

Student Number

2015

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Extension 1 Mathematics 21st July 2015

General Instructions

- Reading time 5 minutes
- Working tine 2 hours
- Write using blue or black pen Black pen is preferred
- Approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-14 show relevant mathematical reasoning and/or calculations
- Start a new booklet for each question

Total Marks - 70

Section I - Pages 2-5 10 marks

- lu marks
- Attempt Questions 1 10
- Allow about 15 minutes for this section

Section II - Pages 6 - 11

60 marks

- Attempt Questions 11 14
- Allow about 1 hour and 45 minutes for this section

Question	Marks
1 - 10	/10
11	/15
12	/15
13	/15
14	/15
Total	/70

THIS QUESTION PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

This assessment task constitutes 40% of the Higher School Certificate Course Assessment

Section I

10 marks Attempt Questions 1-10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for questions 1 - 10 (Detach from paper)

If $(2k+1)x^2 - (k+2)x + 1$ is a perfect square then the value of k is: 1

> (A) 0 (B) 4

- 0 and 4 (C)
- (D) -2

The point P divides the interval from A (-2, 2) to B(8, -3) internally in the 2 ratio 3: 5.

What is the x –coordinate of P?

 $\frac{1}{2}$ (A) $\frac{7}{4}$ (B) $\frac{17}{4}$ (C) 3 (D) The polynomial equation $3x^3 - 2x^2 + 3x - 4 = 0$ has roots α, β and γ . The exact value of $\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\alpha\gamma}$ is: (A) 2 (B) -2 $\frac{1}{2}$ (C) $-\frac{1}{2}$ (D)

3

4 What is the equation of the graph below:

5

In how many ways can 6 different keys be arranged on a circular key ring?

- (A) 720
- (B) 120
- (C) 60
- (D) 6

6

The sum of the infinite geometric series $1+2^n+2^{2n}+...$ is 2. The value of *n* is:

- (A) 3
- (B) $\frac{1}{2}$
- (C) -1
- (D) 2

7

8

Which expression is equivalent to $\int \cos^2 4x \, dx$?

- (A) $\frac{1}{2}\left(\frac{1}{8}\sin 8x x\right) + C$
- (B) $\frac{1}{2}\left(\frac{1}{8}\sin 8x + x\right) + C$
- (C) $\frac{1}{2}\left(\frac{1}{4}\sin 4x x\right) + C$
- (D) $\frac{1}{2}\left(\frac{1}{4}\sin 4x + x\right) + C$

When a polynomial is divided by (x-2)(x+4) the remainder is 2x-5. What is the remainder when it is divided by x-2?

- (A) 5
- (B) 1
- (C) 1
- (D) 5

9

What is the derivative of $\sin^{-1}(2x)$

(A)
$$\frac{1}{2\sqrt{1-4x^2}}$$

(B) $\frac{-1}{2\sqrt{1-4x^2}}$
(C) $\frac{2}{\sqrt{1-4x^2}}$

(D)
$$\frac{-2}{\sqrt{1-4x^2}}$$

The value of x in the above diagram is:

Section II

70 marks Attempt Questions 11 – 14 Allow about 1 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11 - 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11(15 marks) Use a SEPARATE writing booklet

(a) Evaluate
$$\int_{0}^{2} \frac{4}{\sqrt{4-x^{2}}} dx$$

(b) Differentiate $\cos^{-1}(\sin x)$ and fully simplify. 2

(c) Solve
$$x-3 < \frac{4}{x}$$
 3

(d)

Use the substitution $x = \sin t$ to evaluate $\int_{0}^{\frac{1}{2}} \sqrt{1 - x^2} dx$

(e) The parabola's
$$y = x^2$$
 and $y = (x-2)^2$ intersect at the point P.

(i) Find the coordinates of P
(ii) Find the angle between the tangents to the parabolas at P. Give your answer
3

3

to the nearest degree.

End of Question 11

Question 12(15 marks) Use a SEPARATE writing booklet

(b)

(a) Use mathematical induction to prove that $9^{n+2} - 4^n$ is divisible by 5 for integers $n \ge 1$.

The diagram shows the graph of $x^2 = 4y$. The tangent to the parabola at $P(2p, p^2)$, where p > 0 cuts the x-axis at A. The normal to the parabola at P cuts the y-axis at B.

- (i) Find the equation of the tangent at P.2(ii) Show that B has coordinates $(0, p^2+2)$ 2(iii) Let C be the midpoint of AB. Find the equation of the locus of C.3
- (c) A particle P moving in a straight line executes Simple Harmonic Motion about a centre O. The acceleration of P is given by $\ddot{x} = -n^2 x$ where x is the distance OP and n is a constant. The amplitude of the simple harmonic motion is a.

(i) Show that
$$v^2 = n^2 (a^2 - x^2)$$
 3

(ii) Show that the motion of the particle is described by $x = a \sin(nt + \alpha)$ where α is a constant

End of Question 12

3

2

Question 13 (15 marks) Use a SEPARATE writing booklet

Points A, B, and C. lie on the circle

The length of the chord AB is a constant, k. The radian measures of $\angle ABC$ and $\angle BCA$ are θ and α respectively.

(i) Let *l* be the sum of the length of the chord *CA* and *CB*. Show that *l* is given by:

3

1

$$l = \frac{k}{\sin \alpha} (\sin \theta + \sin(\theta + \alpha))$$

(ii) Explain why is
$$\alpha$$
 a constant?

(iii) Evaluate
$$\frac{dl}{d\theta}$$
 when $\theta = \frac{\pi}{2} - \frac{\alpha}{2}$ 2

(iv) Hence show that *l* is a maximum when
$$\theta = \frac{\pi}{2} - \frac{\alpha}{2}$$
 1

(b) Sketch
$$y = \frac{x^2 + x - 2}{x^2 - 1}$$
 clearly showing all important features. 3

Question 13 continues on page 9

Question 13 (continued)

(c) Let T be the temperature of an object at time t and D be the temperature of the surrounding medium. Newton's Law of Cooling states that the rate of change of T is proportional to T - D

i.e.
$$\frac{dT}{dt} = -k(T-D)$$

(i) Show that $T = D + Ce^{-kt}$ (where C and k are constants) satisfies Newton's 1 Law of cooling

4

(ii) A packet of meat with initial temperature of 25°C is placed in the freezer whose temperature is kept at a constant -10°C. It takes 12 minutes for the temperature of the meat to drop to 15°C. How much *additional* time is needed for the temperature of the meet to fall to 0°C. Give your answer in minutes correct to the nearest second.

End of Question 13

Question 14(15 marks) Use a SEPARATE writing booklet

1

1

3

2

3

(a) AB is the diameter of a semi-circle and $PQ \perp AB$

- (i) Explain why AQPD and BQPC are cyclic quadrilaterals
- (ii) Hence or otherwise prove that PQ bisects $\angle DQC$
- (b) A vertical pole of height 2 m with base at point O_stands on the West side of a canal that has straight parallel sides running from North to South. Two points A and B both lie on the East side of the canal, A to the north of the pole and B to the south of the pole, such that $\angle AOB = 150^\circ$. The angles of elevation of the top of P of the pole. The angles of elevation to the top P of the pole are 45° from A and 30° from B.

Find:

(i) The exact distance AB

(ii) The width of the canal (the perpendicular distance between opposite banks of the canal). Answer to the nearest centimetre.

Question 14 continues on page 11

Question 14 (continued)

,

(c) A particle is projected from a point O on the ground with a velocity V and an inclination of θ to the horizontal. After time *t* the horizontal distances travelled by *P* are

$$x = Vt \cos\theta$$
 and $y = Vt \sin\theta - \frac{gt^2}{2}$ respectively. DO NOT PROVE THIS.

(i) If
$$\tan \theta = \frac{1}{3}$$
 and *P* passes through the point $A\left(3a, \frac{3a}{4}\right)$ show that $V^2 = 20ga$

3

3

(ii) At the instant of time when P is travelling in the horizontal direction (i.e. it has no vertical component to its motion), another particle Q is projected from O with a velocity U at an angle α to the horizontal. P and Q hit the ground at the same place and at the same time.

Show that
$$U = \sqrt{\frac{145 ga}{2}}$$
 and that $\alpha = \tan^{-1}\left(\frac{1}{12}\right)$

End of Examination 🕲

BLANK

6

PAGE

Student Number

Mathematics

Section I – Multiple Choice Answer Sheet

Use this multiple-choice answer sheet for questions 1 - 10. Detach this sheet.

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample:	2 + 4 =	(A) 2 A ()	(B) 6 B ●	(C) 8 C (C)	(D) 9 D 🔿

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

 $D \bigcirc$

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word *correct* and drawing an arrow as follows.

			correct		
	А¥	В	K	сO	Od
1.	AO	вO	сO	DO	
2.	АO	вО	сO	DO	
3.	AO	вО	сO	DO	
4.	AO	вО	сO	DO	
5.	AO	вО	сO	DO	
6.	AO	вО	сO	DO	
7.	AO	вО	сO	DO	
8.	AО	вO	сO	DO	
9.	٨O	вО	сO	DO	
10.	AO	вО	сO	DO	
	2. 3. 4. 5. 6. 7. 8. 9.	1. $A \bigcirc$ 2. $A \bigcirc$ 3. $A \bigcirc$ 4. $A \bigcirc$ 5. $A \bigcirc$ 6. $A \bigcirc$ 7. $A \bigcirc$ 8. $A \bigcirc$ 9. $A \bigcirc$	1. $A \bigcirc$ $B \bigcirc$ 2. $A \bigcirc$ $B \bigcirc$ 3. $A \bigcirc$ $B \bigcirc$ 4. $A \bigcirc$ $B \bigcirc$ 5. $A \bigcirc$ $B \bigcirc$ 6. $A \bigcirc$ $B \bigcirc$ 7. $A \bigcirc$ $B \bigcirc$ 8. $A \bigcirc$ $B \bigcirc$ 9. $A \bigcirc$ $B \bigcirc$	A B 1. AO BO CO 2. AO BO CO 3. AO BO CO 4. AO BO CO 5. AO BO CO 6. AO BO CO 7. AO BO CO 8. AO BO CO 9. AO BO CO	A B CO 1. AO BO CO DO 2. AO BO CO DO 3. AO BO CO DO 4. AO BO CO DO 5. AO BO CO DO 6. AO BO CO DO 7. AO BO CO DO 8. AO BO CO DO 9. AO BO CO DO

BLANK

PAGE

e

s,

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln \left(x + \sqrt{x^{2} - a^{2}}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln \left(x + \sqrt{x^{2} + a^{2}}\right)$$

NOTE: $\ln x = \log_e x, x > 0$

BLANK

ŝ,

PAGE

(1) C (2) B (3) C (4) D (5) C (6) C (7) B (8) B (9) C (10) A

Question 11(15 marks)

(a)

$$\int_{0}^{2} \frac{4}{\sqrt{4-x^{2}}} dx = 4 \left[\sin^{-1} \frac{x}{2} \right]_{0}^{2}$$

$$= 4 \left[\sin^{-1} 1 - 0 \right] = 4 \times \frac{\pi}{2}$$

$$= 2\pi$$
(b)

$$\int_{0}^{2} \frac{4}{\sqrt{4-x^{2}}} dx = 4 \left[\sin^{-1} \frac{x}{2} \right]_{0}^{2}$$

$$= 4 \left[\sin^{-1} 1 - 0 \right] = 4 \times \frac{\pi}{2}$$

$$= 2\pi$$
(c)

$$\int_{0}^{2} \frac{4}{\sqrt{1-x^{2}}} dx = 4 \left[\sin^{-1} \frac{x}{2} \right]_{0}^{2}$$
(c)

$$\int_{0}^{2} \frac{-\cos x}{\sqrt{1-\sin^{2} x}} = \frac{-\cos x}{\cos x} = -1$$
(c)

$$\int_{0}^{2} \frac{-\cos x}{\sqrt{1-\sin^{2} x}} = \frac{-\cos x}{\cos x} = -1$$
(c)

$$\int_{0}^{2} \frac{4}{\sqrt{1-x^{2}}} x \neq 0$$

$$\int_{0}^{2} \frac{4}{\sqrt{1-x^{2}}} x \neq 0$$

$$\int_{0}^{2} \frac{4}{\sqrt{1-x^{2}}} x \neq 0$$
(d)

$$\int_{0}^{2} \frac{\sqrt{1-x^{2}}}{\sqrt{1-x^{2}}} x \neq 0$$
(d)

$$\int_{0}^{2} \frac{\sqrt{1-x^{2}}}{\sqrt{1-x^{2}}} x \neq 0$$
(equivalent)

$$\int_{0}^{2} \frac{\sqrt{1-x^{2}}}{\sqrt{1-x^{2}}} dx = \int_{0}^{\frac{\pi}{6}} \cos^{2} t dt$$
(f)

$$\int_{0}^{2} \frac{1}{\sqrt{1-x^{2}}} dx = \int_{0}^{\frac{\pi}{6}} \cos^{2} t dt$$
(h)

$$\int_{0}^{2} \frac{1}{\sqrt{1-x^{2}}} dx = \int_{0}^{\frac{\pi}{6}} \cos^{2} t dt$$
(h)

$$\int_{0}^{2} \frac{1}{\sqrt{1-x^{2}}} dx = \int_{0}^{\frac{\pi}{6}} \cos^{2} t dt$$
(h)

$$\int_{0}^{2} \frac{1}{\sqrt{1-x^{2}}} dx = \int_{0}^{\frac{\pi}{6}} \cos^{2} t dt$$
(h)

$$\int_{0}^{2} \frac{1}{\sqrt{1-x^{2}}} dx = \int_{0}^{\frac{\pi}{6}} \cos^{2} t dt$$
(h)

$$\int_{0}^{2} \frac{1}{\sqrt{1-x^{2}}} dx = \int_{0}^{\frac{\pi}{6}} \cos^{2} t dt$$
(h)

$$\int_{0}^{2} \frac{1}{\sqrt{1-x^{2}}} dx = \int_{0}^{\frac{\pi}{6}} \cos^{2} t dt$$
(h)

$$\int_{0}^{2} \frac{1}{\sqrt{1-x^{2}}} dx = \int_{0}^{\frac{\pi}{6}} \cos^{2} t dt$$
(h)

$$\int_{0}^{\frac{\pi}{6}} \frac{1}{\sqrt{1-x^{2}}} dx = \int_{0}^{\frac{\pi}{6}} \cos^{2} t dt$$
(h)

$$\int_{0}^{\frac{\pi}{6}} \frac{1}{\sqrt{1-x^{2}}} dx = \int_{0}^{\frac{\pi}{6}} \cos^{2} t dt$$
(h)

$$\int_{0}^{\frac{\pi}{6}} \frac{1}{\sqrt{1-x^{2}}} dx = \int_{0}^{\frac{\pi}{6}} \cos^{2} t dt$$
(h)

$$\int_{0}^{\frac{\pi}{6}} \frac{1}{\sqrt{1-x^{2}}} dx = \int_{0}^{\frac{\pi}{6}} \cos^{2} t dt$$
(h)

$$\int_{0}^{\frac{\pi}{6}} \frac{1}{\sqrt{1-x^{2}}} dx = \int_{0}^{\frac{\pi}{6}} \cos^{2} t dt$$
(h)

$$\int_{0}^{\frac{\pi}{6}} \frac{1}{\sqrt{1-x^{2}}} dx = \int_{0}^{\frac{\pi}{6}} \cos^{2} t dt$$
(h)

$$\int_{0}^{\frac{\pi}{6}} \frac{1}{\sqrt{1-x^{2}}} dx = \int_{0}^{\frac{\pi}{6}} \cos^{2} t dt$$
(h)

$$\int_{0}^{\frac{\pi}{6}} \frac{1}{\sqrt{1-x^{2}}} dx = \int_{0}^{\frac{\pi}{6}} \cos^{2} t dt$$
(h)

$$\int_{0}^{\frac{\pi}{6}} \frac{1}{\sqrt{1-x^{2}}} dx = \int_{0}^{\frac{\pi}{6}} \cos^{2} t dt$$
(h)

$$\int_{0}^{\frac{\pi}{6}} \frac{1}{\sqrt{1-x^{2}}} dx = \int_{0}^{\frac{\pi}{6}} \cos^{2} t dt$$
(h)

$$\int_{0}^{\frac{\pi}{6}} \frac{1}{\sqrt{1-x^{2}}} dx = \int_{0}^{\frac{\pi}{6}} \cos^{2} t dt$$
(h)
(h)
(h)

$=\frac{1}{2}\left(\frac{\sqrt{3}}{4}+\frac{\pi}{6}\right)=\frac{\sqrt{3}}{8}+\frac{\pi}{12}$	
(e) $y = x^{2}$ and $y = (x \ 2)^{2}$ $x^{2} = (x-2)^{2}$ 4x - 4 = 0 x = 1, y = 1 P(1, 1)	1 correct coordinates of <i>P</i>
$\frac{d}{dx}x^{2} = 2x \qquad \qquad \frac{d}{dx}(x-2)^{2} = 2x-4$ $At \ x = 1$ $m_{1} = 2 \qquad \qquad m_{2} = -2$	1 correct gradients
$\theta = \tan^{-1} \left \frac{2+2}{1+2 \times -2} \right $	1 correct sub. into formula
= 53°	1 marks answer correct to nearest degree
	$\left(\frac{0}{2} \text{ for using incorrect formula}\right)$

Question 12 (15 marks)

(a)	
9^{n+2} 4^n Prove it is true for n = 1	1 proving $n = 1$
	i proving ii i
$9^{1+2} - 4^1 = 9^3 - 4$	
= 725 is divisible by 5	
\therefore It is true for n = 1	
A service it is true for $n = 1$	1 assumption and R.O.T
Assume it is true for $n = k$ ie. $9^{k+2} - 4^k = 5P$, where P is an integer	1 assumption and R.Q.T $9^{k+2} - 4^k = 5P$
10. $9 - 4 - 3r$, where r is an integer	
R.T.P it is true for $n = k+1$	
ie. $9^{k+3} - 4^{k+1} = 5Q$, where Q is an integer	
- k+2 $k+1$ $k+2$ $ k+1$	
9. $9^{k+2} - 4^{k+1} = 9^{k+2}(5+4) - 4^{k+1}$ = $5 \cdot 9^{k+2} + 4 \cdot 9^{k+2} - 4^{k+1}$	1 correct process to obtain the regult
$= 5.9^{k+2} + 4.9^{k+2} - 4^{k+1}$ = 5.9 ^{k+2} + 4(9 ^{k+2} - 4 ^k) by assumption	1 correct process to obtain the result.
$= 5.9^{k+2} + 4(5^{k+2} - 4^{k+2})$ by assumption	
$= 5.9 + 4(31)$ $= 5(9^{k+2} + 4P)$	
$= 5Q$ where $Q = 9^{k+2} + 4P$	
: Statement is true for $n = k+1$,	
\therefore Statement is true for all $n \ge 1$ by mathematical	
induction.	
(b)	
(i)	
$y = \frac{x^2}{4}$	
$\frac{dy}{dx} = \frac{x}{2}$	1 finding gradient
dx = 2 At x = 2p, m = p	1 finding gradient
Equation of the tangent is	
$y - p^2 = p(x - 2p)$	1 correct equation of tangent at P with
$px - y - p^2 = 0$	full working
(ii)	
gradient of the normal is $-\frac{1}{p}$	
equation of the normal is	1 correct equation of normal
$y - p^2 = -\frac{1}{n}(x - 2p)$	
$y-p^{2} = -\frac{1}{p}(x-2p)$ $py + x-p^{3} - 2p = 0$	
when $x = 0$, $y = p^2 + 2$	1 correct coordinates of B
\therefore B has coordinates $(0, p^2 + 2)$	
(iii) When $y = 0$, $y = p$	
When $y = 0$, $x = p$ \therefore A has coordinates $(p, 0)$	1 correct coordinates of A
The midpoint of AB is	
	1 correct mid-point of AB

$$M\left(\frac{p+0}{2}, \frac{0+p^2+2}{2}\right)$$

$$x = \frac{p}{2} \text{ and } y = \frac{p^2+2}{2}$$

$$p = 2x \text{ sub. into y}$$

$$y = \frac{4x^2+z}{2}$$

$$\therefore y = 2x^2 + 1 \text{ is the locus of P.}$$
(c)
(i) $\ddot{x} = n^2x$

$$\int \frac{d}{dx} \frac{1}{2} y^2 = -n^2x$$

$$\int \frac{d}{dx} \frac{1}{2} y^2 = -n^2x dx$$

$$\int \frac{d}{dx} \frac{1}{2} y^2 = -\frac{1}{2}n^2x^2 + C$$
When $v = 0$, $x = a \therefore C = \frac{1}{2}n^2a^2$

$$\therefore v^2 = n^2a^2 - n^2x^2$$
(ii) $x = asin(nt + \alpha)$
From (i) $v = \pm n\sqrt{a^2 - x^2}$

$$n\frac{d}{dx} = \pm n\sqrt{a^2 - x^2}$$
(ii) $x = asin(nt + \alpha)$
From (i) $v = \pm n\sqrt{a^2 - x^2}$

$$n\frac{d}{dx} = \frac{\pm 1}{\sqrt{a^2 - x^2}} dx$$

$$nt = sin^{-1}\left(\frac{x}{a}\right) + C$$
We only need to consider positive value of v for the solution.

$$\therefore nt + \alpha = sin^{-1}\left(\frac{x}{a}\right)$$
where $\alpha = -C$

$$\frac{x}{a} = sin(nt + \alpha)$$
Hence $x = a sin(nt + \alpha)$

$\frac{d^2l}{d\theta^2} = \frac{k}{\sin\alpha} (-\sin\theta - \sin(\theta + \alpha))$ $= -\frac{k}{\sin\alpha} (\sin\theta + \sin(\theta + \alpha))$ < 0 Also $\sin\theta > 0$ and $\sin(\theta + \alpha) > 0$, as θ is acute and $\theta + \alpha < 180^0$ $\frac{dl}{d\theta} = 0 \text{when} = \frac{1}{2} \frac{1}{2} \text{(from ii)}$	1 showing $\frac{d^2l}{d\theta^2} < 0$ with conclusion
$d\theta$ 2 2 $(1011 h)$	
\therefore <i>l</i> is a maximum when $=\frac{1}{2} = \frac{1}{2} (using (ii))$	
(c) $y = \frac{x^{2} + x - 2}{x^{2} - 1}$ $= \frac{(x+2)(x-1)}{(x+1)(x-1)}$ $= \frac{x+2}{x+1}$ • Vertical asymptote $x = -1$ • Horizontal asymptote $y = \lim_{x \to \infty} \frac{x+2}{x+1} = 1$ • The graph is discontinuous at $x = I$ and $y = \lim_{x \to 1} \frac{x+2}{x+1} = \frac{3}{2}$ • x-intercept is at $x = -2$ • y-intercept is at $y = 2$	1 mark for correct asymptotes 1 mark for correct discontinuity 1 mark for correct shape
$\begin{array}{c c} 1.5 & -0 \\ \hline -2 & 1 \\ \hline x = -1 \end{array} \qquad x = 1$	if x and y intercepts not labelled only subtract 1 mark
(c) (i) $T = D + Ce^{-kt}$ $\frac{dT}{dt} = -kCe^{-kt}$ $= -k(Ce^{-kt} + D - D)$ = -k(T - D) \therefore the equation satisfies Newton's law of cooling.	1 showing correct result

(ii) $T = -10 + Ae^{-kt}$ When $t = 0, T = 25 \Longrightarrow 25 = -10 + A$	1 correct value of A
: $A = 35$ When $t = 12mins$, $T = 15^{\circ}$ $15 = -10 + 35e^{-k \times 12}$	1 correct value of k
$k = ln(25 \div 35) \div -12 = 0.02804$	1 correct substitution into formula
When $T = 0$ $0 = -10 + 35e^{-0.02804t}$ $t = ln(10 \div 35) \div -0.02804$ = 44.677709 mins = 44 mins and 41 secs	1 correct answer (additional time)
So it takes 32 minutes and 41 seconds additional time for the meat to drop to 0 degrees	

Question 14 (15 marks)

(ii)

$$\frac{\sin 150}{\sqrt{26}} = \frac{\sin 2OAB}{2\sqrt{3}}$$
sin $2OAB = \frac{2\sqrt{5} \sin 150}{\sqrt{28}}$
1 correct use of sin rule to find sin $\angle OAB$
 $h = 2 \times \sin \angle OAB$
 $= 2 \times \left(\frac{2\sqrt{3} \sin 150}{\sqrt{28}}\right)$
 $= 0.65m$
is the width of the cannal.
(c)
(i)
 $x = Vt \cos and y = Vt \sin \frac{gt^2}{2}$
 $t = \frac{x}{V \cos \theta}$ sub. into y
 $y = x \tan \theta - \frac{gt}{2\sqrt{2}} \left(\frac{x}{V \cos \theta}\right)^2$
 $= x \tan \theta - \frac{gt}{2\sqrt{2}} (\tan^2 \theta + 1)$ (1)
Sub. $\tan = \frac{1}{3}$ and $A\left(3a, \frac{3a}{4}\right)$ into (1)
 $\frac{3a}{4} = 3ax \frac{1}{3} - \frac{9a^2g}{2V^2} \left(\frac{1}{3^2} + 1\right)$
 $27aV^2 = 36aV^2 - 180a^2g$
 $V^2 = \frac{180a^2g}{9a} = 20ag$
(i)
At the instant when P is travelling in the horizontal direction (i.e. it has no vertical component to its motion), this happens when P reaches the highest point, i.e. when $v_y = 0$, where $v_y = V \sin \theta - gt$
The time for P to reach the highest point is: $0 - V \sin \theta - gt$
The time for P to reach the highest point is: $0 - V \sin \theta - gt$

$$\frac{U \sin \alpha}{U \cos \alpha} = \sqrt{\frac{ag}{2}} \div \sqrt{72 ga}$$
$$= \sqrt{\frac{ag}{144 ag}}$$
$$\Rightarrow \qquad \therefore \tan \alpha = \frac{1}{12}$$
hence $\alpha = \tan^{-1} \left(\frac{1}{12}\right)$