\qquad

HSC Trial Examination August 2015

Mathematics Extension 1

General Instructions

- Reading Time - 5 minutes
- Working time -2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of the paper
- Answer questions $1-10$ on the multiple choice answer sheet provided
- Answer questions 11-14 on the paper provided, showing relevant mathematical reasoning and/or calculations
- Start each question on a new page
- Write your Student Number on the top of this page and at the top of every writing page

Total marks - 69

Section I

10 marks

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section

Section II

60 marks

- Attempt Questions 11 - 14
- Allow about 1 hour and 45 minutes for this section

Section I

10 Marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions $1 \mathbf{- 1 0}$.

1 When the polynomial $P(x)=x^{3}-5 x^{2}+k x+2$ is divided by $(x+1)$ the remainder is 3 . What is the value of k ?
(A) -7
(B) -5
(C) 5
(D) 7

2 Which of the following is a simplification of $4 \log _{e} \sqrt{e^{x}}$?
(A) $4 \sqrt{x}$
(B) $\quad 1 / 2 x$
(C) $2 x$
(D) $\quad x^{2}$

3 In the diagram, $A B$ is a diameter of the circle and $M C N$ is the tangent to the circle at C. $\angle C A B=35^{\circ}$. What is the size of $\angle M C A$?
(A) 35°
(B) 45°
(C) 55°
(D) 65°

4 The acute angle between the lines $2 x-y=0$ and $k x-y=0$ is equal to $\frac{\pi}{4}$. What is the value of k ?
(A) $k=3$ or $k=-\frac{1}{3}$
(B) $k=-3$ or $k=\frac{1}{3}$
(C) $k=3$ or $k=-\frac{1}{3}$
(D) $\quad k=3$ or $k=\frac{1}{3}$

5 Which of the following is a simplification of $\frac{1-\cos 2 x}{\sin 2 x}$?
(A) $1-\cot 2 x$
(B) 1
(C) $\cot x$
(D) $\tan x$

6 The statement $7^{n}-3^{n}$ is always divisible by 10 is true for
(A) all integers $n \geq 1$
(B) all integers $n \geq 2$
(C) all odd integers $n \geq 1$
(D) all even integers $n \geq 2$
$7 \quad$ What is the value of $\int_{1}^{2} \frac{1}{\sqrt{4-x^{2}}} d x$?
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{2}$

8 The radius r of a circle is increasing at a constant rate of $0.1 \mathrm{cms}^{-1}$. What is the rate at which the area of the circle is increasing when $r=10 \mathrm{~cm}$?
(A) $\pi \mathrm{cm}^{2} \mathrm{~s}^{-1}$
(B) $2 \pi \mathrm{~cm}^{2} \mathrm{~s}^{-1}$
(C) $10 \pi \mathrm{~cm}^{2} \mathrm{~s}^{-1}$
(D) $20 \pi \mathrm{~cm}^{2} \mathrm{~s}^{-1}$

9 If $x+\frac{1}{x}=2$ what is the value of $x^{2}+\frac{1}{x^{2}}$?
(A) 2
(B) 4
(C) 6
(D) 8

10 Evaluate $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$.
(A) 0
(B) $\quad \infty$
(C) 1
(D) $1 / 2$

End of Section I

Section II

60 Marks

Attempt Questions 11 - 14
Allow about 1 hour and 45 minutes for this section
Answer each question on the writing paper provided. Start each question on a new page.
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a new page

(a) Solve the inequality $\frac{1}{|x-1|}>\frac{1}{2}$.
(b) $\quad A(-2,5)$ and $B(6,-7)$ are two points. Find the coordinates of the point $P(x, y)$ that divides the interval $A B$ internally in the ratio 3:1.
(c) Find $\frac{d}{d x}\left(x^{2} \tan ^{-1} x\right)$.

2
(d) Use Mathematical Induction to show that for all positive integers $n \geq 1$
$1 \times 2^{0}+2 \times 2^{1}+3 \times 2^{2}+\ldots+n \times 2^{n-1}=1+(n-1) 2^{n}$.
(e) Use the substitution $x=u^{2}-1, u \geq 0$, to evaluate $\int_{0}^{3} \frac{x}{\sqrt{x+1}} d x$.
(f) In the diagram the two circles intersect at A and $B . P A Q$ is a straight line and $P M$ is parallel to $Q N$. Copy the diagram. Show that $M B N$ is a straight line.

Question 12 (15 marks) Start a new page

(a) Given that $\int_{0}^{a} e^{1-2 x} d x=\frac{e}{4}$, find a in terms of $\ln k$.
(b) The equation $x^{3}-6 x^{2}+4 x+2=0$ has roots α, β and γ. Find the value of
(i) $\frac{\alpha}{2}+\frac{\beta}{2}+\frac{\gamma}{2}$

1
(ii) $\frac{2}{\alpha}+\frac{2}{\beta}+\frac{2}{\lambda}$.

2
(c) (i) Show that for $0<x<\frac{\pi}{4}, \tan x+\tan ^{3} x+\tan ^{5} x+\ldots=\frac{1}{2} \tan 2 x$.
(ii) Hence find the exact value of $\tan \frac{\pi}{8}+\tan ^{3} \frac{\pi}{8}+\tan ^{5} \frac{\pi}{8}+\ldots$
(d) Solve the equation $\sin ^{-1} x=3 \cos ^{-1} x$, giving the solution correct to 2 decimal places.
(e) In the diagram, $T\left(2 a t, a t^{2}\right)$ is a point on the parabola $x^{2}=4 a y$.
(i) Show that the normal to the parabola at t has equation $x+t y=2 a t+a t^{3}$.
(ii) This normal cuts the x and y axes at X and Y respectively. Show $\frac{T X}{T Y}=\frac{t^{2}}{2}$.

Question 13 (15 marks) Start a new page

(a) Find the domain and range of the function $f(x)=\cos ^{-1}(2 x-1)-\frac{\pi}{2}$.
(b) $\quad \alpha$ is the real root of the equation $\log _{e} x-\frac{1}{x}=0$. Use one application of Newton's Method with an initial approximation $\alpha_{0}=1.5$ to find the next approximation of α correct to 1 decimal place.
(c) The region bounded by the curve $y=\cos x$ and the x axis between $x=0$ and $x=\frac{\pi}{3}$ is rotated through one complete revolution about the x axis. Find the exact volume of the solid formed.
(d) The rise and fall of water in a harbour is simple harmonic. On a particular day in a harbour, high tide at its entrance occurs at noon and the water depth is then 11 m . Low tide occurs 6.25 hours later and the water depth is then 5 m .
(i) Find the amplitude and period of this motion and write the equation for the displacement of the motion.
(ii) Find the time when the water level will be falling at its maximum rate and thus find the rate in metres per hour. Give your answer to 3 significant figures.
(iii) A ship needs a depth of 7 m to enter the harbour. Find the latest time after noon at which it can enter without having to wait for low tide to pass.
(e) Find the acute angle between the curve $y=x^{2}+3$ and the line $2 x-y+3=0$ at the point of intersection $x=2$. Give your answer to the nearest degree.

Question 14 (15 marks) Start a new page

(a)

(i) From a point P , the angle of elevation of the top of a vertical tower at X , due North of P , is 17°. From Q, due East of the tower, the angle of elevation is 13°. Given that P and Q are 130 m apart, show that h, the height of the tower, can be given by
$h=\frac{130}{\sqrt{\tan ^{2} 73+\tan ^{2} 77}}$.
(ii) Find h to the nearest metre.
(b) At time t years the number N of individuals in a population is given by $N=\frac{a}{1+b e^{-t}}$ for some constants $a>0$ and $b>0$. The initial population size is 20 and the limiting population size is 100 .
(i) Show that $\frac{d N}{d t}=N\left(1-\frac{N}{a}\right)$.
(ii) Find the values of a and b.
(c) Show that the series $\log _{2} x+\log _{4} x+\log _{16} x+\ldots$ is geometric and find the sum of the series for infinite terms.

Question 14 continues on the next page

Question 14 continued

(d) Consider the function $\mathrm{f}(\mathrm{x})=-\frac{x}{x^{2}+1}$
(i) Show that this function is odd.
(ii) Find the equation of the horizontal asymptote. $\mathbf{1}$
(iii) Find the coordinates of its stationary points and determine their nature. $\mathbf{2}$
(iv) Sketch the graph of this function. 1

End of Examination

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, x>0
\end{aligned}
$$

Mathematics Extension 1

HSC Trial Examination
 August 2014

Section I

Multiple-Choice Answer Sheet
Circle the correct response
1.
A
B
C
D
2.
A
B
C
D
3.
A
B
C
D
4.
A
B
C
D
5.
A
B
C
D
6.
A
B
C
D
7.
A
B
C
D
8.
A
B
C
D
9.
A
B
C
D
10.
A
B
C
D

