men\ together)$		
	$= 1 - \frac{2! \times 3!}{4!}$ $= 1 - \frac{1}{2}$ $= \frac{1}{2}$		
	$=1-\frac{1}{2}$		
	$=\frac{1}{2}^{2}$	1	Correct probability
	OR M		Correct probability
	Fix Man: So 2 spots for Him. Woman in 3! Ways		
	So $P(not \ together) = \frac{3! \times 2}{4!} = \frac{1}{2}$		
e)			
(i)	$y = ut \sin \alpha - \frac{1}{2}gt^2$		
	$\dot{y} = u \sin \alpha - gt$		
	Bu at maximum height $\dot{y} = 0$	1	For using y and \dot{y} to get
	Hence $u \sin \alpha - gt = 0$, from which $t = \frac{u \sin \alpha}{g}$		time of flight
(ii)	By similar arguments to (i), the time for the second particle to		NOTE: reaching the same maximum height
	reach maximum height is $t = \frac{w \sin \beta}{g}$		does not necessarily mean that their flight
	As both particles are fired simultaneously, their flight times to	1	times are equal.
	collide are equal. $u \sin \alpha = w \sin \beta$		Equating their vertical
	Hence $\frac{u \sin \alpha}{g} = \frac{w \sin \beta}{g}$		heights is another way to get the result i.e. $y_A = y_E$
	From which $u \sin \alpha = w \sin \beta$		11

Now
$$d = x_A + x_B$$

$$= ut_A \cos \alpha + wt_B \cos \beta$$

$$= u\left(\frac{w \sin \beta}{g}\right) \cos \alpha + w\left(\frac{u \sin \alpha}{g}\right) \cos \beta$$

since
$$t_A = t_B$$
, $\frac{u \sin \alpha}{g} = \frac{w \sin \beta}{g}$

$$\therefore d = \frac{uw}{g} (\sin \beta \cos \alpha + \sin \alpha \cos \beta)$$
$$= \frac{uw}{g} \sin(\alpha + \beta)$$

This step must be shown to get the 1st mark

1

1

The reason for the transformation of the distance equation to include sines and cosines

NOTE: This is a SHOW question and as the algebra is trivial, all working/reasons MUST be included

MATHEMATICS Extension 1 : Question	n(3	
Suggested Solutions	Marks	Marker's Comments
Suggested Solutions A Tom S300 (N2BT = 360° - 330° (angles about a = 30° point) LATB = 30° (alternate angles, parallel lines) In \triangle ATH, In \triangle BTH, tan $25 = \frac{1}{100}$ AT = $\frac{1}{100}$ BT = $\frac{1}{100}$	Marks	remember to use degrees!!! on calculator.

MATHEMATICS Extension 1 : Question	n!3	
Suggested Solutions	Marks	Marker's Comments
ii) $V = \pi \int_{0}^{\pi} (4\cos^{2}x - \sec^{2}x) dx$ = $\pi \int_{0}^{\pi} (2\cos 2x + 2 - \sec^{2}x) dx$	1	
as $\cos^2 x = \frac{1}{2} (\cos 2x + 1)$	'	
$= \pi \left[\sin 2x + 2x - \tan x \right]_{3}^{\frac{\pi}{4}}$	11	
= 7 [sin = + = - tan = - 0]		
$= \pi \left(1 + \frac{\pi}{2} - 1 \right)$ $= \frac{\pi^2}{3} u^3$)	
$= \frac{\pi^2}{2} u^3$		
c) $1 \times 2^{\circ} + 2 \times 2^{\prime} + 3 \times 2^{2} + + n \times 2^{n-1} = 1 + (n-1) \times 2^{n-1}$	2^	
Prove true for n=1	1	
LHS = 1 × 2°		
Pus - 1, (1, 1) - 2	{	
$RHS = 1 + (1-1) \times 2'$	1	
= 1+0		
: LHS = RHS		
: true for n=1]	I for:
Assume true for n=k, REZ+		- REZT - statements
ie. $1\times2^{\circ} + 2\times2^{\dagger} + \dots + k\times2^{k-1} = 1 + (k-1)\times2^{k}$		of n=k, n=ktl
Prove true for n=R+1		- conclusion
ie. 1×2°+2×2'++ k×2k-1+ (k+1)×2k		-byassumption
$= 1 + k \times 2^{k+1}$		
$LHS = 1 \times 2^{o} + 2 \times 2^{1} + + k \times 2^{k-1} + (k+1) \times 2^{k}$ $= 1 + (k-1) \times 2^{k} + (k+1) \times 2^{k}$	2	
(by assumption)		
$= 1 + 2^{k} (k-1+k+1)$	1	
$= 1 + 2^{k}(2k)$		
$= 1 + 2^{k+1} \times k$		
= RHS)	
: true for n=k+1		
. the statement is true by the		
process of mathematical induction.		

MATHEMATICS Extension 1 : Question\3				
Suggested Solutions	Marks	Marker's Comments		
d)i) $P(one 6) = {}^{4}C_{1} \times {}^{4}C_{6}$ $= 125$				
324		,		
= 0.38580				
= 0.39 (2dp)				
ii) P (two 6 after two rolls)				
= P (1st roll no 6's) x P (2nd roll two 6's)		1 > one case		
+ P(1st roll one 6) x P (2nd roll one 6)		2 >> two cases		
+ $P(1st roll two 6's) \times P(2nd roll no 6)$ = $(\frac{5}{6})^4 \times ^4C_2 \times (\frac{1}{6})^2 \times (\frac{5}{6})^2$ + $^4C_1 \times (\frac{1}{6}) \times (\frac{5}{6})^3 \times ^3C_1 \times (\frac{1}{6}) \times (\frac{5}{6})^2$ + $^4C_2 \times (\frac{1}{6})^2 \times (\frac{5}{6})^2 \times (\frac{5}{6})^2$ = $0.055816329 + \frac{3125}{23328}$		3⇒ all cases plus final solution correct.		
+ 625				
= 0.270151034				
- 0.27 (2dp)				

Question 14 (15 marks)

(a)	(i) Let $u = \ln x$	$\frac{du}{dx} = \frac{1}{x}$	xdu = dx
	$\int \frac{1}{x \ln x} dx = \int \frac{1}{xu} x dx$	$du = \int \frac{1}{u} du = \ln u$	1u+C
	$\int \frac{1}{x \ln x} dx = \ln(\ln x) + C$		
	P 1		

- Ignore absolute value on the log
- Must use substitution for the mark
- Students must make sure they do not have multiple variables, ie. u and x in the integral.
- Some students still forgetting the +C

1

3

 $1 = \ln(\ln P) - \ln(\ln 2)$

$$1 = \ln\left(\frac{\ln P}{\ln 2}\right)$$

 $1 = \ln(\log_2 P)$ (change of base)

$$e = \log_2 P$$

 $P = 2^e$ as required

OR

$$\frac{\ln P}{\ln 2} = e$$

ln P = e ln 2

$$e^{e \ln} = P$$

$$2^e = P$$

1st mark for applying log laws

2nd mark

3rd mark

$$2^e = P$$

(b)

(i) Gradient of the line y = x is 1 $gradientPQ = \frac{ap^2 - aq^2}{2ap - 2aq}$ $gradientPQ = \frac{a(p^2 - q^2)}{2a(p - q)}$ $gradientPQ = \frac{a(p-q)(p+q)}{2a(p-q)}$

$$p+q=2$$
 as required

P(2ap, ap2) $Q(2aq,aq^2)$

2

(ii) Equation of normals: $y - ap^2 = -\frac{1}{p}(x - 2ap)$; $y - aq^2 = -\frac{1}{q}(x - 2aq)$ Solve simultaneously. $y = ap^2 - \frac{1}{p}(x - 2ap)$; $y = aq^2 - \frac{1}{q}(x - 2aq)$

$$ap^{2} - \frac{1}{p}(x - 2ap) = aq^{2} - \frac{1}{q}(x - 2aq)$$
 /× po

$$ap^{3}q - q(x-2ap) = aq^{3}p - p(x-2aq)$$

$$ap^{3}q - aq^{3}p = q(x-2ap) - p(x-2aq)$$

$$apq(p^2-q^2)=x(q-p)$$

$$apq(p-q)(p+q) = -x(p-q)$$

$$-apq(p+q) = x$$
 use: $p+q=2$

$$-2apq = x$$

[2nd mark for using p+q=2]

substitute in $y = ap^2 - \frac{1}{p}(x - 2ap)$ to find y value

$$y = ap^2 - \frac{1}{p}(-2apq - 2ap)$$

$$y = ap^2 + 2aq + 2a$$

use:
$$p = 2 - q$$

$$y = ap(2-q) + 2a(2-p) + 2a$$

$$y = 2ap - apq + 4a - 2ap + 2a$$

$$y = -apq + 6a$$

use:
$$-apq = \frac{x}{2}$$

[3rd mark for eliminating p and q and obtaining straight line in form y=mx+b]

$$y = \frac{x}{2} + 6a$$
 as required

(c)

$$f(x) = x + \sqrt{x^2 + 1}$$

When asked to sketch the inverse of a function students must ensure that the two graphs are symmetrical.

Therefore:

- x and y axes must have the same scale
- y = x should also be drawn to show the line of symmetry
- intercepts must be clearly labelled

 $f^{-1}(x) = \frac{1}{2} \left(x - \frac{1}{x} \right)$

(ii)

[1st mark for explaining how to use graph to evaluate integral]

3

By inspection of the two graphs:

$$\int_{0}^{1} \left(x + \sqrt{x^2 + 1} \right) dx = \text{Area of rectangle ABCO} - \frac{1}{2} \int_{1}^{1 + \sqrt{2}} \left(x - \frac{1}{x} \right) dx$$

$$A = 1 + \sqrt{2} - \frac{1}{2} \left[\frac{x^2}{2} - \ln x \right]^{1 + \sqrt{2}}$$

$$A = 1 + \sqrt{2} - \frac{1}{2} \left[\frac{(1 + \sqrt{2})^2}{2} - \ln(1 + \sqrt{2}) - \left(\frac{1}{2}\right) \right]$$
 [2nd mark for substitution into correct expression]

$$A = 1 + \sqrt{2} - \left[\frac{(1 + \sqrt{2})^2}{4} - \frac{\ln(1 + \sqrt{2})}{2} - \frac{1}{4} \right]$$

$$A = 1 + \sqrt{2} - \left[\frac{3 + 2\sqrt{2} - 1}{4} - \frac{\ln(1 + \sqrt{2})}{2} \right]$$

$$A = \frac{4 + 4\sqrt{2}}{4} - \frac{2 + 2\sqrt{2}}{4} + \frac{\ln(1 + \sqrt{2})}{2}$$

$$A = \frac{4 + 4\sqrt{2} - 2 - 2\sqrt{2}}{4} + \frac{\ln(1 + \sqrt{2})}{2}$$

$$A = \frac{2 + 2\sqrt{2}}{4} + \frac{\ln(1 + \sqrt{2})}{2}$$

$$A = \frac{1 + \sqrt{2}}{2} + \frac{\ln(1 + \sqrt{2})}{2} = \frac{1}{2} \left[1 + \sqrt{2} + \ln(1 + \sqrt{2}) \right] \text{ as required } [3^{\text{rd} mark for final expression}]$$