Student Name:

Maths class:

James Ruse Agricultural High School

2020 YEAR 12 Trial HSC Examination

Mathematics Extension 1

General Instructions

- Reading time 10 minutes
- Working time 2 hours
- Write using black pen
- Calculators approved by NESA may be used
- A reference sheet is provided
- In Questions 11–14, show relevant mathematical reasoning and/ or calculations

Section I – 10 marks (pages 2–4)

- Attempt Questions 1–10
- Allow about 15 minutes for this section

Section II – 60 marks (pages 5-9)

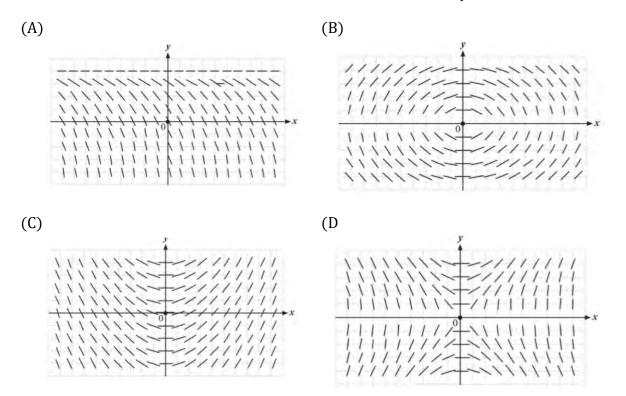
- Attempt Questions 11–14
- Allow about 1 hour and 45 minutes for this section

Total marks: 70

Section I

Write your answers on the multiple choice answer sheet provided.

- 1. The probability of success in a Bernoulli trial is 0.3. What is the variance?
 - (A) 0.09
 - (B) 0.7
 - (C) 0.3
 - (D) 0.21
- 2. Which one of the following is a first-order linear differential equation?
 - (A) $xy' = 14x^2 + 9y$
 - (B) y'' + 2y' 8y = 0
 - (C) $y^2 + y + x = 0$
 - (D) $y'y 2x^2y^2 = 14x$
- 3. How many arrangements of the letters of the word 'OLYMPIC' are possible if the C and the L are to be together?
 - (A) 120
 - (B) 720
 - (C) 240
 - (D) 1440
- 4. If $P(x) = x^3 6x^2 + 9x + k$ has a root of multiplicity 2 then a possible value of k is which of the following?
 - (A) k = 4
 - (B) k = 1
 - (C) k = -4
 - (D) k = -1


5. The derivative of $\sin^{-1}\left(\frac{3x}{4}\right)$ is which of the following?

(A)
$$\frac{0.75}{\sqrt{1-3x^2}}$$

(B) $\frac{3}{\sqrt{16-9x^2}}$
(C) $\frac{3}{\sqrt{1-\frac{9x^2}{16}}}$
(D) $\frac{1}{\sqrt{16-9x^2}}$

6. A random variable X is defined by $P(X = k) = {\binom{15}{k}} (0.29)^k (0.71)^{15-k}$ for k = 0, 1, 2, ..., 15. What is the mean of X?

- (A) 0.29
- (B) 0.71
- (C) 4.35
- (D) 10.65
- 7. How many of the following statements are true?
 - $|\vec{a}| + |\vec{b}| = |\vec{a} + \vec{b}|$ means that \vec{a} and \vec{b} have the same direction.
 - $|\vec{a}| + |\vec{b}| = |\vec{a} \vec{b}|$ means that \vec{a} and \vec{b} have the opposite directions.
 - $|\vec{a}| + |\vec{b}| = |\vec{a} \vec{b}|$ means that \vec{a} and \vec{b} have the same magnitude.
 - $|\vec{a}| |\vec{b}| = |\vec{a} \vec{b}|$ means that \vec{a} and \vec{b} have the same direction.
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 4

8. The slope field that represents the differential equation $\frac{dy}{dx} = \frac{x}{2y}$ is which of the following?

- 9. If the point *P*(4, a) is on the graph of parametric equations $x = \frac{t}{2}$, $y = 2\sqrt{t}$, there is another point F(2,0), such that $|\overrightarrow{PF}|$ is which of the following?
 - (A) 4
 - (B) 5
 - (C) 6
 - (D) 7
- 10. It is given that $\vec{a} = (-3, m)$, $\vec{b} = (4, 3)$. If the angle between vector \vec{a} and \vec{b} is an obtuse angle, what is true for the value of *m*?
 - (A) m < 4
 - (B) $m < 4 \text{ and } m \neq -\frac{9}{4}$
 - (C) m > 4
 - (D) $m \neq 4 \text{ and } m > -\frac{9}{4}$

Section II begins on the next page

Section II

60 marks

Attempt Questions 11-14

Allow about 1 hour and 45 minutes for this section

Start each question on a new page. Extra paper is available.

In Questions 11-14, your responses should include relevant mathematical reasoning and/ or calculations.

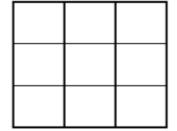
Question 11 (15 marks) Start a new page.

a) Find
$$\int \frac{5}{2+x^2} dx$$
.
b) In a dice game, success is defined as obtaining a total of 9 when throwing two dice.
Six rounds of the game are played. Find the probability of at least five successes.
Give your answer to 3 significant figures.
c) (i) Express $3\cos\theta + 4\sin\theta$ in the form $R\cos(\theta - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$.
(ii) Hence find, without the use of calculus, the coordinates of the turning point(s)
of the curve
 $y = \frac{2}{3\cos\theta + 4\sin\theta}$
in the interval $[0,2\pi]$.
(iii) The function f is defined by $f(\theta) = 1 - 3\cos 2\theta - 4\sin 2\theta$, $\theta \in \mathbb{R}$, $0 < \theta < \pi$.
 α) State the range of f .
 β) Solve the equation $f(\theta) = 0$.

d) (i) Given
$$A(-2, 3)$$
, $B(4, -5)$, $C(-7, -6)$ and $D(-5, -2)$, find the vector projection of \overrightarrow{AB} on to \overrightarrow{CD} .

(ii) What is the vector component of
$$\overrightarrow{AB}$$
 perpendicular to \overrightarrow{CD} ? **1**

Question 12 (15 marks) Start a new page.


- a) Consider the parabola $x^2 = 8(y 3)$.
 - (i) Sketch the parabola labelling its vertex.
 - (ii) The area bounded by the parabola and the line y = 5 is rotated about the *x*-axis. Find the volume of the solid formed.
- b) It is known that 80% of patients with a certain disease can be cured with a certain drug. What is the probability that amongst 150 patients with the disease, at most 37 of them cannot be cured with the drug? You must justify the use of the normal approximation.
- c) (i) Show that

$$\tan\left(\theta + \frac{\pi}{6}\right) = \frac{1 + \sqrt{3}\tan\theta}{\sqrt{3} - \tan\theta}$$

(ii) Hence, or otherwise, solve for $0 \le \theta \le \pi$,

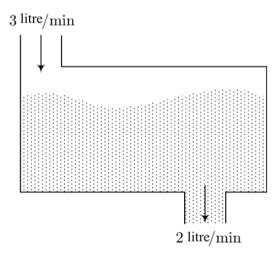
$$1 + \sqrt{3} \tan \theta = (\sqrt{3} - \tan \theta) \tan(\pi - \theta)$$

d) A 3×3 grid is to be filled with numbers from the set $\{-1, 0, 1\}$. Prove that among the sums by rows, columns and diagonals, there are at least 2 of these sums equal.

- e) In the isosceles triangle *ABC*, $|\overrightarrow{AB}| = |\overrightarrow{AC}|$. *D* is the midpoint of side *AB* and *E* is the midpoint of side *AC*. \overrightarrow{CD} is perpendicular to \overrightarrow{BE} .
 - (i) Draw the diagram and label $\angle BAC = \theta$ and $|\overrightarrow{AD}| = r$. 1
 - (ii) Hence noting that \overrightarrow{CD} may be written as $\overrightarrow{AD} \overrightarrow{AC}$, or otherwise, use vector methods to find the value of $\angle BAC$.

Question 13 (15 marks) Start a new page.

1


2

3

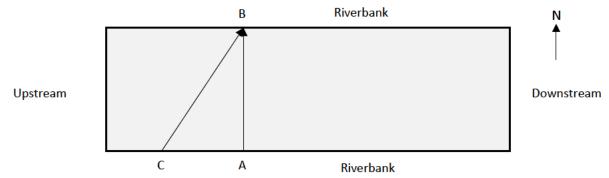
1

3

- a) Use the substitution $u = \sqrt{x}$ to find $\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx$.
- b) A tank contains a saltwater solution consisting initially of 20 kg of salt dissolved into 10 L of water. Fresh water is being poured into the tank at a rate of 3 L/min and the solution (kept uniform by stirring) is flowing out at 2 L/min.

(i) Show that *Q*, the amount of salt (in kilograms), at time *t* (in minutes) satisfies the **2** equation

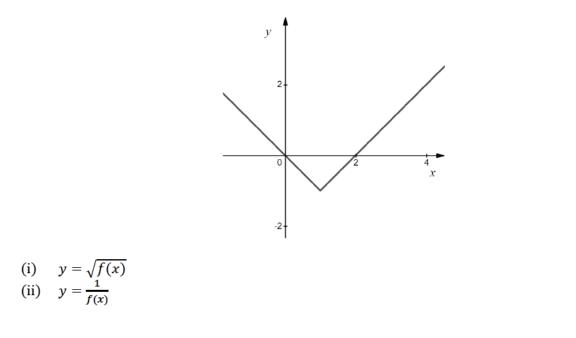
$$\frac{dQ}{dt} = -\frac{2Q}{(10+t)}$$


- (ii) Solve the differential equation given in (i) to find the amount of salt in the tankafter 5 minutes. Answer in kilograms correct to 2 decimal places.
- c) (i) Show that $\sin 2\theta + \sin 4\theta \sin 6\theta = 4 \sin 3\theta \sin 2\theta \sin \theta$. 2
 - (ii) Hence, solve $\sin 2\theta + \sin 4\theta = \sin 6\theta$ for $0 \le \theta \le \pi$.

Question 13 continues on the next page

2

Question 13 (continued)


d) Danny wants to swim across the river from position A to position B shown on the diagram below. The riverbanks are parallel straight lines, and AB is perpendicular to the riverbanks. The speed of the river flow is 30 m/min from west to east and the river is 240 metres wide. Assume Danny swims at a constant speed of 60 m/min.

- (i) In which direction should Danny aim to swim, in order to move from point A to point B in a straight line under the influence of the current? Draw a vector diagram to demonstrate the velocities and show all necessary working out.
- (ii) Gabriel also swims at 60 m/min. but he is to start at position *C*, which is 60 metres 3 upstream from position *A* as shown in the diagram. In which direction should Gabriel aim to swim in order to swim directly to position *B* under the influence of the current? (Draw a vector diagram to demonstrate the velocities and show all necessary working out. Round your answer to one decimal place.)

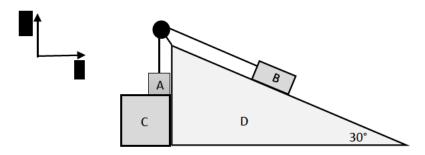
Question 14 (15 marks) Start a new page.

a) Given the graph of f(x) = |x - 1| - 1 below, on separate axes sketch of each of the following.

Question 14 continues on the next page.

2 2

$$f(x) = 4\sin^2\left[2\left(x + \frac{\pi}{8}\right)\right] - 2, \ 0 < x < \frac{\pi}{4}$$


b) Consider

- (i) Verify that f(x) could be a probability density function.
- (ii) Find the mode of such a distribution.
- c) 12 cards are drawn from a regular deck of 52 playing cards which includes four kings and four queens. It is known that out of these 12 cards, exactly 2 are kings. What is the probability that there will be more queens than kings?

3

1

d) The diagram below shows object A of mass 8 kg and object B of mass 5 kg. Both objects are attached to the ends of a light inextensible string that passes over a smooth pulley. Object C is fixed to the ground, and D is a fixed plane at an inclination of 30 degrees as shown. All objects are at rest, and all surfaces are smooth. g is 10 ms⁻². The basis vectors are shown below.

Let N_1 be the normal force of object *C* acting on object *A* and let N_2 be the normal force of the inclined plane acting on object *B*. Let T_1 and T_2 be the tension forces in the string applied to object *A* and object *B*, respectively.

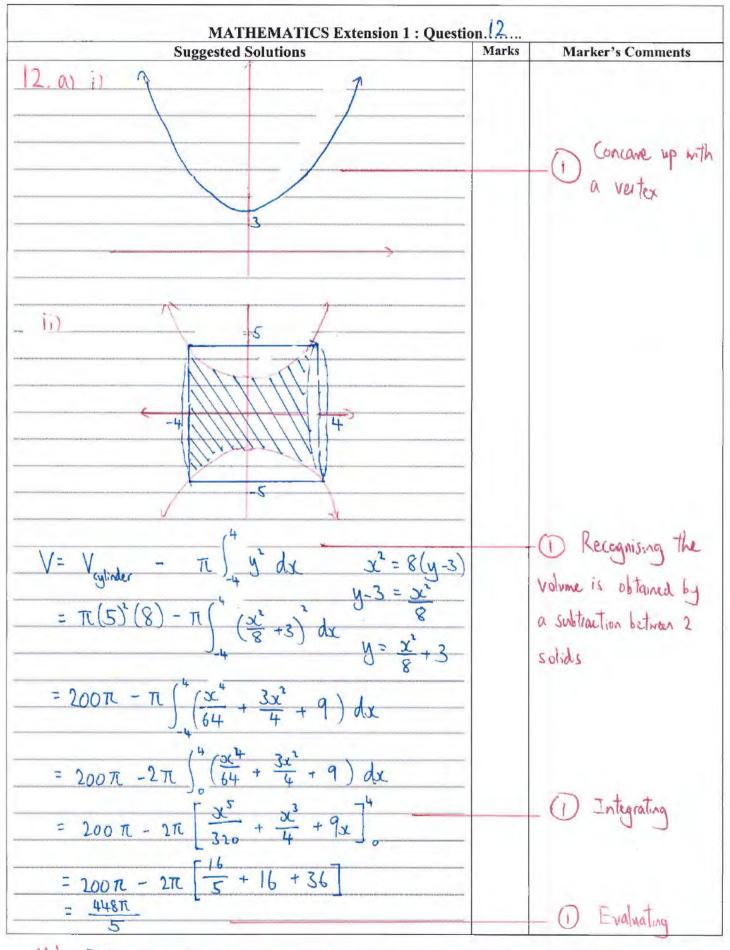
((i)	Express T_2 in terms of t in column vector form.	1
((ii)	By setting up vector equations, find the values of t and n .	2
((iii)	Hence, find the components of N_1 .	1

END OF EXAMINATION

MATHEMATICS Extension Suggested Solutions		Multiple Choice		
	Suggesten Solutions		marker 5 Comments	
1. D				
2. A				
3. D				
4. C				
5. B				
6. C 7. C				
7. C 8. D				
9. C				
10. B				

Ext 1 Trials 2020.

MATHEMATICS Extension . Qu		/3
Suggested Solutions	Marks	Marker's Comments
$\int \frac{5}{24x^2} dx$		- nost did well - can't use la.
$\int \frac{5\sqrt{2}}{\sqrt{5^2} + x^2} dx$		its in reference sneet, easy ques
m m	al of 9=	± −0 .
$X = Bin (6, \frac{1}{9}) = p(x=s) + p(x=c) \frac{1}{9}$		g - () correlates to 6(5 and 6(6 (
$(\chi_{25}) = P(\chi_{25}) + C(1)^{6} \frac{5}{5} \sqrt{1}$ $(C_{5}(\frac{1}{9})^{5}(\frac{9}{9}) + C(\frac{1}{9})^{6} \frac{5}{5} \sqrt{1}$ = 0.0000922		answer _ () success) was wro be nork can anlypok
= 0,0000 /12	2 nd 1 if she	verts showed and intending of (5 4 (
) $3\cos\theta + 4\sin\theta = R\cos(\theta - \alpha)$ = $R\cos\theta\cos\alpha + R\sin\theta$	shq.	
equate coefficient. (i # ii) ² in CA = R cost = 3 - i p ² (cost + Sin	(a) = 25	=5(1)
sin $\theta = Rsind = 4 - 11$ $R = \pm s$ $R = \pm s$ $r = 5 \cos d = 3$ $\cos d = 3$ $s = 5 \sin d$ $r = 5 \sin d$ r = 5	d=4	cey pts given in q.
5 = 0.927	= 0.927	
tand = sind cosod	= 4/3	(0 K K K T)
ther forms accepted tan' (3), 53.13, 0.	295 17	key pts given


C:\Users\ssamypullay\Downloads\Süggested Mk solns template_V2_no Ls.doc

2/3 11 **MATHEMATICS Extension 1**: Question **Suggested Solutions** Marks Marker's Comments without using calculus mark was c(i)3 cos & + 4sin 0 awarded if both rand y 5005 (0 - tan" (4 LOS O-I SKEI coordinates $-\cos(o - ian^{-1}(\frac{4}{3})) = \pm 1$ correct for 11+ 0.927 Ymax = 2 / Ymin = - 2 both pts 0-tan-1(4)=cos'(1) 0-tan-1(4)= 0,727 either both x 0= 0.977 1 Jp (0.957, 45) 0\$ (4.069, -2/5) br both y other answers accepted OF $-2(\tan^{-1}(\frac{4}{3}),\frac{2}{5})pr(\tan^{-1}(\frac{4}{3})+\pi,-\frac{2}{5})$ both correct xty coordinater -> (8.2951, 2/5) or (+2951, -2/5) -> (53.13°, 2/5) or (233.13°, -2/5) of 1 pt. x) f(0)=1-300520-451020 is I mork =1-5cos0 (20-0.927) got to have 1. -5≤ Scos(20-0.927) ≤ 5 both interval P -4 5 1-5 (05 (20-0.927) 56 correg Range: - 4 5 f(0) 5 6 10) flo) = 1- 5cos(20 - tan" (4)=0 1 mora for each value cos 20 - tan -1 (3) = 5 20-ton" (3)= cos" (5) of G = 1 3896, 4.9137 20= 2.29, 5.84 0=1.14,2.92

C:\Users\ssamypullay\Downloads\Suggested Mk solns template_V2_no Ls.doc

 $\frac{\text{MATHEMALL}}{\text{Suggested Solutions}}$ $\frac{1}{AB} = \begin{pmatrix} 4 \\ -5 \end{pmatrix} - \begin{pmatrix} -2 \\ 3 \end{pmatrix} = \begin{pmatrix} 6 \\ -8 \end{pmatrix}$ $\frac{1}{AB} = \sqrt{6^2 + (-8)} = 10$ $\frac{1}{CD} = \begin{pmatrix} -5 \\ -2 \end{pmatrix} - \begin{pmatrix} -7 \\ -6 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ $\frac{1}{CD} = \sqrt{5^2 + 4^2} = 255$ $\frac{1}{AB} = \sqrt{5^2 + 4^2} = 255$ $\mathcal{A}_{i} = \begin{pmatrix} 4 \\ -5 \end{pmatrix} - \begin{pmatrix} -2 \\ 3 \end{pmatrix} = \begin{pmatrix} 6 \\ -8 \end{pmatrix}$ proj AB = AB. CO × CO , [AB] $= \left(\begin{array}{c} 6 \\ 9 \end{array} \right) \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ = \left(\begin{array}{c} 6 \times 2 \end{array} \right) + \left(\begin{array}{c} -8 \times 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\ \times \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \\ = 2\sqrt{5} \\$ $= -\frac{20}{20} \left(\frac{2}{4} \right) = \left(\frac{-2}{-4} \right)$ $= \begin{pmatrix} 6 \\ -8 \end{pmatrix} \xrightarrow{\text{proj}} \overrightarrow{AB} \xrightarrow{AB \cdot \overrightarrow{CD}} \overrightarrow{CD}$ $\overrightarrow{CD} = \begin{pmatrix} 2 \\ \Psi \end{pmatrix}$ = (-4) ii) perp: $\overrightarrow{AB} - \overrightarrow{perp}$ from pt(i) $\begin{pmatrix} 6 \\ -8 \end{pmatrix} - \begin{pmatrix} -2 \\ -4 \end{pmatrix}$ $=\left(\begin{array}{c} 8\\ -4 \end{array}\right)$ 6r component of AB perpto B => AB - projeB AB (-B) - (-2) + (-4)

C:\Users\ssamypullay\Downloads\Suggested Mk solns template_V2_no Ls.doc

Note: Failure to set up the initial integral properly will result in 1/3 maximum, you do not get 2/3 just for Evaluating any ordinary definite integral.

MATHEMATICS Extension 1 : Questi Suggested Solutions	Marks	Marker's Comments
b) N=150 p=0.8, g=0.2		Marker & Comments
np = 120 $nq = 307 10 7 10$		
: probability can be approximated using the normal distribution.		-0
Method 1: Solve P(X=113) where X is the random variable		
representing the number of people cured. $B = \sqrt{150 \times 0.8 \times 0.2}$ $E(X) = np = 120$ $= \sqrt{24}$		
$\frac{7}{37} = \frac{113 - 120}{\sqrt{514}} = -1.43$		
<pre> : P(Z>-1.43) = 1 - 0.0764 = 0.9236 = 92.36%</pre>		
Method 1: Solve $P(\hat{p} \ge \frac{113}{150})$ $\delta = \int \frac{0.8 \times 0.2}{150} = 0.033$) for answe
$E(\hat{\rho}) = 0.8$ $\therefore Z = \frac{113}{150} - 0.8 = -1.43.$		
0.033 $\therefore P(Z \ge -1.43) = 0.9236 = 92.36\%$		
Note Those who used the continuity correction hence X=112.5 will get Z = -1.53 and their final answer will be 0.937=93.7%.		It is not recommended to use the continuity correction in the HSC!

MATHEMATICS Extension 1 : Question Suggested Solutions	Marks	Marker's Comments
(); tan (0+2) = tono + tan 2		
1 - tano tan 7		
$= \tan \theta + \frac{1}{\sqrt{3}}$		\square
1 - tong		$+$ \bigcirc
$= \frac{\tan 0 + \sqrt{3}}{1 - \frac{\tan 0}{\sqrt{3}}}$		Must show at least
= 1+ J3 ton 0-		these lines of working
- 1 vis 1000-		I were times of working
15 - 100 00		
11) 1+ 53 tand= (53 - tand) tan (52 - 0)		
$\frac{1+\sqrt{3}\tan\theta}{\sqrt{3}-\tan\theta} = \tan(\pi-\theta)$		
$tan (0 + \frac{1}{6}) = tan (\pi - 0) (from i)$		
$\left[a \left(\frac{\sigma + -6}{6} \right) - \left[a \left(\left(\left(\frac{-\sigma}{2} \right) \right) \right) \right] \right]$		
$0 + 7 = \pi - 0 \text{ or } 0 + 7 = \pi + (\pi - 0)$		
$20 = \pi - \frac{1}{2}$ or $20 = 2\pi - \frac{1}{2}$		
20 = 57 or $20 = 117$		
Q = 577 or 1171		(1)
		0
		0
d) There are 7 possible sums (-3, -2, -1, 0, 1, 2, 3)		1
These are the pigeerholes		
+/	01	
There are 3 rows, 3 columns and 2 diagonals	=	Û
will result in 8 calculations. These one the -		1
pigcons.		
:. By the pigeonhole principle, at least 2 calculations		- $()$
will result in the same sum.		U

MATHEMATICS Extension 1 : Ouestion..... Suggested Solutions Marks Marker's Comments er ir R $\begin{array}{c} \text{ii)} \quad CO = \overrightarrow{AD} - \overrightarrow{AC} \\ \overrightarrow{BF} = \overrightarrow{AF} - \overrightarrow{AR} \end{array}$ (ID) · (BE) = 0 (Perpendicular vectors) - (1) Using the perpendicular property and rephrasing CB and BE in the same line. (AE-AB) (AD-AL)·(AE-AB)=0 AD AE - AD AB - ACAE + AL AB = 0 AD · AE + AZ · AB = AD · AB + AZ · AE $\overrightarrow{AD} \cdot \overrightarrow{AE} + \overrightarrow{AZ} \cdot \overrightarrow{AB} = \overrightarrow{AD} \cdot 2\overrightarrow{AD} + 2\overrightarrow{AE} \cdot \overrightarrow{AE}$ = $2\overrightarrow{r} + 2\overrightarrow{r}$ = $4\overrightarrow{r}$ $|\overline{AB}| |\overline{AE}| (250 + |\overline{AC}| |\overline{AB}| (0, 0 = 4r)$ $r^{2} (050 + 4r^{2} (050) = 4r^{2}$ $(050 (5r^{2}) = 4r^{2}$ $(050 = 4r^{2}$ 5D Use of dot product formula to introduce A 0= 651 F = 36°52' () Answer.

. . . .

Suggested Solutions	Marks	Marker's Comments
(a) $I \coloneqq \int \frac{\sin \sqrt{x}}{\sqrt{x}} dx$		
Let $u = \sqrt{x}$, then $du = \frac{1}{2\sqrt{x}}dx = \frac{1}{2u}dx \rightarrow dx = 2u \ du$. So $I = \int \frac{\sin u}{u} 2u \ du = 2 \int \sin u \ du$	1	
$= -2\cos u + C$ $= -2\cos\sqrt{x} + C$	1	
(b) (i)		
Implicit assumption is that addition of salt contributes to change in volume negligibly.		
Looking for $\frac{dQ}{dt}$, the change in mass of salt per unit time.		
Now, change in salt in system over time δt is		
$\delta Q = (ext{concentration at time } t) \times (ext{volume out})$		
$= \frac{Q}{V} \times \delta V$		
$=\frac{Q}{V}\left(-\frac{2L}{\min}\right)\delta t\dots(1)$	1	
Now,		
$\delta V = (V_{\rm in} - V_{\rm out}) = \left(3\frac{L}{\min} - 2\frac{L}{\min}\right)\delta t = 1L/\min \delta t$		
So $\frac{dV}{dt} = \frac{1L}{\min} \rightarrow V = \left(\frac{1L}{\min}\right)t + C$		
When $t = 0$ minutes, $V = 10$ L, so $C = 10$ L.		

Hence

$$V = 1 \frac{L}{\min} t + 10 L \dots (2)$$

Combining (1) and (2):

$$\delta Q = \frac{Q}{\left(1\frac{\mathrm{L}}{\mathrm{min}}t + 10\,\mathrm{L}\right)} \left(-\frac{2L}{\mathrm{min}}\right) \delta t$$
$$\frac{\delta Q}{\delta t} = -\frac{2Q}{t\frac{\mathrm{L}}{\mathrm{min}} + 10\,\mathrm{L}}$$

Assuming the units now implied,

$$\frac{dQ}{dt} = \lim_{\delta t \to 0} \frac{\delta Q}{\delta t} = -\frac{2Q}{10+t}$$

(ii)

The equation is separable, and assuming the units of Q to be kg, we have

$$\int_{20}^{Q} \frac{dQ}{Q} = -2 \int_{0}^{5} \frac{dt}{10+t}$$
 1

 $\log Q - \log 20 = -2(\log(15) - \log 10)$

$$\log Q = \log \frac{80}{9}$$

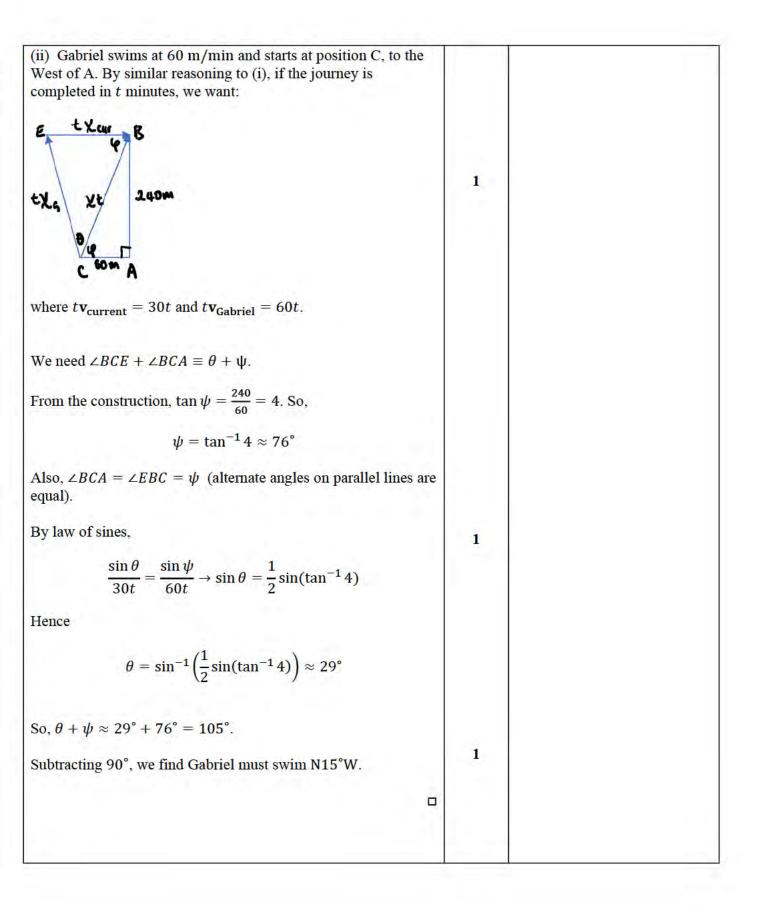
So, $Q \approx 8.89$ kg.

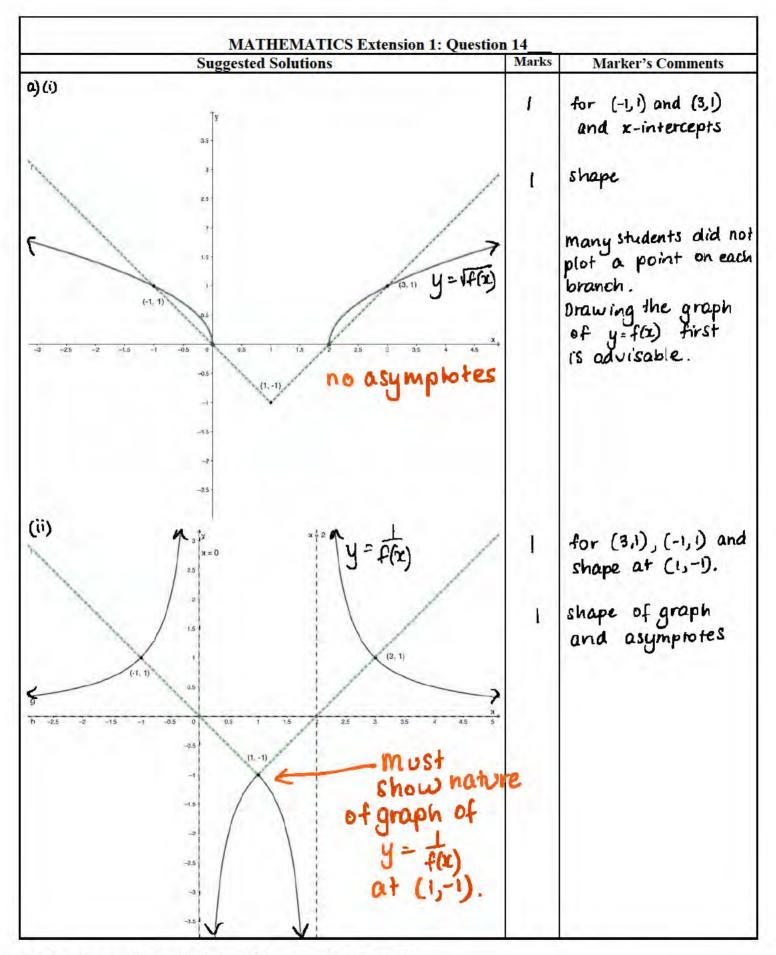
1

1

(c) (i) We can aim to use sums to products:		
$\sin 2\theta + \sin 4\theta - \sin 6\theta$ $= \sin(3\theta - \theta) + \sin(3\theta + \theta) - \sin 6\theta$		
$= 2\sin 3\theta \cos \theta - \sin 6\theta \qquad \text{sum to product}$	1	
$= 2 \sin 3\theta \cos \theta - 2 \sin 3\theta \cos 3\theta \text{double angle}$		
$= 2\sin 3\theta \left(\cos \theta - \cos 3\theta\right)$		
$= 2\sin 3\theta \left(\cos(2\theta - \theta) - \cos(2\theta + \theta)\right)$		
$= 2 \sin 3\theta (2 \sin 2\theta \sin \theta)$ sum to product		
$= 4\sin 3\theta \sin 2\theta \sin \theta$	1	
(ii)		
Solve $\sin 2\theta + \sin 4\theta = \sin 6\theta$ for $0 \le \theta \le \pi$:		
We have		
$\sin 2\theta + \sin 4\theta = \sin 6\theta$		
$\sin 2\theta + \sin 4\theta - \sin 6\theta = 0$		
$4\sin 3\theta \sin 2\theta \sin \theta = 0$ by (i)		
Hence either:		
$\sin heta = 0$, $\sin 2 heta = 0$, $\sin 3 heta = 0$		
If $\sin \theta = 0$, then $\theta = 0, \pi$		
If $\sin 2\theta = 0$, then $2\theta = n\pi$ $(n \in \mathbb{Z})$, so		
$\theta = \frac{n\pi}{2} \rightarrow \theta = 0, \frac{\pi}{2}, \pi$	1	
If $\sin 3\theta = 0$, then $3\theta = n\pi$ $(n \in \mathbb{Z})$, so		

$$\theta = \frac{n\pi}{3} \rightarrow \theta = 0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi$$
Hence the solution set is


$$\theta = 0, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \pi$$
(d) (i)
Current is moving West to East, hence there 'II be a component of velocity in the direction parallel to the bank.
If Damny is to from A to B, he must head into the current, so that velocities reconcile as:


$$\int_{v} \frac{v_{current}}{v_{velocity}} \frac{3}{v} resultant$$
If t minutes is the time taken to make the journey, then we should have for displacement:
DB:

$$v_{current} \times t = 30t \text{ metres}$$
AD:

$$v_{Damny} \times t = 60t \text{ metres}$$
And we're given that AB is 240 metres. Hence

$$\int_{velocity} \frac{30t}{v_{obs}} = \frac{1}{2} \rightarrow \theta = 30^{\circ}$$
So, Danny must swim N30'W.

b) (i) From Reference Sheet:

$$\sin^{2} 2(x+T_{R}^{*}) = \frac{1}{2}(1-\cos 4(x+T_{R}))$$

For probability density function need to
 $show \int_{a}^{a} f(x)dx = 1$ and $f(x) \ge for a \in x \le b$.
 $\int_{a}^{T_{A}} 4\sin^{2} [2(x+T_{R})] - 2dx$
 $= \int_{a}^{T_{A}} - 2\cos 4(x+T_{R})] - 2dz$
 $= \begin{bmatrix} -\frac{1}{2}\sin 4(x+T_{R}) \end{bmatrix} - 2dz$
 $= \begin{bmatrix} -\frac{1}{2}\sin 4(x+T_{R}) \end{bmatrix} - 2dz$
 $= -\frac{1}{2}x-1+\frac{1}{2}x1$
For $0 \le x \le \frac{\pi}{4}$:
 $-\frac{1}{2} \le \sin 2(x+T_{R}) \le 1$
 $2 \le 4 \sin^{2} 2(x+T_{R}) \le 1$
 $2 \le 4 \sin^{2} 2(x+T_{R}) \le 4$
 $0 \le 4 \sin^{2} 2(x+T_{R}) \le 4$
 $0 \le 4 \sin^{2} 2(x+T_{R}) \le 4$
 $(i) mode - x value to give max $f(x)$.
 $f(x) = 4 \sin^{2} [2(x+T_{R})] - 2$
 $= -2\cos 4(x+T_{R}) \le -1$
 $4(x+T_{R}) = -1$
 $(x+T_{R}) = -1$
 $(x$$

$$\frac{\text{MATHEMATICS Extension 1: Question 14}}{\text{Suggested Solutions}} \qquad \frac{\text{Marks}}{\text{Marker's Comments}} \qquad \frac{\text{Marker's Comments}}{\text{Marker's Comments}}$$

$$c) P = N(\underline{s} \text{Queens } \underline{L} \text{ 2 Kings}) + N(\underline{4} \text{ Queens } \underline{2} \text{ 2 Kings}) + N(\underline{4} \text{ Queens } \underline{2} \text{ 2 Kings})$$

$$= (\underline{*C_{n}} \times \underline{*C_{n}} + (\underline{*C_{n}} \times \underline{*C_{n}} + \underline{*C_{n}}) + (\underline{*C_{n}} \times \underline{*C_{n}}) + (\underline{*C_{n}} \times$$

Suggested Solutions	Marks	Marker's Comments
$\frac{1}{2}t + \frac{13}{2}x + 50 = 0$		relating them
$\frac{4}{2}t = 50$	31	
E= 25 N	1	for t value
$N = \sqrt{3}F$		0 0/100
= 25J3N	1	for n value
(iii) $\int_{-\infty}^{T_{1}} A \text{ is at rest}$ $\int_{-\infty}^{T_{1}} \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 0$ $\int_{-\infty}^{\infty} \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 0$ $\int_{-\infty}^{\infty} \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 0$ $\int_{-\infty}^{\infty} \frac{1}{2} + \frac{1}{2} $	1	Read the question Carefully - components Of Ni vequived.