Zillara

Student Number

2015

Trial Higher School Certificate
Examination

Extension 1 Mathematics
 $21^{\text {st }}$ July 2015

General Instructions

- Reading time -5 minutes
- Working tine - 2 hours
- Write using blue or black pen Black pen is preferred
- Approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-14 show relevant mathematical reasoning and/or calculations
- Start a new booklet for each question

Total Marks - 70

Section I - Pages $2-5$
10 marks

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section

Section II - Pages 6-11
60 marks

- Attempt Questions $11-14$
- Allow about 1 hour and 45 minutes for this section

Question	Marks
$1-10$	$/ 10$
11	$/ 15$
12	$/ 15$
13	$/ 15$
14	$/ 15$
Total	$/ 70$

THIS QUESTION PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM
This assessment task constitutes 40% of the Higher School Certificate Course Assessment

Section I

10 marks

Attempt Questions 1 - 10

Allow about $\mathbf{1 5}$ minutes for this section

Use the multiple-choice answer sheet for questions 1 - 10 (Detach from paper)

1 If $(2 k+1) x^{2}-(k+2) x+1$ is a perfect square then the value of k is:
(A) 0
(B) 4
(C) 0 and 4
(D) -2

2 The point P divides the interval from $A(-2,2)$ to $B(8,-3)$ internally in the ratio 3: 5.

What is the x-coordinate of P ?
(A) $\frac{1}{2}$
(B) $\frac{7}{4}$
(C) $\frac{17}{4}$
(D) 3

The polynomial equation $3 x^{3}-2 x^{2}+3 x-4=0$ has roots α, β and γ. The exact value of $\frac{1}{\alpha \beta}+\frac{1}{\beta \gamma}+\frac{1}{\alpha \gamma}$ is:
(A) 2
(B) -2
(C) $\frac{1}{2}$
(D) $-\frac{1}{2}$

What is the equation of the graph below:

(A) $y=2 \sin ^{-1}(2 x)$
(B) $y=2 \sin ^{-1}\left(\frac{x}{2}\right)$
(C) $y=2 \cos ^{-1}(2 x)$
(D) $y=2 \cos ^{-1}\left(\frac{x}{2}\right)$

5 In how many ways can 6 different keys be arranged on a circular key ring?
(A) 720
(B) 120
(C) 60
(D) 6

6 The sum of the infinite geometric series $1+2^{n}+2^{2 n}+\ldots$ is 2 . The value of n is:
(A) 3
(B) $\frac{1}{2}$
(C) -1
(D) 2
$7 \quad$ Which expression is equivalent to $\int \cos ^{2} 4 x d x$?
(A) $\frac{1}{2}\left(\frac{1}{8} \sin 8 x-x\right)+C$
(B) $\frac{1}{2}\left(\frac{1}{8} \sin 8 x+x\right)+C$
(C) $\frac{1}{2}\left(\frac{1}{4} \sin 4 x-x\right)+C$
(D) $\frac{1}{2}\left(\frac{1}{4} \sin 4 x+x\right)+C$

8 When a polynomial is divided by $(x-2)(x+4)$ the remainder is $2 x-5$.
What is the remainder when it is divided by $x-2$?
(A) -5
(B) -1
(C) 1
(D) 5

What is the derivative of $\sin ^{-1}(2 x)$
(A) $\frac{1}{2 \sqrt{1-4 x^{2}}}$
(B) $\frac{-1}{2 \sqrt{1-4 x^{2}}}$
(C) $\frac{2}{\sqrt{1-4 x^{2}}}$
(D) $\frac{-2}{\sqrt{1-4 x^{2}}}$

The value of x in the above diagram is:
(A) $\frac{3}{2}$
(B) $\frac{8}{3}$
(C) 6
(D) $\frac{2}{3}$

Section II

70 marks
 Attempt Questions 11 - 14
 Allow about 1 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11(15 marks) Use a SEPARATE writing booklet
(a) Evaluate $\int_{0}^{2} \frac{4}{\sqrt{4-x^{2}}} d x$
(b) Differentiate $\cos ^{-1}(\sin x)$ and fully simplify.
(c) Solve $x-3<\frac{4}{x}$
(d)

$$
\text { Use the substitution } x=\sin t \text { to evaluate } \int_{0}^{\frac{1}{2}} \sqrt{1-x^{2}} d x
$$

(e) The parabola's $y=x^{2}$ and $y=(x-2)^{2}$ intersect at the point P.
(i) Find the coordinates of P
(ii) Find the angle between the tangents to the parabolas at P. Give your answer to the nearest degree.

End of Question 11

Question 12(15 marks) Use a SEPARATE writing booklet
(a) Use mathematical induction to prove that $9^{n+2}-4^{n}$ is divisible by 5 for integers $n \geq 1$.
(b)

The diagram shows the graph of $x^{2}=4 y$. The tangent to the parabola at $P\left(2 p, p^{2}\right)$, where $p>0$ cuts the x-axis at A. The normal to the parabola at P cuts the y-axis at B.
(i) Find the equation of the tangent at P.
(ii) Show that B has coordinates $\left(0, p^{2}+2\right)$
(iii) Let C be the midpoint of $A B$. Find the equation of the locus of C.
(c) A particle P moving in a straight line executes Simple Harmonic Motion about a centre O. The acceleration of P is given by $\ddot{x}=-n^{2} x$ where x is the distance $O P$ and n is a constant. The amplitude of the simple harmonic motion is a.
(i) Show that $v^{2}=n^{2}\left(a^{2}-x^{2}\right)$
(ii) Show that the motion of the particle is described by
$x=a \sin (n t+\alpha)$ where α is a constant

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet
(a)

Points A, B, and C. lie on the circle
The length of the chord $A B$ is a constant, k. The radian measures of $\angle A B C$ and $\angle B C A$ are θ and α respectively.
(i) Let l be the sum of the length of the chord $C A$ and $C B$. Show that l is given by:

$$
l=\frac{k}{\sin \alpha}(\sin \theta+\sin (\theta+\alpha))
$$

(ii) Explain why is α a constant?
(iii) Evaluate $\frac{d l}{d \theta}$ when $\theta=\frac{\pi}{2}-\frac{\alpha}{2}$
(iv) Hence show that l is a maximum when $\theta=\frac{\pi}{2}-\frac{\alpha}{2}$
(b) Sketch $y=\frac{x^{2}+x-2}{x^{2}-1}$ clearly showing all important features.

Question 13 (continued)

(c) Let T be the temperature of an object at time t and D be the temperature of the surrounding medium. Newton's Law of Cooling states that the rate of change of T is proportional to $T-D$

$$
\text { i.e. } \frac{d T}{d t}=-k(T-D)
$$

(i) Show that $T=D+C e^{-k t}$ (where C and k are constants) satisfies Newton's Law of cooling
(ii) A packet of meat with initial temperature of $25^{\circ} \mathrm{C}$ is placed in the freezer whose temperature is kept at a constant $-10^{\circ} \mathrm{C}$. It takes 12 minutes for the temperature of the meat to drop to $15^{\circ} \mathrm{C}$. How much additional time is needed for the temperature of the meet to fall to $0^{\circ} \mathrm{C}$. Give your answer in minutes correct to the nearest second.

End of Question 13

Question 14(15 marks) Use a SEPARATE writing booklet

(a) $A B$ is the diameter of a semi-circle and $P Q \perp A B$
(i) Explain why $A Q P D$ and $B Q P C$ are cyclic quadrilaterals
(ii) Hence or otherwise prove that $P Q$ bisects $\angle D Q C$
(b) A vertical pole of height 2 m with base at point O stands on the West side of a canal that has straight parallel sides running from North to South. Two points A and B both lie on the East side of the canal, A to the north of the pole and B to the south of the pole, such that $\angle A O B=150^{\circ}$. The angles of elevation of the top of P of the pole. The angles of elevation to the top P of the pole are 45° from A and 30° from B.

Find:
(i) The exact distance $A B$
(ii) The width of the canal (the perpendicular distance between opposite banks of the canal). Answer to the nearest centimetre.

Question 14 continues on page 11

Question 14 (continued)

(c) A particle is projected from a point O on the ground with a velocity V and an inclination of θ to the horizontal. After time t the horizontal distances travelled by P are
$x=V t \cos \theta$ and $y=V t \sin \theta-\frac{g t^{2}}{2}$ respectively. DO NOT PROVE THIS.
(i) If $\tan \theta=\frac{1}{3}$ and P passes through the point $A\left(3 a, \frac{3 a}{4}\right)$ show that

$$
V^{2}=20 g a
$$

(ii) At the instant of time when P is travelling in the horizontal direction (i.e. it has no vertical component to its motion), another particle Q is projected from O with a velocity U at an angle α to the horizontal. P and Q hit the ground at the same place and at the same time.

Show that $U=\sqrt{\frac{145 g a}{2}}$ and that $\alpha=\tan ^{-1}\left(\frac{1}{12}\right)$
End of Examination ()

BLANK

PAGE

Mathematics

Section I - Multiple Choice Answer Sheet

Use this multiple-choice answer sheet for questions $1-10$. Detach this sheet.

Select the alternative $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D that best answers the question. Fill in the response oval completely.
Sample: $\quad 2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
$\mathrm{A} \bigcirc$
B
$\mathrm{C} O$
D

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A
B次
c 0
D O

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.

		A效		correct	c 0
$\xrightarrow[\substack{\text { Start } \\ \text { Here }}]{ } \longrightarrow$	1.	AO	BO	co	DO
	2.	AO	BO	c 0	DO
	3.	AO	BO	co	DO
	4.	AO	BO	co	DO
	5.	A 0	BO	CO	DO
	6.	A 0	BO	co	DO
	7.	AO	BO	c 0	DO
	8.	AO	BO	co	DO
	9.	AO	BO	co	DO
	10.	A 0	BO	co	DO

BLANK

PAGE

STANDARD NTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1} * n=-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos \alpha x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad \frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad \frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad \sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, x>0
\end{aligned}
$$

BLANK

PAGE

(1) $\mathrm{C} \quad$ (2) $\mathrm{B} \quad$ (3) $\mathrm{C} \quad$ (4) $\mathrm{D} \quad$ (5) $\mathrm{C} \quad$ (6) $\mathrm{C} \quad$ (7) $\mathrm{B} \quad$ (8) $\mathrm{B} \quad$ (9) $\mathrm{C} \quad$ (10) A

Question 11(15 marks)

$$
\begin{aligned}
\int_{0}^{2} \frac{4}{\sqrt{4-x^{2}}} d x & =4\left[\sin ^{-1} \frac{x}{2}\right]_{0}^{2} \\
& =4\left(\sin ^{-1} 1-0\right)=4 \times \frac{\pi}{2} \\
& =2 \pi
\end{aligned}
$$

(b)
$\frac{d}{d x} \cos ^{1}(\sin x)=\frac{-\cos x}{\sqrt{1-\sin ^{2} x}}=\frac{-\cos x}{\cos x}=-1$
(c)

$$
\begin{aligned}
& x \quad 3<\frac{4}{x} \quad \mathrm{x} \neq 0 \\
& x\left(x^{2}-3 x-4\right)<0 \\
& x(x-4)(x+1)<0
\end{aligned}
$$

$\therefore x<-1, \quad 0<x<4$

(d)

$$
\begin{aligned}
& x=\sin t \\
& d x=\cos t d t \\
& \sqrt{1-x^{2}}=\sqrt{1-\sin ^{2} t} \\
& \quad=\cos t
\end{aligned}
$$

When $x=0, t=0$

$$
x=\frac{1}{2}, t=\frac{\pi}{6}
$$

$$
\sqrt{1 x^{2}} d x=\int_{0}^{\frac{\pi}{6}} \cos ^{2} t d t
$$

0

$$
\begin{aligned}
& =\frac{1}{2} \int_{0}^{\frac{\pi}{6}} \cos 2 t+1 d t \\
& =\frac{1}{2}\left[\frac{\sin 2 t}{2}+t\right]_{0}^{\frac{\pi}{6}}
\end{aligned}
$$

3 marks obtains a correct solution
2 marks obtains correct primitive
1 mark identifies inverse trig attempts solution

1 correct differentiation of $\cos ^{-1}$
1 correct simplified answer

1 obtaining the cubic function
2 marks obtains one correct interval, r equivalent

3 marks correct solution

1 finding all the correct substitutions including the integrand.

1 correctly integrate

1 correct answer

$$
=\frac{1}{2}\left(\frac{\sqrt{3}}{4}+\frac{\pi}{6}\right)=\frac{\sqrt{3}}{8}+\frac{\pi}{12}
$$

(e)
$y=x^{2}$ and $y=\left(\begin{array}{ll}x & 2\end{array}\right)^{2}$
$x^{2}=(x-2)^{2}$
$4 x-4=0$
$x=1, y=1$
$P(1,1)$

$$
\begin{array}{lc}
\frac{d}{d x} x^{2}=2 x & \frac{d}{d x}(x-2)^{2}=2 x-4 \\
\text { At } x=1 & m_{2}=-2
\end{array}
$$

$$
\begin{aligned}
\theta & =\tan ^{-1}\left|\frac{2+2}{1+2 \times-2}\right| \\
& =53^{\circ}
\end{aligned}
$$

1 correct coordinates of P

1 correct gradients

1 correct sub. into formula
1 marks answer correct to nearest degree
($\frac{0}{2}$ for using incorrect formula)
(a)
$9^{n+2} 4^{n}$
Prove it is true for $\mathrm{n}=1$
$9^{1+2}-4^{1}=9^{3}-4$
$=725$ is divisible by 5
\therefore It is true for $\mathrm{n}=1$
Assume it is true for $\mathrm{n}=\mathrm{k}$
ie. $9^{k+2}-4^{k}=5 \mathrm{P}$, where P is an integer
R.T.P it is true for $\mathrm{n}=\mathrm{k}+1$
ie. $9^{k+3}-4^{k+1}=5 \mathrm{Q}, \quad$ where Q is an integer
9. $9^{k+2}-4^{k+1}=9^{k+2}(5+4)-4^{k+1}$

$$
=5.9^{k+2}+4.9^{k+2}-4^{k+1}
$$

$$
=5.9^{k+2}+4\left(9^{k+2}-4^{k}\right) \text { by assumption }
$$

$$
=5.9^{\mathrm{k}+2}+4(5 \mathrm{P})
$$

$$
=5\left(9^{\mathrm{k}+2}+4 \mathrm{P}\right)
$$

$$
=5 \mathrm{Q} \quad \text { where } \mathrm{Q}=9^{\mathrm{k}+2}+4 \mathrm{P}
$$

\therefore Statement is true for $\mathrm{n}=\mathrm{k}+1$,
\therefore Statement is true for all $\mathrm{n} \geq 1$ by mathematical induction.
(b)
(i)
$y=\frac{x^{2}}{4}$
$\frac{d y}{d x}=\frac{x}{2}$
At $\mathrm{x}=2 \mathrm{p}, \mathrm{m}=\mathrm{p}$
Equation of the tangent is
$y-p^{2}=p(x-2 p)$
$p x-y-p^{2}=0$

(ii)

gradient of the normal is $-\frac{1}{p}$
equation of the normal is
$\mathrm{y}-\mathrm{p}^{2}=-\frac{1}{p}(\mathrm{x}-2 \mathrm{p})$
$\mathrm{py}+\mathrm{x}-\mathrm{p}^{3}-2 \mathrm{p}=0$
when $\mathrm{x}=0, \mathrm{y}=\mathrm{p}^{2}+2$
$\therefore \mathrm{B}$ has coordinates $\left(0, \mathrm{p}^{2}+2\right)$
(iii)

When $y=0, x=p$
\therefore A has coordinates ($\mathrm{p}, 0$)

1 proving $\mathrm{n}=1$

1 assumption and R.Q.T

$$
9^{k+2}-4^{k}=5 P
$$

1 correct process to obtain the result.

1 finding gradient

1 correct equation of tangent at P with full working

1 correct equation of normal

1 correct coordinates of B

1 correct coordinates of A

The midpoint of $A B$ is

$$
\begin{aligned}
& M\left(\frac{p+0}{2}, \frac{0+p^{2}+2}{2}\right) \\
& x=\frac{p}{2} \text { and } \mathrm{y}=\frac{p^{2}+2}{2} \\
& \mathrm{p}=2 \mathrm{x} \text { sub. into } \mathrm{y} \\
& \mathrm{y}=\frac{4 x^{2}+2}{2} \\
& \therefore \quad \mathrm{y}=2 \mathrm{x}^{2}+1 \text { is the locus of } \mathrm{P} .
\end{aligned}
$$

(c)
(i) $\ddot{x}=n^{2} x$
$\frac{d}{d x} \frac{1}{2} v^{2}=-n^{2} x$
$\int \frac{d}{d v} \frac{1}{2} v^{2}=-\int n^{2} x d x$
$\frac{1}{2} v^{2}=-\frac{1}{2} n^{2} x^{2}+C$
When $v=0, x=a \quad \therefore C=\frac{1}{2} n^{2} a^{2}$
$\therefore v^{2}=n^{2} a^{2}-n^{2} x^{2}$

$$
=n^{2}\left(a^{2}-x^{2}\right)
$$

(ii) $\quad x=\operatorname{asin}(n t+\alpha)$

From (i) $v= \pm n \sqrt{a^{2}-x^{2}}$
$\frac{d x}{d t}= \pm n \sqrt{a^{2}-x^{2}}$
$n \frac{d t}{d x}=\frac{ \pm 1}{\sqrt{a^{2}-x^{2}}}$
$\int n d t=\int \frac{ \pm 1}{\sqrt{a^{2}-x^{2}}} d x$
$n t=\sin ^{-1}\left(\frac{x}{a}\right)+C$ or $n t=\cos ^{-1}\left(\frac{x}{a}\right)+C$
We only need to consider positive value of v for the solution.
$\therefore n t+\alpha=\sin ^{-1}\left(\frac{x}{a}\right)$ where $\alpha=-C$

$$
\frac{x}{a}=\sin (n t+\alpha)
$$

Hence $x=a \sin (n t+\alpha)$

1 correct Cartesian equation of locus of M

1 using correct formula of \ddot{x} using $\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$

1 correct integration
1 correct value of C

1 signification progress towards establishing the integral

1 correct integration and simplification to achieve desired result
(a) (i)

$l=C A+C B$
$\frac{C A}{\sin \theta}=\frac{k}{\sin \alpha}$
$C A=\frac{k \sin \theta}{\sin \alpha}$
$\frac{C B}{\sin \left(180^{\circ}-(\alpha+\theta)\right)}=\frac{k}{\sin \alpha}$
$C B=\frac{k \sin (\alpha+\theta)}{\sin \alpha}$
$C A+C B=\frac{k \sin \theta}{\sin \alpha}+\frac{k \sin (\alpha+\theta)}{\sin \alpha}$
$\therefore \quad l=\frac{k}{\sin }(\sin +\sin (+))$
(ii)
α is the angle opposite the side $A B$ which is a constant k. Therefore α is a constant.
(iii)
$l=\frac{k}{\sin }(\sin +\sin (+))$
$\frac{d l}{d \theta}=\frac{k}{\sin \alpha}(\cos \theta+\cos (\theta+\alpha)$
Sub. $=\overline{2} \quad \overline{2}$
$\Rightarrow \frac{d l}{d \theta}=\frac{k}{\sin \alpha}\left(\cos \left(\frac{\pi}{2}-\frac{\alpha}{2}\right)+\cos \left(\frac{\pi}{2}-\frac{\alpha}{2}+\alpha\right)\right)$
$=\frac{k}{\sin \alpha}\left(\sin \frac{\alpha}{2}+\cos \left(\frac{\pi}{2}+\frac{\alpha}{2}\right)\right)$
$=\frac{k}{\sin \alpha}\left(\sin \frac{\alpha}{2}-\sin \frac{\alpha}{2}\right)=0$

1 correct length of CA with working
1 correct length of CB with working

1 correct length of l

1 correct reason

1 correct derivative of l

1 showing $\frac{d l}{d \theta}=0$

$$
\begin{aligned}
& \begin{aligned}
\frac{d^{2} l}{d \theta^{2}} & =\frac{k}{\sin \alpha}(-\sin \theta-\sin (\theta+\alpha) \\
& =-\frac{k}{\sin \alpha}(\sin \theta+\sin (\theta+\alpha)) \\
& <0
\end{aligned} \\
& \text { Also } \sin \theta>0 \text { and } \sin (\theta+\alpha)>0, \text { as } \\
& \theta \text { is acute and } \theta+\alpha<180^{\circ}
\end{aligned}
$$

$$
\frac{d l}{d \theta}=0 \quad \text { when } \quad=\frac{-}{2} \quad \overline{2} \quad(\text { from ii })
$$

$\therefore l$ is a maximum when $=\frac{\overline{2}}{2} \quad$ (using (ii))

$$
\text { (c) } \begin{aligned}
y & =\frac{x^{2}+x \quad 2}{x^{2} 1} \\
& =\frac{(x+2)(x-1)}{(x+1)(x-1)} \\
& =\frac{x+2}{x+1}
\end{aligned}
$$

- Vertical asymptote $x=-1$
- Horizontal asymptote

$$
\mathrm{y}=\lim _{x \rightarrow \infty} \frac{x+2}{x+1}=1
$$

- The graph is discontinuous at $x=l$ and

$$
y=\lim _{x \rightarrow 1} \frac{x+2}{x+1}=\frac{3}{2}
$$

- x-intercept is at $x=-2$
- y-intercept is at $y=2$

(c)
(i)

$$
\begin{aligned}
& T=D+C e^{k t} \\
& \begin{aligned}
\frac{d T}{d t} & =-k C e^{-k t} \\
& =-k\left(C e^{-k t}+D-D\right) \\
& =-k(T-D)
\end{aligned}
\end{aligned}
$$

\therefore the equation satisfies Newton's law of cooling.

1 showing $\frac{d^{2} l}{d \theta^{2}}<0$ with conclusion

1 mark for correct asymptotes
1 mark for correct discontinuity
1 mark for correct shape
if x and y intercepts not labelled only subtract 1 mark

1 showing correct result

(ii)	
$T=-10+A e^{-k t}$ When $t=0, T=25 \Rightarrow 25=-10+A$	1 correct value of A
$\therefore A=35$	
When $t=12$ mins, $T=15^{\circ}$	
$15=-10+35 e^{-k \times 12}$ $k=\ln (25 \div 35) \div-12$ $=0.02804$	1 correct value of k
When $T=0$ $0=-10+35 e^{-0.02804 t}$ $t=\ln (10 \div 35) \div-0.02804$ $=44.677709$ mins $=44$ mins and 41 secs	1 correct substitution into formula
So it takes 32 minutes and 41 seconds additional time for the meat to drop to 0 degrees	

(a)

(i)
$\angle \mathrm{ADB}=90^{\circ} \quad$ (angle in a semi-circle)
$\angle \mathrm{AQP}=90^{\circ} \quad$ (given)
$\angle \mathrm{ADB}+\angle \mathrm{AQP}=180^{\circ}$
$\therefore \mathrm{ADPQ}$ is a cyclic quadrilateral (sum of opposite angles is 180°)

Similarly QPCB is also a cyclic quadrilateral.
(ii)
$\angle \mathrm{DAC}=\angle \mathrm{CBD}$ (angles in same segment subtended by arc DC)
$\angle \mathrm{DQP}=\angle \mathrm{DAC} \quad$ (angles in same segment subtended by arc DP, using (i))
$\angle \mathrm{CQP}=\angle \mathrm{CBD} \quad$ (angles in same segment subtended by arc PC, using (i))
$\therefore \angle \mathrm{DQP}=\angle \mathrm{CQP}$ (using (1))
Hence QP bisects $\angle \mathrm{CQD}$
(b)

(i)
$\mathrm{OB}=\frac{2}{\tan 30}=2 \sqrt{3} \mathrm{~m}$
$\mathrm{OA}=\frac{2}{\tan 45}=2 \mathrm{~m}$
$\mathrm{AB}^{2}=(2 \sqrt{3})^{2}+2^{2}-2 \times 2 \times 2 \sqrt{3} \times 1 \times \cos 150^{\circ}$

$$
=28
$$

$\mathrm{AB}=\sqrt{28}$

$$
=5.29 \mathrm{~m}
$$

1 showing sum of opposite angles is 180° with reason.

1 showing $\angle \mathrm{DAC}=\angle \mathrm{CBD}$ with reason
1 showing $\angle \mathrm{DQP}=\angle \mathrm{DAC}$ with reason
1 showing $\angle \mathrm{CQP}=\angle \mathrm{CBD}$
with reason
-1 if no conclusion

1 correct values of OA \& OB

1 correct value of AB

$$
\begin{aligned}
& \text { (ii) } \\
& \frac{\sin 150}{\sqrt{26}}=\frac{\sin \angle O A B}{2 \sqrt{3}} \\
& \sin \angle O A B=\frac{2 \sqrt{3} \sin 150}{\sqrt{28}} \\
& h=2 \times \sin \angle O A B \\
& =2 \times\left(\frac{2 \sqrt{3} \sin 150}{\sqrt{28}}\right) \\
& =0.65 \mathrm{~m} \\
& \quad \text { is the width of the cannal. }
\end{aligned}
$$

(c)
(i)

$$
x=V t \cos \quad \text { and } y=V t \sin \quad \frac{g t^{2}}{2}
$$

$$
t=\frac{x}{V \cos \theta} \text { sub. into y }
$$

$$
y=x \tan \theta-\frac{g}{2}\left(\frac{x}{V \cos \theta}\right)^{2}
$$

$$
\begin{equation*}
=x \tan \theta-\frac{g x^{2}}{2 V^{2}}\left(\tan ^{2} \theta+1\right) \tag{1}
\end{equation*}
$$

Sub. $\tan =\frac{1}{3}$ and $A\left(3 a, \frac{3 a}{4}\right) \quad$ into (1)

$$
\begin{gathered}
\frac{3 a}{4}=3 a \times \frac{1}{3}-\frac{9 a^{2} g}{2 V^{2}}\left(\frac{1}{3^{2}}+1\right) \\
27 a V^{2}=36 a V^{2}-180 a^{2} g \\
V^{2}=\frac{180 a^{2} g}{9 a}=20 a g
\end{gathered}
$$

(ii)

At the instant when P is travelling in the horizontal direction (i.e. it has no vertical component to its motion),
this happens when P reaches the highest point, i.e. when $\mathrm{v}_{\mathrm{y}}=0$, where $\mathrm{v}_{\mathrm{y}}=\mathrm{V} \sin \theta-\mathrm{gt}$

The time for P to reach the highest point is:

$$
\begin{aligned}
& 0=V \sin \theta-g t \\
& \therefore t=\frac{V \sin \theta}{g}
\end{aligned}
$$

Sub. $\sin \theta=\frac{1}{\sqrt{10}}$ and $V=\sqrt{20 g a}$

1 correct use of sin rule to find $\sin \angle \mathrm{OAB}$
1 mark finding h

1 correct value of h to nearest cm

1 finding Cartesian equation of the flight path of P

1 correct substitution

1 showing correct result
$\Rightarrow t=\frac{1}{g} \sqrt{\frac{20 g a}{10}}=\sqrt{\frac{2 a}{g}}$ is the time for the $2^{\text {nd }}$
particle to reach max. range.
Hence the time for P to reach the maximum range is

$$
t=2 \sqrt{\frac{2 a}{g}}
$$

And the maximum range for P is

$$
\begin{aligned}
\mathrm{x} & =\mathrm{Vtcos} \theta \\
& =\sqrt{20 g a} \times 2 \sqrt{\frac{2 a}{g}} \times \frac{3}{\sqrt{10}} \\
& =12 a
\end{aligned}
$$

The time for the second particle to reach the point
$(12 \mathrm{a}, 0)$ is $\mathrm{t}=\sqrt{\frac{2 a}{g}}$
Sub. $\mathrm{x}=12 \mathrm{a}$ and $\mathrm{t}=\sqrt{\frac{2 a}{g}}$ into $\mathrm{x}=\mathrm{Utcos} \alpha$
$U \cos \alpha=\frac{12 a}{U} \times \sqrt{\frac{g}{2 a}}$

$$
\begin{equation*}
=\sqrt{72 g a} \tag{2}
\end{equation*}
$$

Sub. $\mathrm{y}=0$ and $\mathrm{t}=\sqrt{\frac{2 a}{g}}$ into $\mathrm{y}=\mathrm{Utsin} \alpha-\frac{1}{2} \mathrm{gt}^{2}$

$$
\begin{align*}
0 & =U \sin \alpha \times \sqrt{\frac{2 a}{g}}-\frac{g}{2} \times \frac{2 a}{g} \\
& \Rightarrow U \sin \alpha=a \times \sqrt{\frac{g}{2 a}}=\sqrt{\frac{a g}{2}} \tag{3}
\end{align*}
$$

$$
(2)^{2}+(3)^{2}
$$

$$
\Rightarrow \mathrm{U}^{2}\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)=72 g a+\frac{a g}{2}
$$

$$
=\frac{145 g a}{2}
$$

$$
\therefore U=\sqrt{\frac{145 g a}{2}}
$$

$$
(2)^{2} \div(3)^{2}
$$

1 finding the max. range for $2^{\text {nd }}$ particle

1 simplifying algebraic expressions to obtain correct answer for U

1 simplifying algebraic expressions to obtain correct answer for α

$$
\begin{aligned}
& \begin{array}{c}
\frac{U \sin \alpha}{U \cos \alpha}=\sqrt{\frac{a g}{2}} \div \sqrt{72 g a} \\
=\sqrt{\frac{a g}{144 a g}} \\
\Rightarrow \quad \therefore \tan \alpha=\frac{1}{12}
\end{array} \\
& \text { hence } \alpha=\tan ^{-1}\left(\frac{1}{12}\right)
\end{aligned}
$$

