Kambala Church of England Girls' School

Trial Higher School Certificate Examination, 2000

MATHEMATICS

3/4 UNIT

Time Allowed : 2 hours (plus 5 minutes reading time)

- ALL questions may be attempted.
- ALL questions are of equal value.
- All necessary working should be shown in every question.
- Full marks may not be awarded for careless or badly arranged work.
- Approved scientific calculators and drawing templates may be used.
- A Table of Standard Integrals is contained at the end of the examination paper.
- Start each question in a NEW BOOK.
- This is a Trial Paper only, and does NOT necessarily reflect either the content or format of the final HSC Examination.

Question 1:
(a) Solve $\frac{x^{2}-1}{x}>0$.
(b) Two circles intersect at A and B and a common tangent touches them at P and Q .
$\mathrm{PR} / / \mathrm{QA}$.
RA is produced to cut the other circle at S and the tangent at N .
Prove that PRSQ is a cyclic quadrilateral.

(c) Find $\int_{0}^{\frac{2}{3}} \frac{d x}{4+9 x^{2}}$.
(d) Find the equation of the two lines through the point $(5,3)$ which make acute angles of $\frac{\pi^{c}}{4}$ with the line $2 x-y+2=0$.
(a) TA and TB are tangents to the circle drawn below, with centre O.

Prove that : $\quad \frac{\angle O A B}{\angle A T B}=\frac{1}{2}$.

(b) Find the general solution of the equation $\sin 2 \theta=\sin \theta$, θ measured in radians.
(c) Prove by the Principle of Mathematical Induction that $3^{3 n}+2^{n+2}$ is a multiple of 5 for all positive integers n.

Question 3: (Start a NEW BOOK)
(a) The point $P(1,6)$ divides the interval $A B$ in the ratio m:n. If $A=(7,0)$ and $B=(3,4)$, find the value of the ratio m:n.
(b) Find $\frac{d}{d x}\left(x \sin ^{-1} 2 x+\frac{1}{2} \sqrt{1-4 x^{2}}\right)$.

Hence evaluate $\int_{0}^{\frac{1}{2}} \sin ^{-1} 2 x d x$.
(c) (i) If $t=\tan \frac{\theta}{2}$, find $\cos \theta$ and $\sin \theta$ in terms of t.
(ii) Hence solve the equation $3 \sin \theta+4 \cos \theta=5$ for values of θ in the range $0^{\circ} \leq \theta \leq 360^{\circ}$.

Question 4 : (Start a NEW BOOK)

(a) Evaluate the following definite integrals using the substitutions given:
(i) $\int_{0}^{3} \frac{x}{\sqrt{4-x}} d x \quad$ substitute $\quad u=4-x$.
(ii) $\int_{0}^{2} \frac{d x}{\left(4+x^{2}\right)^{2}} \quad$ substitute $x=2 \tan \theta$.
(b) The polynomial $P(x)=a x^{3}+b x^{2}-8 x+3$ has a factor of $(x-1)$ and leaves a remainder of 15 when divided by $(x+2)$.
(i) Find the values of a and b.
(ii) Hence, factorise $P(x)$ fully and sketch the curve.
(iii) Determine the set of values of x for which $P(x)>0$.

Question 5: (Start a NEW BOOK)

(a) $\mathrm{P}\left(2 a \mathrm{ap}, \mathrm{ap}^{2}\right)$ is any point on the parabola $\mathrm{x}^{2}=4 \mathrm{ay}$. S is the focus $(0, \mathrm{a})$. The tangent to the parabola at P meets the Y -axis in M . The perpendicular to the tangent PM from S meets PM in N . Find:
(i) the co-ordinates of M and N .
(ii) the co-ordinates of the midpoint K of MN .
(iii) the equation of the locus of K as P varies.
(b) A circular oil slick lies on the surface of a body of calm water. If its area is increasing at the rate of $1500 \mathrm{~m}^{2} / \mathrm{h}$, at what rate is its circumference increasing when the radius of the slick is 1250 m .

Question 6: (Start a NEW BOOK)

A stone is thrown horizontally with a velocity of $20 \mathrm{~m} / \mathrm{s}$ from the top of a tower 100 m high. Assuming no air resistance, and that the acceleration due to gravity, $\mathrm{g} \approx 10 \mathrm{~m} / \mathrm{s}^{2}$;
(i) express x and y in terms of t .
(ii) find the equation of the trajectory.
(iii) find how long the stone takes to reach the ground.
(iv) find how far from the foot of the tower the stone strike the ground.
(v) find the velocity and direction of the stone on impact with the ground .

Question 7: (Start a NEW Page)

(a) Define Simple Harmonic Motion.
(b) A particle moves from the origin, O with velocity (2 p) m / s, and is subject to a retardation of its motion equal to q times its distance x from the origin ($\mathrm{q}>0$).
(Note : retardation means negative acceleration)
(i) Show that the distance it travels, before coming to rest is $\frac{2 p}{\sqrt{q}}$ metres.
(ii) Find the time when the particle first comes to rest.
(iii) Find where the particle is after $\frac{\pi}{4 \sqrt{q}}$ seconds.
$\frac{\text { yeer i2 } 3 \mu \text { THSE } 2000}{\text { KAMBALA }}$
Q1 (a) $\frac{x^{2}-1}{x}>0$
$x x^{2}: \quad x^{2}-1>0$
$2 \frac{(x-1)(x+1)>0}{x>1, x<-1}-2$

(b) $\angle S A Q={ }^{2} A R P=\alpha-\infty$

$$
\text { Ccoment is }=\text { in }
$$

$\| \ln i \quad(A, A Q)$

$$
\angle S A Q=\angle S Q N=\alpha
$$

 alprate (yjureg)

$$
\angle \angle S Q N=\angle S R P
$$

\therefore PdRS inacyelie quad $($ enot $c=$ intre oftc

$$
\begin{aligned}
& \text { (c) } \int_{0}^{2 / 3} \frac{d x}{4+4 x^{2}}=\frac{1}{4} \int_{0}^{3 / 3} \frac{d x}{\frac{4}{4}+x^{2}}=\frac{1}{4} \cdot \frac{\frac{3}{2}}{3} \cdot\left[\tan ^{-1}\left(\frac{3 x}{x}\right)\right]_{0}^{2 / 3} \\
& \int_{0}^{2 / 3} \frac{d x}{4+9 x^{2}}=\frac{1}{4} \int_{0}^{\frac{3}{3}} \frac{d x}{\frac{4}{4}+x^{2}}=\frac{\frac{1}{4}}{3} \cdot \frac{1}{2} \cdot\left[\tan ^{-1}\left(\frac{3 x}{1}\right)_{0}^{2 / 3}\right. \\
& =\frac{1}{6}\left[\tan ^{-1}(1)-\tan ^{-1} \cos \right] \frac{\pi}{4} \\
& =\frac{7}{6}[\pi / 4-0] \\
& m_{1}=2
\end{aligned}
$$

(d) $\quad 2 x-y+2=0$
$\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \Rightarrow$

4

$$
m_{2}=-3,(5,3)
$$

$$
\begin{array}{cc}
1+2 m_{2}= \pm\left(2-m_{2}\right) & y-3=-3(x-5) \\
1+2 m_{2}=2-m_{2} \quad 1+2 m_{2}=-2+m_{2} & y-3=-3 x+15 \\
3 m_{2}=1 & m_{22}-3
\end{array}
$$

Q3 6i

$$
\begin{aligned}
& \text { Let } \angle O A B=\alpha \\
& \text { an } C A+B=2 \beta \text {. } \\
& \text { a } \alpha \angle B A T=\theta \\
& \triangle O A T \equiv \triangle O B T(R(H S) \\
& \therefore \angle A T_{0}=\angle B T_{0}=\beta \\
& \text { (compt.cs of } \equiv \Delta s \text { ore }=\text {) } \\
& \triangle A C T \equiv \triangle B C T \quad(S A B) \\
& \left.4 \quad \therefore \angle A C T=\angle B C T=90^{\circ} C=\text { zup.cs of } 2 \text { SA-ayb }\right) \\
& \begin{array}{ll}
\text { in } \triangle D A T, & \alpha+\theta=90^{\circ}(\text { compe } 1 \text { 's of } 2 k) \\
\text { \& } \triangle C A T, & \beta+\theta
\end{array} \\
& \text { \& } \triangle C A T, \quad \beta+\theta=90^{\circ}(<\sin \theta \circ \Delta) \\
& \therefore \angle A C B=2 \beta=2 \alpha=2 x<0 A S . \\
& \therefore \angle A C B=2 \beta=2 \alpha=2 \times<0 A S . \\
& \therefore \frac{Q A S}{\angle A T B}-\frac{I}{\square}
\end{aligned}
$$

(b) $\sin 2 \theta=\cos \theta$
$\Rightarrow \quad \Sigma=\theta(2 \cos \theta-1)=0$.

$$
\begin{aligned}
& 2 \sin \cos \theta=\operatorname{cis} \theta \\
& \Sigma=\theta(2 \cos \theta-1)=0 . \\
& =\alpha-\theta=0 \text { or } \cos \theta=\frac{1}{2} \\
& \theta=\theta=n \theta \text { or } \theta=2 n \pi \pm \pi / 3
\end{aligned}
$$

Cch $3^{3 n}+2^{n+2}$
s1 $n=1 \quad 3^{3 n}+2^{n+2}$ a $\frac{1}{3^{3}+2^{3}}$ il of 5 .

$$
\begin{align*}
& \text { S1 } n=1 \quad 3^{3 n}+2^{n+2}=\quad 3^{3}+2^{3}=27+8=35=5 \times 7 \\
& \therefore \text { True for } u=1 \\
& 52 \quad n=k: \quad 3^{3 k}+2^{k x}=5 P \\
& \because 3^{3 k}=5 p-2^{k+2} \tag{A}\\
& \text { S3: } n=n+1 \quad 3^{3(k+1)}+2^{(k+1)+2}=5 \text { d }
\end{align*}
$$

(3) L Hs $=3^{3 k+3}+2^{k+3}$

$$
\begin{aligned}
& =27\left(3^{3 k}\right)+2\left(2^{k+2}\right) \\
& =27\left(5 p-2^{k+2}\right)+2(2 k+2) \\
& =5(27 p)-2^{k+2}(27-2)
\end{aligned}
$$

Q1tch $\quad \operatorname{Lbs}=5(27 p)-2^{4 n}(25)$

$$
\begin{aligned}
& =5\left[2-\rho-5\left(2^{k+1}\right)\right] \\
& =5 Q \\
& =c 1+
\end{aligned}
$$

\therefore By Induin fru for all tue人ijone~.

Q3co,

$$
3 \begin{array}{rl}
3 n+7 n & =m+n \\
2 m & 3 n
\end{array} \quad-6 n
$$

(h)

4

$$
\begin{aligned}
& =\int_{0}^{1 / 2} \varepsilon^{-1}(2 x) d=\left[x \varepsilon ^ { - 1 } \left(\operatorname{Ln}+\sqrt{\left.\sqrt{1-x_{u} x}\right]_{0}^{1 /}}\right.\right. \\
& =\left[\frac{1}{2} e^{-1}(1)+0\right]-\left[0+\frac{1}{2}\right] \\
& =\frac{1\left(\frac{\pi}{2}\right)-1}{2} \\
& =\frac{1}{2}\left(\frac{1}{2}-1\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d u}\left(\frac{x}{u} \cdot \sin ^{-1} 2 x+\frac{1}{2} \sqrt{1-4 \mu}\right) \\
& =\sin 2 x \cdot 1+x \cdot \frac{2}{\sqrt{1-4} x^{2}}+\frac{1}{12} \cdot\left(\frac{1}{1}\right) \cdot\left(-4 x^{2}\right)^{\frac{1}{2}} \cdot-7 \\
& =\sin ^{-1}(2 x)+\frac{L_{4} /}{\sqrt{1+4 a}}=\frac{2 \pi}{\sqrt{1-4 a}} \\
& =0-1(2 n
\end{aligned}
$$

$$
\begin{aligned}
& A(7,0) \quad B(3,4) \\
& +n!n \\
& p=\left(\frac{+3 m+7 n}{4 m+n}, \frac{4 m+0 n}{n+2}\right) \\
& \therefore P=(1,6) \\
& \because \frac{3 m+7 n}{m n^{2}}-1 \\
& m=-3 n \\
& \therefore m=-\frac{3}{n} \\
& m: n=-3: 1 \text { (} 1+4 \mu<1^{4 / 2}
\end{aligned}
$$

$$
\begin{array}{r}
\text { d3(c) } \operatorname{cis}^{\prime} t=\tan \frac{\theta}{2} \\
\cos \theta=\cos ^{2} \theta-\operatorname{cis}^{2} \theta \\
=\frac{1}{1+t^{2}}-\frac{t^{2}}{1+t^{2}} \\
\cos \theta=\frac{1-t^{2}}{1 t^{2}}
\end{array}
$$

$$
\begin{aligned}
& \tan \theta=\frac{t}{1} \\
& \cos \frac{t}{2}=\frac{t}{\sqrt{1 t}} \\
& \cos \theta=\frac{1}{\sqrt{1 t}}
\end{aligned}
$$

$\varepsilon=\theta=2 e-\frac{A}{2} \cos$

$$
\begin{aligned}
u & =2 \frac{t}{\sqrt{1+t}} \cdot \frac{1}{\sqrt{1+4}} \\
\varepsilon-9 & =\frac{2 t}{1+t}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& 3 \operatorname{sen} \theta+4 \text { (tes } \theta=5 \\
& 3\left(\frac{1+t}{1+c}\right)+47\left(\frac{1-t^{2}}{1++^{2}}\right)=3 \\
& 6 t+4+-4 t^{2}=5+3 t^{2}
\end{aligned}
$$

$$
3 \quad \begin{array}{r}
9 t^{2}-6 t+1=0 \\
(3 t-1)^{2}+=1
\end{array}
$$

$$
t=1 / 3
$$

$$
\operatorname{ten} \frac{8}{2}-\frac{1}{3}
$$

$$
\begin{aligned}
& \theta=13^{\circ} 26^{\prime} \\
& 1 \theta=36^{\circ} 5 z^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \text { QQ } \int_{0} \int_{0} \frac{11}{4} d x=I \\
& \begin{array}{cccc}
a=6-x & x & 0 & 3 \\
d u=-d a & a & 4 & 1
\end{array} \\
& \therefore F=\int_{4}^{1} \frac{4-u}{\sqrt{u}}-d u \\
& =+\int_{1}^{4} \frac{4}{\sqrt{u}}-\sqrt{a} d u \\
& =+\int_{1}^{1}+4 u^{-1}-u^{1 / 2} d u
\end{aligned}
$$

$$
\begin{aligned}
& =\left[8 \sqrt{a}-\frac{2}{3} \sqrt{a^{3}}\right]_{1}^{4} \\
& =\left(8 \sqrt{4}-\frac{2}{3} \sqrt{4}^{3}\right)-\left(8 \sqrt{1}-\frac{2}{3} \sqrt{1^{3}}\right) \\
& =\left(16-\frac{6}{3}\right)-\left(8-\frac{2}{3}\right) \\
& =8-\frac{14}{3} \\
& =10 / 3 \\
& T=31 / 3
\end{aligned}
$$

$$
\begin{aligned}
& \text { Qvifirii) I }=\int_{0}^{2} \frac{d u}{\left(\left(f+x^{2}\right)^{2}\right.} \\
& x=2 \tan \theta \\
& d x=2 \sec \theta d \theta \\
& \begin{array}{ccc}
x & 0 & 2 \\
\theta & 0 & \bar{a} / \varphi
\end{array} \\
& T=\int_{0}^{\pi / 4} \frac{2 \sec \theta}{4 f^{2} \operatorname{sen} x} d \theta \\
& =\frac{1}{4} \int_{0}^{\pi(4)} \cos \theta d \theta \\
& =\tau_{0}^{1}[\varepsilon=9]_{0}^{\pi(4} \\
& =\frac{i}{4}(5=\pi / 4-\alpha 0) \\
& =\frac{1}{4}\left(\frac{1}{n}-0\right) \\
& =\frac{1}{6} r_{0} \\
& x=(\sqrt[5]{5})
\end{aligned}
$$

es b

(i)

Q4 (b) (i) $P(x)=a x^{3}+b x^{2}-8 x+3$
$(x-1)$ ic facxar of $P(x), \therefore \rho(1)=0$

$$
\begin{aligned}
P(1) & =a(1)^{3}+b(1)^{2}-\gamma(1)+3 \\
0 & =a+b-8+3 \\
a+b & =5
\end{aligned}
$$

remander $=15$ chen \div by $(x+2) 2 \therefore P(-2)=15$

$$
2 \begin{aligned}
15 & =a(-2)^{3}+b(-2)^{2}-8(-2)+3 \\
015 & =-8 a+4 b+16+34 \\
8 a-4 b & =4
\end{aligned}
$$

$$
\begin{equation*}
2 a-6=1 \tag{2}
\end{equation*}
$$

Sub $a=\frac{1}{2}$ with (2):

$$
2(z)-b=1
$$

(1) $+(2)$:

$$
\begin{aligned}
3 a & =6 \\
a & =2
\end{aligned}
$$

$$
4-b=1
$$

$$
b=3
$$

(ii) $f(x)=2 x^{3}+3 x^{2}-8 x+3=(x-1)\left(2 x^{2}+5 x-3\right)$

$$
\begin{array}{r}
\frac{2 x^{2}+5 x-3}{2 x^{3}+3 x^{2}-8 x+3} \\
\frac{2 x^{3}-2 x^{2}}{5 x^{2}-8 x} \\
\frac{5 x^{2}-5 x}{-3 x+3}
\end{array}
$$

$$
p=-6
$$

$$
s=5
$$

$$
F=6,-1
$$

QU (1, (ii) : $\quad P(x)=2 x^{3}+3 x^{2}-8 x+3$

$$
\begin{aligned}
& =(x-1)\left(2 x^{2}+5 x-3\right) \\
2 x^{2}+5 x-3 & =2 x^{2}+6 x-1 x-3 \\
& =2 x(x+3)-1(x+3) \\
& =(x+3)(2 x-1) \\
\leq P(x) & =(x+3)(2 x-1)(x-1)
\end{aligned}
$$

$f(x)$

(ii) $P(m>0$, from th graph cure

$$
-3<x<\frac{1}{2} \& \quad x>1
$$

$$
\begin{align*}
& y-c=-\frac{1}{p}(x-0) \\
& p y-p a=-x \\
& x+p y=p a
\end{align*}
$$

(i) $\Rightarrow y-p x=-a p^{2}$

$$
y=p x-p^{2}=\quad 3
$$

Suct $n+1$

$$
x+p(p x-a p)=p^{a}
$$

Q $\mathrm{CO}(\mathrm{i}$,

$$
\begin{aligned}
x+p^{2} x-c p^{3} & =a p \\
\left(1+p^{2}\right) x & =a p+a p^{3} \\
\left(1+r^{2}\right)^{2} & =c p\left(1+p^{2}\right) \\
x & =a p .
\end{aligned}
$$

Sus $x=0, p \rightarrow 3$
4

$$
\begin{aligned}
& y=p(a p)-a p \\
& \therefore y=0 . \\
& \therefore N=(a, 0)
\end{aligned}
$$

(ii) $K=\mu \mu \alpha^{*} O \subset \mu N$

$$
N=(a p, o)
$$

$$
\begin{aligned}
& \therefore k=\left(\frac{a k+\infty}{\gamma}, 0-a \mu^{3}\right) \\
& \quad{ }^{K}=\left(a k,-a \mu^{2}\right)
\end{aligned}
$$

$$
M=\left(0,-4 p^{2}\right.
$$

(T)

$$
\begin{aligned}
& \left.x=a p-\infty \Rightarrow p=\frac{2 x}{a}\right)(3) \\
& y=-a p-(2
\end{aligned}
$$

Sul (3) nio (2):

$$
\begin{aligned}
4= & -\frac{a}{2}\left(\frac{24}{a}\right)^{2} \\
& =-\frac{1}{2}\left(\frac{4^{2}}{a x}\right) \\
y & =\frac{-2 x^{2}}{a} \\
x & x^{2}
\end{aligned}
$$

$\geq \mathrm{ch}$

$$
\begin{aligned}
\frac{d A}{d t} & =1500 m^{2} / \mathrm{h} \\
r & =1250 \mathrm{~m} \\
C & =2 \pi r \\
\frac{d c}{d t} & =2 \pi \times \frac{d r}{d t} \\
& =24 \times \frac{3}{5 \pi} \\
\frac{d c}{d t} & =6 \mathrm{~m} / \mathrm{h}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{A}{\frac{d A}{d t}}=2 \pi=\frac{d r}{d r} \\
& 1500=2 \pi \times 1250 \times d r \\
& \frac{d r}{d t}=\frac{13 / 6 \%}{25 / 6 / \pi} \\
& \frac{d r}{2}=\frac{3}{5} \mathrm{~m} / \mathrm{h}
\end{aligned}
$$

$1=10 t+2000$

$$
\begin{aligned}
& y=-i e t \\
& y=-5 t^{2}
\end{aligned}
$$

(ii)

$$
\begin{array}{ll}
\text { Fur } r_{11} & x=4 t \Rightarrow t=\frac{x}{2} \\
4 & t i 1
\end{array}
$$

$$
\begin{aligned}
\therefore y & =-5\left(\frac{x}{x^{2}}\right) \\
& =-5 \cdot x_{2}
\end{aligned}
$$

$$
=\frac{-5 \cdot x^{2}}{\operatorname{cis} 0}
$$

$$
y=-\frac{x^{2}}{8^{2}}
$$

$$
\therefore x+=-80 y
$$

(711

$$
y=-00
$$

4

$$
\begin{aligned}
-5 t^{2} & =-100 \\
t^{2} & =20 \\
F & =\sqrt{2} \mathrm{sec}
\end{aligned}
$$

$(16) \quad t=\sqrt{5}$

$$
\begin{aligned}
& x=20 t \\
& R=20120 \mathrm{~cm}
\end{aligned}
$$

(2)

QT rat Apateri is orenel vi stfu- ie (.) it is aelelliy $n=0$ stroy ins

2 (4) if ir onfonisi

$$
\begin{aligned}
& \text { तh, (i) when } t=0, x=0, v=2 p \mathrm{~m} / \mathrm{s} \\
& \ddot{x}=-q^{x} \\
& \frac{d}{d a}(\underline{f} v q=-g u \\
& \therefore \frac{1}{2} u^{2}=-\frac{q h^{2}+c}{r}+ \\
& \left.\begin{array}{l}
x=0 \\
x=2 \mu
\end{array}\right\} \frac{1}{2}(2 \mu)^{2}=-q(0)^{2}+c \\
& =c=2 p^{2} \\
& \therefore x^{2}=-q^{n^{2}}+r^{2} \\
& \therefore v^{2}=4 f^{2}-9 x^{2}
\end{aligned}
$$

bhe it $\sin +10 \operatorname{son}, u=0$.

$$
\begin{array}{rl}
\therefore 0 & 04 \rho^{2}-q x^{2} \\
\therefore x^{2} & =\frac{4 \rho^{2}}{y} \\
\quad i / x & =\frac{2 f}{\sqrt{9}} a
\end{array}
$$

Q1) fl (in)

$$
x=a \cos (x++\alpha)
$$

arden $t=0, \quad x=0 \quad \therefore$

$$
\begin{aligned}
& \therefore 0=a \cos \alpha \\
& \leq \alpha=a / L \\
& E x=a \cos (n t+\pi / 2) \\
& \\
& =a\left[\cos h t-c h \frac{a}{2}-\varepsilon \sin t=\frac{a}{2}\right] \\
& x
\end{aligned}
$$

At

$$
\begin{aligned}
& x=\frac{2 r}{\sqrt{g}}=a \\
& \therefore \sin n t=-1 \quad \quad \ln n^{2}=q \\
& \therefore \sin (\sqrt{g} t)=-1 \quad \rightarrow n=\sqrt{q} \\
& \therefore \frac{3 \pi}{g}=\frac{2}{2} \\
& \therefore t=\frac{3 \pi}{2 \sqrt{q} \cdot D \pi}
\end{aligned}
$$

2
(iij)

$$
\begin{aligned}
& t=\frac{\pi}{2 \sqrt{\theta_{y}}}=\frac{\pi}{4 \sqrt{4}} \text {; } \\
& x=-\frac{2 p}{\sqrt{y}} \cdot i(1 q t) \\
& \left.=\frac{-2 p}{\sqrt{L}} \operatorname{sen} \text { 灰 } \frac{\pi}{4 \pi}\right) \\
& =\frac{-4}{\sqrt{q}}, \quad s=\pi / \varphi=\frac{-x_{p}}{r} \cdot \frac{1}{p^{2}} \\
& \sqrt{x}=\frac{\sqrt{4}}{\sqrt{4}} \cdot i n
\end{aligned}
$$

