zitllara

Student Number

2014

Trial Higher School Certificate

Extension 1 Mathematics $25^{\text {ih }}$ July 2014

General Instructions

- Reading time - 5 minutes
- Working tine 2 hours
- Write using blue or black pen Black pen is preferred
- Approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-14 show relevant mathematical reasoning and/or calculations
- Start a new booklet for each question

Total Marks - 70

Section I - Pages 2-5
10 marks

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section

Section II - Pages 6-11*
60 marks

- Attempt Questions 11-14
- Allow about 1 hour and 45 minutes for this section

Question	Marks
$\mathbf{1 - 1 0}$	$/ 10$
$\mathbf{1 1}$	$/ 15$
$\mathbf{1 2}$	$/ 15$
$\mathbf{1 3}$	$/ \mathbf{1 5}$
$\mathbf{1 4}$	$/ 15$

Section I

10marks

Attempt Question 1 - 10

Allow about 15 minutes for this section
Use the multiple - choice answer sheet for Questions 1 - 10

1 What is the natural domain of $f(x)=x+\log _{e} x$?
(A) $\quad x>0$
(B) All real x
(C) $\quad x>1$
(D) $\quad x>-1$

2 For the function $f(x)=\sec x$, where $0<x<\frac{\pi}{2}$ and $y \geq 1$, What is $f^{-1}(x)$?
(A) $\quad f^{-1}(x)=\frac{1}{\cos ^{-1} x}$
(B) $\quad f^{-1}(x)=\cos ^{-1} x$
(C) $\quad f^{-1}(x)=\cos ^{-1} \frac{1}{x}$
(D) $\quad f^{-1}(x)=\tan ^{-1} x$

3 In the diagram $F B$ and $F G$ are tangents to the circle centre $O . \angle E B F=\alpha$. What is the size of $\angle F E D$?

(A) $\quad \alpha$
(B) $\frac{\alpha}{2}$
(C) $\quad \pi-2 \alpha$
(D) $\frac{\pi}{2}-\alpha$

4
The definite integral $\int_{e^{3}}^{e^{4}} \frac{1}{x \log _{e} x} d x$ can be written in the form $\int_{a}^{b} \frac{1}{u} d u$ where
(A) $\quad u=\log _{e} x, a=\log _{e} 3, b=\log _{e} 4$
(B) $\quad u=\log _{e} x, a=3, b=4$
(C) $\quad u=\log _{e} x, a=e^{3}, b=e^{4}$
(D) $\quad u=\frac{1}{x}, a=e^{-3}, b=e^{-4}$

5
Evaluate $\lim _{x \rightarrow 0} \frac{\sin 3 x}{\frac{x}{2}}$
(A) $\frac{3}{2}$
(B) $\frac{2}{3}$
(C) 6
(D) $\frac{1}{6}$

6 Find the value (in simplest surd form) of $\cos 15^{\circ}$:
(A) $\frac{\sqrt{6}-\sqrt{2}}{4}$
(B) $\frac{\sqrt{2}-\sqrt{3}}{2}$
(C) $\frac{\sqrt{6}+\sqrt{2}}{4}$
(D) $\frac{\sqrt{2}+\sqrt{6}}{2}$
$7 f(x)=\sqrt{4-x^{2}},-2 \leq x \leq 0$. The inverse function is give by:
(A) $x^{2}+y^{2}=4$
(B) $y=\sqrt{4-x^{2}},-2 \leq x \leq 2$
(C) $y=\sqrt{4-x^{2}}, 0 \leq x \leq 2$
(D) $y=-\sqrt{4-x^{2}}, 0 \leq x \leq 2$

8 The solution to $\sqrt{2} \sin 2 \theta+1=0$ for $0 \leq \theta \leq 2 \pi$ is:
(A) $\frac{5 \pi}{4}, \frac{7 \pi}{4}$
(B) $\frac{5 \pi}{8}, \frac{7 \pi}{8}$
(C) $\frac{5 \pi}{8}, \frac{7 \pi}{8}, \frac{13 \pi}{8}, \frac{15 \pi}{8}$
(D) $\frac{5 \pi}{4}, \frac{7 \pi}{4}, \frac{13 \pi}{4}, \frac{15 \pi}{4}$

9 If $t=\tan \frac{\theta}{2}$, then $\sin \theta+\cos \theta=\cdots$
(A) $\frac{1+2 t-t^{2}}{1+t^{2}}$
(B) $\frac{t^{2}-2 t+1}{1+t^{2}}$
(C) $\frac{(1-t)^{2}}{1+t^{2}}$
(D) $\frac{(1+t)^{2}}{1+t^{2}}$

10 One solution of the equation $2 \cos 2 x=x-1$ is close to $x=0.9$. Use one application of Newton's method to find another approximation to this solution.

Give your answer correct to three decimal places
(A) 0.799
(B) 0.828
(C) 0.909
(D) 0.938

Section II

60 marks

Attempt Questions 11 - 14
Allow about 1 hours and 45 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11 - 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet
(a) Factorise (fully) $\left(a^{2}+a b\right)^{2}-\left(a b+b^{2}\right)^{2}$
(b) Find the coordinates of the point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ which divides the interval AB externally in the ratio $1: 3$ with $\mathrm{A}(1,4)$ and $\mathrm{B}(5,2)$
(c) Solve the inequality $\frac{3}{2-x} \geq 1$
(d) Differentiate $e^{\cos ^{-1} x}$
(e) Simplify $\sqrt{(\sec \theta+1)(\sec \theta-1)}$
(f) Find the Cartesian equation of the curve whose parametric equations are

$$
x=2 \cos \theta, y=\sqrt{3} \sin \theta, 0 \leq \theta \leq 2 \pi
$$

(g)

Use the substitution $\sqrt{x}=u$ to evaluate $\int_{1}^{9} \frac{d x}{x+\sqrt{x}}$.

End of Question 11

Question 12(15 marks) Use a SEPARATE writing booklet
(a) The cubic polynomial $2 x^{3}+a x^{2}-7 x+b$ has factors $(x-2)$ and $(x+3)$.

Find the values of a and b.
(b) (i) Express $3 \cos x+2 \sin x$ in the form $r \cos (x-\alpha)$ where $0 \leq \alpha \leq \frac{\pi}{2}$.
(ii) Hence, or otherwise, solve $3 \cos x+2 \sin x=\sqrt{13}$ for $0 \leq x \leq 2 \pi$. Give your answer, or answers, correct to two decimal places.
(c) $\quad P\left(4 p, p^{2}\right)$ and $Q\left(4 q, q^{2}\right)$ are two points on the parabola $x^{2}=16 y$.
(i) Find the coordinates of M the midpoint of $P Q$.
(ii) If the chord $P Q$ subtends a right angle at the origin O , show that $p q=-16$.
(iii) Show that as P and Q move on the parabola the locus of M is another parabola Find its equation.
(d) (i) State the domain and range of the function given by $y=\cos ^{-1} 2 x$.
(ii) Sketch the graph of the function given by $y=\cos ^{-1} 2 x$.

Question 13 (15 marks) Use a SEPARATE writing booklet
a)

From a pack of 10 cards numbered from 1 to 10 , four cards are drawn at random without replacement.

Calculate the exact probabilities that:
i) the largest number drawn is 6 .
ii) the product of the four numbers is even.
iii) the four numbers drawn are consecutive numbers
b) Water is poured at a constant rate of $20 \mathrm{~cm}^{3}$ per second into a cup which is shaped like a truncated cone as shown in the figure below. The upper and lower radii of the cup are 4 cm and 2 cm respectively. The height of the cup is 6 cm . A spider is asleep at the end of a web hanging at 4 cm vertically above the base of the cup.

i) Show that the volume of the water inside the cup, V, is related to the height of the water level, h,through the equation

$$
V=\frac{\pi}{27}(h+6)^{3}-8 \pi
$$

ii) Find the minimum speed at which the spider must climb to avoid soaking, assuming it climbs vertically upwards the moment the water touches its feet.

Question 13 continues on page 9

Question 13 (continued)
c) A particle is performing Simple Harmonic Motion in a straight line. At time t seconds, it has: displacement x metres from a fixed point O in the line; velocity $v \mathrm{~ms}^{-1}$ given by $v=12 \sin \left(2 t+\frac{\pi}{3}\right)$ and acceleration \ddot{x}.

Initially the particle is 5 metres to the right of O.
(i) Show that $\ddot{x}=-4(x-2)$
(ii) Find the period and extremities of the motion 2

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet
(a) Use mathematical induction to show that for all positive integers $n \geq 1$
(b)

A particle is projected with velocity $V \mathrm{~ms}^{-1}$ at an angle θ above the horizontal from a point O on the edge of a vertical cliff 32 metres above a horizontal beach.

The particle moves in a vertical plane under gravity, and 4 seconds later it hits the beach at a point 64 metres from the foot of the cliff. The acceleration due to gravity is $10 \mathrm{~ms}^{-2}$.
i) Use integration to show that after t seconds the horizontal displacement x metres and the vertical displacement y metres of the particle from O are given by

$$
x=(V \cos \theta) t \text { and } y=(V \sin \theta) t-5 t^{2} \text { respectively }
$$

ii) Write down the two equations in V and θ then solve these equations to find the exact value of V and the value of θ in degrees correct to the nearest minute.
iii) Find the speed of impact with the beach correct to the nearest whole number and the angle of impact with the beach correct to the nearest minute.

Question 14 continues on page 11

Question 14 (continued)
(c)
(i) If $\theta=\tan ^{-1} A+\tan ^{-1} B$ show that $\tan \theta=\frac{A+B}{1-A B}$
(ii) Hence solve the equation $\tan ^{-1} 3 x+\tan ^{-1} 2 x=\frac{\pi}{4}$. 3

END of PAPER :

BLANK

PAGE

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{8} x, \quad x>0
\end{aligned}
$$

BLANK

PAGE

Student Number								

Extension 1 Mathematics

Section I - Multiple Choice Answer Sheet

Use this multiple-choice answer sheet for questions $1-10$. Detach this sheet.

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample: $2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
$\mathrm{A} \bigcirc$
B
$\mathrm{C} \bigcirc$
D \bigcirc

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A-
B
$\mathrm{c} \bigcirc$
D ○

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.

EXIT HS TRIAL 2014 solutions
IA, 2C $3 D \quad 4 B \quad 5 C \quad 6 C \quad 7 D \quad 8 C$ qA $10 B$
Ella)

$$
\left(a^{2}+a b\right)^{2}-\left(a b+b^{2}\right)^{2}=\left(a^{2}+a b+a b+b^{2}\right)\left(a^{2}+a b-a b-b^{2}\right)
$$

$$
\begin{aligned}
& =\left(a^{2}+2 a b+b^{2}\right)\left(a^{2}-b^{2}\right) \\
& =(a+b)^{2}(a+b)(a-b) \\
& =(a+b)^{3}(a-b)
\end{aligned}
$$

b) $A(1,4) \sum_{-1: 3}^{\text {and }} B(5,2)$

$$
\begin{aligned}
x_{p} & =\frac{-1(5)+3(1)}{-1+3}, & y_{p} & =\frac{-1(2)+3(4)}{-1+3} \\
& =\frac{-5+3}{2}, & & =\frac{-2+12}{2} \\
x_{p} & =-1 & & y_{p}
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) } \frac{3}{2-x} \geqslant 1 \quad x \neq 2 \\
& 3(2-x) \geqslant(2-x)^{2} \\
& (2-x)[3-(2-x)] \geqslant 0 \\
& (2-x)(1+x) \geqslant 0
\end{aligned}
$$

solution $-1 \leqslant x<2$

$$
\begin{aligned}
& \text { d) } \frac{d}{d x} e^{\cos ^{-1} x}=e^{\cos ^{-1} x} \cdot\left(-\frac{1}{\sqrt{1-x^{2}}}\right) \\
& u=\cos ^{-1} x \\
& \frac{d u}{d x}=-\frac{1}{\sqrt{1-x^{2}}}=-\frac{e^{\cos ^{-1} x}}{\sqrt{1-x^{2}}}
\end{aligned}
$$

2 marks correctly factorises
1 mark use difference of 2 squares, or any progress towards solution

2marks correctly eocatuate:

$$
P(x, y)
$$

1mark correctly substitute giving consideration to (-) sign.

2 marks correctly evaluates I mark multiples by $(2-x)^{2}$ or obtains bine Inequality for $x_{\text {. }}$. or any progress towards solution

2 marks other valid. correct solution

2 marks correct answer with working out
I mark correct differentiation of $\cos ^{-1} x$,

$$
\begin{aligned}
& \text { d) } \begin{aligned}
& \frac{d}{d x} e^{\cos ^{-1} x}=e^{\cos ^{-1} x} \cdot-\frac{1}{\sqrt{1-x^{2}}} \\
& \begin{aligned}
& u=\cos ^{-1} x=-\frac{e^{\cos ^{-1} x}}{\sqrt{1-x^{2}}} \\
& \begin{aligned}
& \frac{d u}{d x}=-\frac{1}{\sqrt{1-x^{2}}} \\
& \text { e) } \sqrt{(\sec \theta+1)(\sec \theta-1)}=\sqrt{\sec ^{2} \theta-1} \\
&=\sqrt{\tan \theta} \\
&=\tan \theta
\end{aligned}
\end{aligned} \begin{aligned}
\end{aligned}
\end{aligned} \begin{aligned}
\end{aligned}
\end{aligned}
$$

f)

$$
\begin{aligned}
& \text { f) } x=2 \cos \theta, \quad y=\sqrt{3} \sin \theta \\
& x^{2}=4 \cos ^{2} \theta, \quad y^{2}=3 \sin ^{2} \theta \\
& \cos ^{2} \theta=\frac{x^{2}}{4}, \quad \sin ^{2} \theta=\frac{y^{2}}{3} \\
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \frac{y^{2}}{3}+\frac{x^{2}}{4}=1 \\
& 3 x^{2}+4 y^{2}=12
\end{aligned}
$$

8) $\int_{1}^{9} \frac{d x}{x+\sqrt{x}}$

$$
u=\sqrt{x}
$$

$$
\frac{d u}{d x}=\frac{1}{2 \sqrt{x}}=\frac{1}{2 u}
$$

$$
\int_{1}^{9} \frac{d x}{x+\sqrt{x}}=\int_{1}^{3} \frac{2 u d u}{u^{2}+u}
$$

$$
\begin{array}{ll}
x=1 & u=\sqrt{1}=1 \\
x=9 & u=\sqrt{9}=3
\end{array}
$$

$$
=\int_{1}^{3} \frac{2 d u}{u+1}
$$

$$
=2 \ln (x+1)]_{1}^{3}
$$

$$
\begin{aligned}
=2 \ln & 4-\ln 2 D \Rightarrow
\end{aligned}=2 \ln \frac{4}{2}
$$

$$
\begin{aligned}
& =\ln 4=2 \ln 2 \\
& =\ln 2^{2}
\end{aligned}
$$

2 marks correct answer with correct working out
Imark $\sec ^{2} \theta-1=\tan ^{2} \theta$

2 marks correctworking and correct answer

I mark Finding x^{2} and y^{2}.

3 marks correct working out and answer

2 mark Correctly writes the integral interms of ' 4 ' and boundaries

I mark any reasonable progress: towards solution
12.a) Let $P(x)=2 x^{3}+a x^{2}-7 x+b$
$(x-2)$ is a factor of $P(x), \therefore P(2)=0$

$$
\begin{gather*}
2(2)^{3}+a(2)^{2}-7(2)+b=0 \\
4 a+b=-2 \tag{1}
\end{gather*}
$$

$(x+3)$ is a factor of $P(x), \therefore P(-3)=0$

$$
\begin{gathered}
2(-3)^{3}+a(-3)^{2}-7(-3)+b=0 \\
9 a+b=33
\end{gathered}
$$

Solve (1) and (2) simultaneously:

$$
\begin{gathered}
4 a+b=-2 \\
-9 a+b=33 \\
\hline-5 a=-35 \\
a=7
\end{gathered}
$$

substitute $a=7$ unto (1)

$$
\begin{gathered}
4 \times 7+b=-2 \\
b=-30 \\
\therefore \quad a=7, b=-30
\end{gathered}
$$

3 marks correct solution 2 marks correctly evaluates $P(2) \cup P(-3)$ and attemp to solve simultaneously

I mark correctly evaluate $P(2)$ and $P(-3)$.
b) i) Method I
$3 \cos x+2 \sin x=r \cos (x-\alpha)$
2 marks Correct answer
$3 \cos x+2 \sin x=r \cos \alpha \cos x+r \sin \alpha \sin x$
where $r \sin \alpha=2 \quad(1)$

$$
r \cos \alpha=3
$$

(1) $\div(2) \tan \alpha=\frac{2}{3}, d=\tan ^{-1} \frac{2}{3}$

$$
\begin{aligned}
&(1)^{2}+(2)^{2} \cdot r^{2} \sin ^{2} \alpha+r^{2} \cos ^{2} \alpha=4+9 \\
& r^{2}\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)=13 \\
& r=\sqrt{13} \quad r>0 \\
& \therefore 3 \cos x+2 \sin x=\sqrt{13} \cos \left(x-\tan ^{-1} \frac{2}{3}\right)
\end{aligned}
$$

Imark Correctly evaluates r or α, or equivalent progress.
$12 b i i)$

$$
\begin{aligned}
& \sqrt{13} \cos \left(x-\tan ^{-1} \frac{2}{3}\right)=\sqrt{13} \\
& \cos \left(x-\tan ^{-1} \frac{2}{3}\right)=1 \\
& x-\tan ^{-1} \frac{2}{3}=0,2 \pi \\
& x=0+\tan ^{-\frac{2}{3}} ; 2 \pi \pi^{+}+0^{-1}\left(\frac{1}{3}\right. \\
& =0.5880, \underbrace{2 \pi \pi+0,58}_{\text {not solution }} \\
& =0.5
\end{aligned}
$$

c) $P\left(4 p, p^{2}\right), Q\left(4 q, q^{2}\right)$
i)

$$
\begin{aligned}
x_{M} & =\frac{4 p+4 q}{2}, y_{M}=\frac{p^{2}+q^{2}}{2} \\
& =2(p+q) \\
M & \left(2(p+q), \frac{p^{2}+q^{2}}{2}\right)
\end{aligned}
$$

2 marks correct solution
I mark Any progress towards solution

Imark. Correctly evaluates x and y.

2 marks correct answer

1 mark obtains $M_{P o}$ or $m_{Q O}$

Barks correct answer and working out
Imarks For substitute into x^{2}

I mark for finding

$$
x_{m}, y_{m}
$$

12d) $y=\cos ^{-1} 2 x$
i)

Domain $-1 \leqslant 2 x \leqslant 1$

$$
-\frac{1}{2} \leqslant x \leqslant \frac{1}{2}
$$

Range $\quad 0 \leqslant y \leqslant \pi$

I mark for correct domain and range

1 mark correct shape with , inert
labeled labeled

Question 13
(9) No. of ways of dousing 4 conns $={ }^{10} C_{4}$
ii) wo of ways of drawing 3 cants witt <6

$$
=5 C_{3}
$$

$$
\therefore P(\text { longer we dhow is } 6)=\frac{5 C_{3}}{10 C_{4}}=\frac{1}{2}
$$

(ii) No of ways of drawing 4 out of 5 cords $=5 \tau_{4}$

$$
\begin{aligned}
\therefore P(\text { product even }) & =1-P(\text { all od } 1) \\
& =1-\frac{5 c_{9}}{10 c_{4}} \\
& =1-\frac{5}{210} \\
& =\frac{41}{42}
\end{aligned}
$$

(iii) Possible combination of consecuhare numbers an:

$$
\begin{aligned}
& (1,2,3,4),(2,3,4,5),(3,4,5,6),(4,5,6,7),(5,5,7,8), \\
& (6,7,8,9) \text { and }(7,8,9,10) \\
& \therefore P(\text { numb io consembon })=\frac{7}{1 O C_{4}}=\frac{1}{30}
\end{aligned}
$$

Question 13
(b)

$$
\triangle D E C \left\lvert\, M \triangle A B C \Rightarrow \frac{4}{6+y}=\frac{2}{y} \Rightarrow y=6\right.
$$

$$
\triangle G F C I M \triangle D E C \Rightarrow \frac{r}{6+y}=\frac{2}{y} \Rightarrow r=\frac{y+6}{3}
$$

Vol. of water of depth h, v

$$
\begin{aligned}
V & =\frac{\pi}{3}\left[r^{2}(h+y)-4 y\right] \\
& =\frac{\pi}{3}\left[\frac{(h+6)^{2}}{9}(h+6)-4 \times 6\right] \\
& =\frac{\pi}{27}\left[(h+6)^{3}-24\right] \\
& =\frac{\pi}{27}(h+6)^{3}-8 \pi
\end{aligned}
$$

Q. 3 (b) (ii)

$$
\begin{aligned}
V & =\frac{\pi}{27}(h+6)^{3}-8 \pi \\
\frac{d V}{d h} & =\frac{\pi}{9}(h+6)^{2}, \frac{d V}{d t}=20 \mathrm{~cm}^{3} / \mathrm{s} \\
\frac{d h}{d t} & =\frac{d h}{d V} \cdot \frac{d V}{d t} \\
& =\frac{9}{\pi(h+6)^{2}} \cdot 20
\end{aligned}
$$

When water touches the spider legs, $h=4$

$$
\begin{aligned}
\Rightarrow \frac{d b}{d t} & =\frac{9 \times 20}{\pi(\Varangle+6)^{2}} \\
& =\frac{9}{5 \pi} \mathrm{cms}^{1}
\end{aligned}
$$

\therefore The minimum speed that the spider must climb to avoid soalani is $\frac{9}{5 \pi}$ en 51

Question 14
(i) For $n=1$

$$
\begin{aligned}
& \angle H S=\frac{3}{1 \times 2 \times 2}=\frac{3}{4} \\
& R H S=1-\frac{1}{2 \times 2}=\frac{3}{4} \\
& \therefore \angle H S=R H S \text { for } n=1
\end{aligned}
$$

\therefore true for $n=1$

1 for testing
showing $\angle H S=$ hHS

Assume true for $n=k$
ie $\frac{3}{1 \times 2 \times 2}+\cdots+\frac{k+2}{k(k+1) 2^{k}}=1-\frac{1}{(k+1) 2^{k}}$
Plequered to show

$$
\frac{3}{1 \times 2 \times 2}+\cdots+\frac{k+2}{k(k+1) 2^{k}}+\frac{k+3}{(k+1)(k+2) 2^{k+1}}=1-\frac{1}{(k+2) 2^{k+1}}
$$

Now

$$
\begin{aligned}
& \text { HS }=\frac{3}{1 \times 2 \times 2}+\cdots+\frac{k+2}{k(k+1)\left(2^{k}\right)}+\frac{k+3}{(k+1)(k+2) 2^{k+1}} \\
& =1-\frac{1}{(b+1) 2^{2}}+\frac{k+3}{(b+1)(b+2) 2^{2+1}} \\
& =1+\frac{-(k+2) 2+k+3}{(b+1)(k+2) 2^{b+1}} \\
& =1+\frac{-2 k-4+b+3}{(b+1)(b+2) 2^{b+1}} \\
& =1+\frac{-b-1}{(b+1)(k+2) 2^{k+1}} \\
& =1-\frac{1}{(b+2) 2^{b+1}} \\
& =\text { RHo } \therefore \text { Proven by H. Induction. }
\end{aligned}
$$

- for showing
Assumption of Tame for $n=6$

1 four workmen
towards towards answer.
(Note: question was coring so students who did lot 2 plants
correct got 2 Question out of 2$)$

Question
(b) Horizontally
(i)

$$
\begin{aligned}
\ddot{x} & =0 \\
\dot{x} & =c \\
& =V \cos \theta(\text { wolox } t=0)
\end{aligned}
$$

$$
x=V \cos \theta t+k
$$

whan $t=0, x=0$

$$
\therefore \quad x=V \cos \theta t
$$

(ii)

$$
\text { when } t=4, x=64
$$

$$
\text { and } y=-32
$$

$$
\begin{align*}
\therefore 64 & =4 V \cos \theta-\operatorname{con} \phi \\
-32 & =-5 \times 4^{2}+4 V \sin \theta \\
-32 & =-80+4 V \sin \theta \\
48 & =4 V \sin \theta-(2) \tag{2}
\end{align*}
$$

From (1) $\quad V \cos \theta=16$
From (2) $\quad V \operatorname{sur} \theta=12$
$(3)^{2}+(4)^{2}$ gives

$$
\begin{gathered}
V^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=16^{2}+12^{2} \\
V^{2}=400
\end{gathered}
$$

Vertically

$$
\begin{aligned}
& \ddot{y}=-10 \\
& \dot{y}=-10 t+c
\end{aligned}
$$

whed $t=0$

$c=v \sin \theta$
$\therefore \dot{y}=-10 t+v \sin \theta$
$y=-5 t^{2}+v \sin \theta t+k$ foom, hasice
chear $t=0 ; y=0$

$$
\therefore k=0
$$

1 far x value and I fory value. Must show warthic pacaceples

$$
\therefore y=-5 t^{2}+v \sin \theta t
$$

I sab x yadi to get egiations

1 for solving
smuct taveo simultareotese 1 worlhug towasds
correct auscore

$$
\begin{aligned}
& V^{2}=400 \\
& V=20 \mathrm{~s}
\end{aligned}
$$

Question 14
(b) (iii)
when $t=4$
$\dot{x}=V \cos \theta$ and $\dot{y}=-10 t+v \sin \theta$
Ge

$$
\begin{aligned}
V \cos \theta & =16 \text { (from }) \\
\dot{x} & =16
\end{aligned}
$$

$$
=-40+v \sin 0
$$

1 for working

$$
\begin{aligned}
& =-40+12 \quad \text { (fromii) } \\
& =-28
\end{aligned}
$$ ont values of \dot{x} and \dot{y}

$$
\text { Thus }-40+v \sin \theta=-28
$$

$$
\begin{gathered}
v^{2}=16^{2}+28^{2} \Rightarrow V=32 \cdot 2 \\
\tan \alpha=\frac{28}{16} \\
\alpha=\tan ^{-1}\left(\frac{28}{16}\right)=60^{\circ} 15^{\prime}
\end{gathered}
$$

[' for warta out value of t
\therefore Speed of impact is $32 \mathrm{~ms}^{-1}$ at an angle of $60^{\circ} 15^{\prime}$
(c) (i) let $x=\tan ^{-1} A$ and $y=\tan ^{-1} B$
$Q \tan x=A$ and tarry $=B$ and $\theta=x+y$. 1 for wasting ont value of s

I for wo ok her towards costect ansue.

Now $\tan \theta=\tan (x+y)$

$$
\begin{aligned}
& =\frac{\tan x+\tan y}{1-\tan x \tan y} \\
& =\frac{A+B}{1-A B}
\end{aligned}
$$

(c) (ii) $\frac{\text { Question } 14}{\tan ^{-1} 3 x+\tan ^{-1} 2 x}=\frac{\pi}{4}$

$$
\begin{align*}
& \text { Now unong part (i): } A=3 x \tag{1}\\
& B=2 x \\
& \text { and } \theta=\frac{\pi}{4} \\
& \therefore \frac{3 x+2 x}{1-(3 x)(2 x)}=\tan \frac{\pi}{4}=1 \\
& \frac{5 x}{1-6 x^{2}}=1 \\
& 5 x=1-6 x^{2} \\
& 6 x^{2}+5 x-1=0 \\
& (6 x-1)(x+1)=0 \\
& x=\frac{1}{6},-1 \quad \text { but } x \neq-1 \\
& \therefore x=\frac{1}{6} \\
& 1 \text { for correct } \\
& \text { quadratic } \\
& 1 \text { far elinimation } \\
& \text { 4 for working } \\
& \text { towards } x=\frac{1}{6}
\end{align*}
$$

