KAMBALA

2013
Higher School Certificate
Trial Examination

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Board approved calculators may be used.
- / Write using black or blue pen
- A table of standard integrals is provided at the back of the paper
- All necessary working should be shown in Question 11 – 14
- Write your student number and/or name at the top of every page

Total marks - 70

Section I - Pages 3 - 5

10 marks

Attempt Questions 1 - 10

Allow about 15 minutes for this section

Section II - Pages 6-9

60 marks

Attempt Questions 11 – 14

Allow about 1 hour 45 minutes for this section

This paper MUST NOT be removed from the examination room

STUDENT NUMBER/NAME:

Student name / number

Marks

Section 1

10 marks

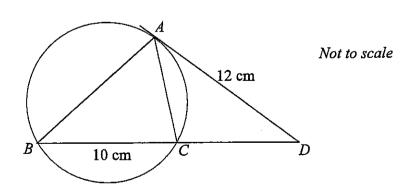
Attempt Questions 1-10

Allow 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

- 1 The remainder obtained when $P(x) = x^3 3x^2 5x + 6$ is divided by (x-3) will be:
 - (A) -34
 - (B) -9
 - (C) 6
 - (D) 21
- 2 Which of the following is an expression for $\frac{d}{dx}(2^x)$?
 - (A) $x2^{x-1}$
 - (B) 2^{x-1}
 - (C) 2^x
 - (D) $2^x \log_e 2$

3



ABC is a triangle inscribed in a circle. The tangent to the circle at A meets BC produced at D where BC=10 cm and AD=12 cm. What is the length of CD?

1

- (A) 6 cm
- (B) 7 cm
- (C) 8 cm
- (D) 9 cm

Marks

4 The equation $2x^3 + x^2 - 13x + 6 = 0$ has roots α , $\frac{1}{\alpha}$ and β . What is the value of β ? 1

- (A) 3
- (B) 2
- (C)
- (D)

5 Which of the following is an expression for $\frac{d}{dx} \left(\tan^{-1} \frac{1}{x} \right)$?

1

- (A)
- (B)
- (C) $\frac{1}{1+x^2}$
- $(D) \qquad \frac{x^2}{1+x^2}$

6 Which of the following lines is a horizontal asymptote of the curve $y = \frac{e^x - 2}{e^x + 2}$? 1

- (A) y = -2
- (B) y = -1
- (C) v = 0
- (D) v = 2

7 After t years the number N of individuals in a population is given by $N = 400 + 100e^{-0.1t}$. 1 What is the difference between the initial population size and the limiting population size?

- (A) 100
- (B) 300
- (C) 400
- (D) 500

Marks

8 What is the derivative of $y = \cos^{-1}(\frac{1}{x})$ with respect to x?

1

(A) $\frac{-1}{\sqrt{x^2-1}}$

(C) $\frac{1}{\sqrt{r^2-1}}$

(B) $\frac{-1}{x\sqrt{x^2-1}}$

(D) $\frac{1}{x\sqrt{x^2-1}}$

Which of the following statements is FALSE.

1

- (A) $\cos^{-1}(-\theta) = -\cos^{-1}\theta$. (B) $\sin^{-1}(-\theta) = -\sin^{-1}\theta$ (C) $\tan^{-1}(-\theta) = -\tan^{-1}\theta$ (D) $\cos^{-1}(-\theta) = \pi \cos^{-1}\theta$

10 Which of the following is the domain of the function $y = \ln(x + \sqrt{x^2 + 1})$? 1

- $\left\{x: x \le -1, x \ge 1\right\}$ (A)
- $\left\{x:-1\leq x\leq 1\right\}$ (B)
- $\{x: x \text{ is an element of the set of real numbers}\}$ (C)
- $\left\{x:x\geq 1\right\}$ (D)

Student name / number	***************************************
Student name / number	****************************

Marks

Section 2

60 marks

Attempt Questions 11-14

Allow about 1 hour and 45 minutes for this section

Attempt each question in a SEPARATE writing booklet. Extra writing booklets are available. In Questions 11-14 your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

Use a SEPARATE writing booklet.

(a) (i) Sketch the function $y = |x^2 - 4|$.

(ii) At what points is $y = |x^2 - 4|$ not differentiable?

1

2

1

(b) A(-1,4) and B(7,-2) are two points. Find the coordinates of the point P that divides the interval AB internally in the ratio 3:2.

(c) Find correct to the nearest degree the acute angle θ between the lines 3x-2y=0 and x+3y=0.

2

(d) Find the exact value of $\int_{\sqrt{2}}^{\sqrt{3}} \frac{1}{\sqrt{4-x^2}} dx$.

3

(e) Use the substitution $t = \tan \frac{x}{2}$ to show that $\frac{1 + \cos x + \sin x}{1 - \cos x + \sin x} = \cot \frac{x}{2}$.

3

(f) $P(2at, at^2)$ is a point on the parabola $x^2 = 4ay$ with focus F(0, a).

2

(i) Use differentiation to show that the tangent to the parabola at P has gradient t and equation $tx - y - at^2 = 0$.

1

(ii) Show that the shortest distance between the focus and this tangent is $a\sqrt{1+t^2}$.

Question 12 (15 marks)

Use a SEPARATE writing booklet.

Marks

(a) If $x + \frac{1}{x} = 3$, find the value of $x^2 + \frac{1}{x^2}$.

2

(b) Solve the inequality $\frac{2x-1}{x+2} > 1$.

3

(c) Use the substitution u = 6 - x to find the exact value of $\int_{1}^{6} x \sqrt{6 - x} dx$.

3

(d) Consider the statement:

 $S(n): 2^n - (-1)^n$ is divisible by 3, where n is a positive integer.

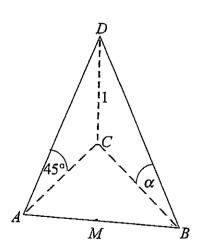
(i) Show that S(1) and S(2) are true.

1

(ii) Show that if S(k) is true for all positive integers k then S(k+2) is also true.

2

(e)



CD is a vertical pole of height 1 metre that stands with its base C on horizontal ground. A is a point due South of C such that the angle of elevation of D from A is 45° . B is a point due East of C such that the angle of elevation of D from B is α . M is the midpoint of AB.

(i) Show that $AB = \csc \alpha$.

2

(ii) Show that $CM = \frac{1}{2} \csc \alpha$.

2

Student name / number Marks Question 13 (15 marks) Use a SEPARATE writing booklet. Consider the function $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$. 1 Show that f(-x) = -f(x)(i) Show that $f(x) = 1 - \frac{2}{e^{2x} + 1}$. 1 (ii) 1 Explain why f(x) < 1 for all values of x. (iii) (b) Consider the function $f(x) = \sin^{-1}(x-1)$. (i) Find the domain of the function. 1 (ii) Sketch the graph of the curve y = f(x) showing the endpoints and the x intercept. 2 (iii) The region in the first quadrant bounded by the curve y = f(x) and the y axis 3 between the lines y=0 and $y=\frac{\pi}{2}$ is rotated through one complete revolution about the y axis. Find in simplest exact form the volume of the solid of revolution.

- (c) A particle is performing Simple Harmonic Motion in a straight line. At time t seconds its displacement from a fixed point O on the line is x metres, given by $x = 4\sqrt{2}\cos\left(\frac{\pi}{4}t - \frac{\pi}{4}\right)$, its velocity is $v \text{ ms}^{-1}$ and its acceleration is $\ddot{x} \text{ ms}^{-2}$.
 - (i) Find the amplitude and period of the motion.
 - (ii) Find the initial position of the particle and determine if it is initially moving 2 towards or away from O.
 - (iii) Find the distance travelled by the particle in the first 3 seconds of its motion. 2

2

Marks Question 14 (15 marks) Use a SEPARATE writing booklet. (a) Consider the function $f(x) = 2 - \log_a x$. (i) Find the equation of the inverse function $f^{-1}(x)$. 1 (ii) Explain why the x coordinate X of the point of intersection P of the graphs 2 y = f(x) and $y = f^{-1}(x)$ satisfies the equation $e^{2-X} - X = 0$. (iii) Use two applications of Newton's Method with an initial value of X = 1.53 to find the value of X correct to two decimal places. A vertical building of height 60 metres stands on horizontal ground. A particle is (b) projected from a point O at the top of the building with speed $V = 20\sqrt{2}$ ms⁻¹ at an angle α above the horizontal. It moves in a vertical plane under gravity where the acceleration due to gravity is $g = 10 \text{ ms}^{-2}$ and hits the ground at a distance 120 metres from the foot of the building. At time t seconds its horizontal and vertical displacements from O are x metres and y metres respectively, given by $x = 20\sqrt{2} t \cos \alpha$ and $y = 20\sqrt{2} t \sin \alpha - 5t^2$. (Do NOT prove these results.) (i) Show that $\alpha = \frac{\pi}{4}$ or $\alpha = \tan^{-1} \frac{1}{3}$. 2 (ii) If $\alpha = \tan^{-1} \frac{1}{3}$, find the exact time taken for the particle to hit the ground. 2 (iii) If $\alpha = \frac{\pi}{4}$, find the exact speed of the particle after 6 seconds. 2 The acceleration of a creature is given by $x = -\frac{1}{2}u^2e^{-x}$, where x is the displacement from the origin, and u is the initial velocity at the origin. Given that u = 2m/sec:

Show that $v^2 = 4e^{-x}$.

Explain why v > 0.

(i)

(ii)

Qn	Solutions	Marks	Comments & Criteria
	Section 1		
1.	$P(x) = x^3 - 3x^2 - 5x + 6$ remainder = P(3)		
	remainder = P(3)		
	P(3) = (3) 3-3(3)2-5(3)+6		
:	= - 9 B		
2.	$\frac{d}{dx}(2^x)$		
	$\frac{d}{dx}(2^{x})$ $= \frac{d}{dx}(e^{\ln 2^{x}})$		
	$= \frac{d}{dx} \left(e^{x \ln 2} \right)$		
	= exln2. In 2		
	= 2 ² , ln 2		
3.	let CD = x		
	$(x+10)x=(12)^2$		
	$\chi^2 + 10 \chi = 144$		
	x2+10x-144=0		
	(x+18)(x-8)=0		
	x=-18,8		
	but x is a length: X:	>0	

Qn	Solutions	Marks	Comments & Criteria
4.	$2x^3 + x^2 - 13x + 6 = 0$		
	$2x^3 + x^2 - 13x + 6 = 0$ roots are α , $\frac{1}{2}$, β		
	·· (2)(2)(B) = -6		
	$\beta = -3 \bigcirc$		
5.	dx tan' (1/2)		
	$=\frac{1}{1+\left(\frac{1}{\varkappa}\right)^2}\left(-\frac{1}{\varkappa^2}\right)$		
	$= \frac{-1}{n^2 + 1}$		
6.	$y = \frac{e^{x}-2}{e^{x}+2}$		
	$\lim_{\chi \to -\infty} \frac{e^{\chi} - 2}{e^{\chi} + 2}$ $= \frac{0 - 2}{0 + 2}$		
	0+2		
	$= -1$ $\therefore y = -1 (B)$		

Qn	Solutions	Marks	Comments & Criteria
7.	N = 400 + 100e -0.1t		
	$N = 400 + 100e^{-0.1t}$ at $t = 0$, $N = 400 + 100e^{\circ}$		
	= 400 + 100		
	= 500		:
	- initial population is 500		
	lim N = 400 t 700		
:	- difference = 500 - 400 - 100 (A)		
8.	$\frac{d}{dx}\cos^{-1}(\frac{1}{x})$		
	$= \frac{-1}{\sqrt{1-(\frac{1}{2})^2}} \cdot -\chi^{-2}$		
	$=\frac{+1}{\chi^2\sqrt{\frac{\chi^2-1}{\chi^2}}}$ $=\frac{1}{\chi^2\sqrt{\frac{\chi^2-1}{\chi^2}}}$		
9.	$A \sqrt{x^2-1}$		
	(since cos-1(-0) = cos-1(0))		
10.	C		

 $P = \left(\frac{19}{3}, \frac{2}{5}\right)$

Qn	Solutions	Marks	Comments & Criteria
	Section 2.		
110)	Section 2. i) $y = x^2 - 4 $	+2)	
	not differentiable at $x=\pm 2$		
(i)			
6/	A(-1,4) B(7,-2)		
	m: n = 3:2		
	$P = \left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)$		·
	$= \left(\frac{(3)(7) + (2)(-1)}{3+2}, \frac{(3)(-2) + (3)(-2)}{3+2} \right)$	(2)(4)	
	$=$ $\left(\frac{21-2}{5}, \frac{-6+8}{5}\right)$		
	() 5 /		

Qn	Solutions	Marks	Comments & Criteria
110)	3x - 2y = 0 $x + 3y = 0m_1 = \frac{3}{2} m_2 = -\frac{1}{3}$		
	3x-2y=0 $x+3y=0m_1 = \frac{3}{2} m_2 = -\frac{1}{3}tan \Theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $		
	$\frac{3}{1+\left(\frac{3}{2}\right)\left(\frac{-1}{3}\right)}$		
	$=\frac{11}{6}$		
	= 11/6		
	= <u>11</u> 3		
	$\therefore \theta = \tan^{-1}\left(\frac{11}{3}\right)$		
	:0=75° (to neavest degre	e)	

Qn	Solutions	Marks	Comments & Criteria
11d)	$\int_{\sqrt{2}}^{\sqrt{3}} \frac{1}{\sqrt{4-x^2}} dx$		
	= [sin-1 x] 13		
	$= \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) - \sin^{-1}\left(\frac{\sqrt{2}}{2}\right)$		
	$= \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) - \sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$		
	= # - # - # - # - # - # - # - # - # - #		
	- II		
(le)	$\frac{1+\cos x+\sin x}{1-\cos x+\sin x}=\cot \frac{x}{2}$		
	let t= tan =		
	1- LHS: 1+cosx+sinx		
:	= 1 + 1-t2 + 2t 1+t2 + 1+t2		
	$1 - \frac{1 - t^2}{1 + t^2} + \frac{2t}{1 + t^2}$		
	· 		

Qn	Solutions	Marks	Comments & Criteria
lle)	= 1+t2+1-t2+2t		
	1+t2-1+t2+2t		
	$= \frac{2t+2}{1+t^2}$ $= \frac{2t+2}{1+t^2}$ $= \frac{2t^2+2t}{1+t^2}$		
	= $2(t+1)$, $1+t^2$ $1+t^2$ $2t(t+1)$		
	$=\frac{2}{2t}, t^2 \neq -1$		
	$= \frac{1}{t}$ $= \cot \frac{\pi}{2}$		
	- RHS		

Qn	Solutions	Marks	Comments & Criteria
11f)	$P(2at, at^2)$ $n^2 = 4ay$		
i)	$y = \frac{\pi^2}{4a}$		
	$y' = \frac{2\pi}{4\alpha}$		
	$=\frac{\pi}{2\alpha}$		
	at P, y'= 2at za	:	
	= t as required		
	eqn: $y - at^2 = t(x - 2at)$ $y - at^2 = xt - 2at^2$		
	$\therefore tx - y - at^2 = 0$		
(i)	F(0,a)		
	$d = \left \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right $		
	$= \left \frac{0 + (-1)(a) + (-at^2)}{\sqrt{t^2 + (-1)^2}} \right $		
	$-\left -\frac{\alpha(1+t^2)}{\sqrt{1+t^2}}\right $		

= a VI+tz as required

Qn	Solutions	Marks	Comments & Criteria
120)	$x+\frac{1}{x}=3$		
4)	$(x + \frac{1}{x})^{2}$ $= x^{2} + 2 + \frac{1}{x^{2}}$ $= x^{2} + \frac{1}{x^{2}} = (x + \frac{1}{x})^{2} - 2$ $= (3)^{2} - 2$ $= 7$ $\frac{2x - 1}{x + 2} > 1, x \neq -2$		
	$2x^{2}$ $(2x-1)(x+2) > (x+2)^{2}$ $2x^{2}+3x-2 > x^{2}+4x+4$ $x^{2}-x-6>0$ (x-3)(x+2)>0 (x-3)(x+2)>0		

Qn	Solutions	Marks	Comments & Criteria
120)	$\int_{1}^{6} x \sqrt{6-x} dx$ $u = 6-x$		
	u = 6 - x When $x = 1$, $u = 5$ When $x = 6$, $u = 0$		
	When $x=6$, $u=0$		
:	$\frac{du}{dx} = -1$,
	_ dx = - du	13 13 13 13 13 13	
	∫ ₅ (6-ν). Ju du		
	$= \int_0^5 (6u^{\frac{1}{2}} - u^{\frac{3}{2}}) du$		
	$= \left[\frac{2.6u^{\frac{3}{2}}}{3} - 2u^{\frac{5}{2}} \right]^{5}$		
	$= \left[4 \sqrt{u^3} - \frac{2}{5} \sqrt{u^5}\right]_0^5$		
	$=(4\sqrt{125}-\frac{2}{5}\sqrt{3125})-0$:	
ļ	$= 20\sqrt{5} - \frac{2}{5} \times 25\sqrt{5}$		
	= 2055 - 1055		
	= 10J5		

Qn	Solutions	Marks	Comments & Criteria
12d)	S(n): 2n - (-1)n divisible by 3		
	$3 = (-1)^n$ divisible by 3		
	= 2 +1		
	=3, divisible by 3		
	5(2):22 - (-1)2		
	= 4 - 1		
ļ	= 3, divisible by 3		
	:. 5(1), 5(2) are true	:	
tī)	:. s(i), s(z) are true If s(k) is true, then		
	$2^{k} - (-1)^{k} = 3M$ for		
	some integer M		
:	RTP: S(k+2) is true		
	S(k+2) = 2 k+2 - (-1) k+2		
	$=2^{2}.2^{k}-(-1)^{k}(-1)^{2}$	·	
	$= (3m + (-1)^{k}) 2^{2} - (-1)^{k}$:	
	$= 12m + 4(-1)^{k} - (-1)^{k}$		
	= 12m + 3(-1)h		
	= 3 (4M + (-1)h),		

divisible by 3 .'. true for 5(h+2)

Qn	Solutions	Marks	Comments & Criteria
12d)	If $S(1)$ and $S(2)$ are		
ni)	true and $S(k+2)$ is true		
	whenever $s(k)$ is true,		
	then, by the Principle of		
	Mathematical Induction,		
	the statement is true for		
	all positive integers n.		
(i)	In $\triangle ABC$; AC = 1 $BC = \omega + \alpha$ $\angle ACB = 90$	·	
	$\frac{2 ACB}{(AB)^2} = 1 + \omega t^2 \alpha \text{ (by Python)}$ $= \omega \sec^2 \alpha$	goras'	Theorem)
	: AB = cosec & as required		
	A unique circle can be drawn through A, B and LACB = 90°, AB 15 a dian of this circle, with centre Mc and MB are radii.	C. neter M.	
	as required.		

Qn	Solutions	Marks	Comments & Criteria
130)	$f(x) = e^{x} - e^{-x}$		
i)	$f(-x) = e^{-x} - e^{x}$		
	$\frac{e^{-x}+e^{x}}{}$		
	$-f(x) = -(e^{x}-e^{-x})$		
	extern		
	$=\frac{e^{-x}-e^{x}}{e^{-x}+e^{x}}=f(-x)$		
:	:. f(-n)=-f(n)		
.:7	as required		
R-TP	: $f(x) = 1 - \frac{2}{e^{2x} + 1}$ LHS: $\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$		
	$e^{x} + e^{-x}$		
	$= \frac{e^{2x}-1}{e^{2x}+1} (\text{multiply by } \frac{e^{x}}{e^{x}})$		
	$= \frac{e^{2x}+1-2}{e^{2x}+1}$		
	$-1-\frac{2}{e^{7x}+1}$		
	= RHS		

Qn	Solutions	Marks	Comments & Criteria
13eu) 111)	2 is positive for all		
	values of x		
	$\therefore f(x) = 1 - \frac{2}{e^{2x} + 1} \text{ will}$		
	have a maximum value		
	of 1 :. f(x) <1		
136)	$f(x) = \sin^{-1}(x-1)$		
i)	Domain: {x:-1 <x-1<1}< td=""><td></td><td></td></x-1<1}<>		
;	: {n:0 <n<2}< td=""><td>,</td><td></td></n<2}<>	,	
(i)	14		
-1	(2, 芝)		
	1 2 72		
íii)	$V = \pi \int_{0}^{\frac{\pi}{2}} (1 + \sin y)^{2} dy$		
	=T 5= {1+2siny+2(1-652y)	} dy	
	=#[12y-2wsy-4sm2y]t		
	-T {(3t -0-0)-(0-2-0)}	

= # (3#+2) un its 3

Qn	Solutions	Marks	Comments & Criteria
13c)	x=4炬 cos(昔t-芋)		
i)	amplitude = 452 metres		
	period = $\frac{2+r}{4}$		
	= 8 seconds		
n)	at t=0, x=452 cos (0-#)		
	x=(452)(抗)		
	x= 4 m to the right of (),	
	x= dx at = -452. # sin(#七-#)	
	· - # 52 sin(李t - 甚)		
	at t=0, i=-#\sizsin(0	世)	
	$\dot{x} = -7\sqrt{2} - \frac{1}{\sqrt{2}}$	キノ	
	= 17 >0		
	from 0.		

Qn	Solutions	Marks	Comments & Criteria
14a)	$f(x) = 2 - \log_e x$		
(í	y = 2 - loge x		
	:. loge x = 2-y		
	$x = e^{2-y}$		
	$f^{-1}(x) = e^{2-x}$		
1	The graphs of f(n) and f-1	n)	
1	are reflections in the		
	line y=x, so any points of		
	intersection of these		
	graphs must lie on the		
	line y=x. If the		
	graphs intersect at a		
	point where $x=X$, then		
	f(X) = f - (X) = x		
	$\therefore e^{2-\kappa} = X$		
	$\therefore e^{z-x} - X = 0 \text{ as required}$	<i>,</i>	
		,	

Qn	Solutions	Marks	Comments & Criteria
14c)	Let $g(x) = e^{2-x} - x$		
iii)	Let $g(x) = e^{2-x} - x$ $g'(x) = -e^{2-x} - 1$		
	$\frac{x - g(x)}{g'(x)} = x(e^{2-x} + 1) + e^{2-x}$	- X	
	$\frac{g'(\lambda)}{e^{2-\alpha}+1}$		
	$= \underbrace{e^{2-x}(x+1)}$		
	e ^{2-x} +1		
	$= e^{2-\pi} (\pi + 1)$		
	$=\frac{e^{2-\pi}\left(\pi+1\right)}{e^{2-\pi}\left(1+\frac{1}{e^{2-\pi}}\right)}$		
	$= \frac{x+1}{1+(e^{2-x})^{-1}}$		
	·		
	$\frac{-2+1}{1+e^{2-2}}$		
	for $X = 1.5$, $X - g(x) = \frac{2.5}{g'(x)} = \frac{1 + e^{-0.5}}{1 + e^{-0.5}}$		
	= 1.56	:	
	for $X = 1.56$, $X - g(x) = 2.56$ $g^{1(x)} = \frac{2.56}{1 + e^{-0.5}}$	44	
	÷ 1.56		,
	: X = 1.56 (to 2 dec. pl.)		

Qn	Solutions	Marks	Comments & Criteria
146)	V= 2052 g= 10		
	_		
	2 > 20/2 + cos 2		
	$y = 20\sqrt{2} t sn \alpha - 5t^2$		
1)	When $x=120$, $y=-60$		
	:- 2052 (120 2052652) SIND - 5 (170 2052652)	osa ²	= -60
	$120 \tan \alpha - 90 \sec^2 \lambda = -60$		
	$4 \tan \alpha - 3(1+\tan^2 \alpha) = -2$! !	
	$(3\tan \alpha - 1)(\tan \alpha - 1) = 0$		
	$=$ tan $d = \frac{1}{3}$, 1		
iD	$d = \tan^{-1}(\frac{1}{3}), \mp as require tan d = \frac{1}{3}$	red	
ועו	tan d= 3 / Vio		
	:- cos d = 3 3		
	t = 120		
	20 JZ cos 2		
	: t = 120 Jio		
	20/2.3		1
	t = 215 seconds		

Qn	Solutions	Marks	Comments & Criteria
14c)	$\ddot{x} = -\frac{1}{2}u^2e^{-x}$		
i)	at t=0, u=2		
	: == -1(2)2 e-n		
	$\dot{x} = -2e^{-x}$		
	but $\dot{x}' = \frac{d}{dx}(\frac{1}{2}v^2)$		
	$\frac{1}{2}V^{2} = +2e^{-x} + c$		
	$V^2 = 4e^{-\lambda} + 2c$		e e
	when $t=0$, $x=0$, $v=2$		
	: 4 = 4e° +2c		
	· 2c =0		
ii)	$1 - 2 = 4e^{-x}$		
וניו	4e-2>0 for all x		
	$: V^2 > 0$ for all x		
	at $t=0$, $V=2$ and V remains positive.		
	3037770 C.		