MATHEMATICS EXTENSION 1

21 July 2017

General
Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black pen.
- NESA approved calculators may be used.
- Commence each new question in a new booklet. Write on both sides of the paper.
- A reference sheet is provided.
- In Question 11-14 show relevant mathematical reasoning and/or calculations
- At the conclusion of the examination, bundle the booklets used in the correct order including your reference sheet within this paper and hand to examination supervisor.
$\overline{\text { Total Marks: }}$ Section 1 - 10 marks (pages 2-5)
70
- Attempt Questions 1 - 10
- Allow about 15 minutes for this section

Section 2 - 60 marks (pages 6-10)

- Attempt Questions 11 - 14
- Allow about 1 hour and 45 minutes for this section

NESA NUMBER:
\# BOOKLETS USED:
Marker's use only.

QUESTION	$1-10$	11	12	13	14	Total
MARKS	$\overline{10}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{70}$

This task constitutes 40 \% of the HSC Course Assessment

Section I

10 marks
Attempt Question 1 to 10
Allow approximately 15 minutes for this section
Mark your answers on the answer grid provided (labelled as page 11)

1. $\int \sin 2 x d x=$

I $\sin ^{2} x+C$ where C is a constant
II $\quad-\frac{1}{2} \cos 2 x+D$ where D is a constant
III $-\cos ^{2} x+E$ where E is a constant

Which of above solutions is correct?
(A) II only
(B) I and II only
(C) II and III only
(D) I, II and III
2. In how many ways can a committee of 2 men and 3 women be selected from a group of 6 men and 8 women?
(A) ${ }^{6} P_{2} \times{ }^{8} P_{3}$
(B) ${ }^{6} C_{2} \times{ }^{8} C_{2}$
(C) ${ }^{6} P_{3} \times{ }^{8} C_{2}$
(D) ${ }^{6} C_{2} \times{ }^{8} C_{3}$
3. What are the solutions to the equation $e^{6 x}-7 e^{3 x}+6=0$?
(A) $x=1$ and $x=6$
(B) $x=0$ and $x=\frac{\log _{e} 6}{2}$
(C) $x=0$ and $x=\frac{\log _{e} 6}{3}$
(D) 6
4. If P is the point $(-1,2)$ and K is the point $(3,5)$, the coordinates of the point that divides the interval $P K$ externally in the ratio $2: 3$ are:
(A) $(11,11)$
(B) $\left(\frac{3}{5}, \frac{16}{5}\right)$
(C) $(-3,-4)$
(D) $(-9,-4)$
5.
$\lim _{x \rightarrow 0} \frac{\sin \frac{3 x}{2}}{6 x}=$
(A) $\frac{1}{4}$
(B) 4
(C) $\frac{1}{2}$
(D) 2
6. For the functions $f(x)=\frac{1}{x}$ and $g(x)=2 \sin x$ the range of $g(f(x))$ is
(A) $-1 \leq y \leq 1$
(B) $\frac{1}{2} \leq y \leq \frac{1}{2}$
(C) $-1 \leq y \leq 1$
(D) $-2 \leq y \leq 2$
7. What is the exact value of $\tan \left(\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)\right)$?
(A) $\frac{1}{\sqrt{3}}$
(B) $-\frac{1}{\sqrt{3}}$
(C) $\sqrt{3}$
(D) $-\sqrt{3}$
8. $\cos ^{-1}\left[\cos \left(\cos ^{-1}(-x)\right)\right]$
(A) $\pi-x$
(B) $\pi-\cos ^{-1} x$
(C) $\cos ^{-1} x$
(D) $-\cos ^{-1} x$
9. A parabola has the parametric equation $x=6 t, y=3 t^{2}$. The Cartesian equation of its derivative is:
(A) $y^{\prime}=6 t$
(B) $y^{\prime}=\frac{x^{2}}{12}$
(C) $y^{\prime}=\frac{x}{6}$
(D) $y^{\prime}=\frac{2 x}{9}$
10. Find the value of x.

NOT TO SCALE
(A) $x=1$
(B) $x=2$
(C) $x=3$
(D) $x=4$

Section II

70 marks
Attempt Questions 11 to 14
Allow approximately 1 hour and 45 minutes for this section.
Write your answers in the writing booklets supplied. Additional writing booklets are available.
Your responses should include relevant mathematical reasoning and/or calculations.
(a) Solve the inequality $\frac{5}{x-2} \leq 4$
(b) Use the substitution $u=x+2$ to evaluate $\int_{1}^{3} \frac{x+1}{(x+2)^{2}} d x$ giving the answer in simplest exact form.
(c) The polynomial $P(x)=2 x^{3}+b x^{2}-8 x+5$ has a remainder of 2 when divided by $(x+3)$, calculate the remainder when when divided by $(x+2)$.
(d) i. Show that that $y=e^{-x}-3 x$ has only one real root.
ii. The root lies in the interval $0.2<x<0.3$ Taking $x_{1}=0.25$ as the first approximation, use one application of Newton's method to determine a better approximation. Give your answer correct to 3 significant figures.
(e) Using the word COWABUNGA
i. How many arrangements of the 9 letters are possible?
ii. How many arrangements of the 9 letters are possible if the 3 letters COW have to be placed together? Note the letters COW can be placed in any order but they must be together.

Question 12 (15 Marks) Use a SEPARATE writing booklet
(a) The polynomial $P(x)=x^{3}-3 x^{2}+k x+48$ has roots α, β and γ

Two of the roots are equal in magnitude but opposite in sign. Find the third root and hence find the value of k.
(b) A particle whose displacement is x moves in simple harmonic motion. Given that the displacement equation is of the form $x=a \cos (n t+\alpha)$ and $\ddot{x}=-4 x$.

Initially the particle has displacement of $x=\sqrt{3}$ and velocity of $\dot{x}=6$.
i. Find the value of n.
ii. Find the displacement equation.
(c) Determine the domain and range of $y=\frac{1}{2} \sin ^{-1}(1-3 x)$ and hence sketch 3 the graph.

Question 12 (continued)

(d) The points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$ as shown below.

The equation of the normal to the parabola P is $x+p y=2 a p+a p^{3}$.
The equation of the normal to the parabola at Q is $x+q y=2 a q+a q^{3}$.

i. The ${ }^{-2}$ equation of the chord $B Q$ is $y=\frac{1}{2}(p+3 q) x-4 a p q .5$ (DO NOT show this). If the chord passes through ($0,5 a$) show that $p q=-5$.
ii. Show that the point of intersection, R , of the normals at P and Q has the coordinates $\left[-a p q(p+q), a\left(p^{2}+p q+q^{2}+2\right)\right]$.
iii. Find the equation of the locus of R if the chord $P Q$ passes through $(0,5 a)$.
(a) i. Show that $y=\frac{x^{2}+x+1}{x+1}=x+\frac{1}{x+1}$
ii. Sketch the graph of the function, clearly showing all key features
(b) $\quad P S$ is a diameter of the circle $P S Q$. The tangents at P and Q meet at T. The tangent $T Q$ and the diameter $P S$ are produced to meet at R. Let $\angle S Q R=\alpha$.

i. Prove that $\angle T P Q=\frac{\pi}{2}-\alpha$.
ii. Prove that $\angle P T Q=2 \alpha$.
(c) The acceleration of a body A is given by $a=18 x\left(x^{2}+1\right)$ where $x \mathrm{~cm}$ is the displacement after time t seconds. Initially, A starts from the origin with velocity $3 \mathrm{cms}^{-1}$.
i. Show that $v=3\left(x^{2}+1\right)$.
ii. Find x in terms of t.
(d) By writing $\sqrt{3} \sin 3 x-\cos 3 x$ in the form $R \sin (3 x-\alpha)$, where α is acute and $R>0$. or otherwise, find the general solutions to the equation:

$$
\sqrt{3} \sin 3 x-\cos 3 x=0
$$

(a) A boys throws a ball with velocity vms^{-1} at an angle of 45° to the horizontal.
i. Derive expressions for the horizontal and vertical displacement of the

$$
y=x-\frac{g x^{2}}{v^{2}}
$$

where g is the acceleration due to gravity.
iii. A boy is standing on a hill inclined at θ to the horizontal as shown in the diagram below. He throws the ball at the same angle of elevation of 45° and at the same speed of ms^{-1}. If he can throw the ball 60 m down the hill but only 30 m up the hill, use the results in part ii. to show that $\theta=\tan ^{-1}\left(\frac{1}{3}\right)$

(b) The surface area of a spherical bubble is increasing at a constant rate of $1.9 \mathrm{~mm}^{2}$ per second. Find the rate of increase of its volume when the radius is 0.6 mm . The volume of a sphere is given by $V=\frac{4}{3} \pi R^{3}$, and the surface area is given by $A=4 \pi R^{2}$.
(c) i. Using the expansions of $\cos (A+B)$ and $\cos (A-B)$, show that:

$$
\cos x-\cos (x+2 \theta)=2 \sin (x+\theta) \sin \theta
$$

ii. Hence prove by mathematical induction that

$$
\sum_{r=1}^{n} \sin (2 r-1) \theta=\frac{1-\cos (2 n \theta)}{2 \sin \theta}
$$

End of Examination ©

2017
 Trial
 Higher School Certificate Certificate

MATHEMATICS EXTENSION 1

NESA NUMBER:

Section 1 -Multiple Choice Answer Sheet

Use this multiple choice answer sheet for Questions 1-10. Detach this sheet.

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample:

$2+4=$
(A) 2
(B) 6
(C) 8
(D) 9

A

D
If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.

Start \longrightarrow

Multiple Choice Answer Sheet

Student Number Ext 1-Answers - 2017 Trial.

Select the alternative A. B, C or D that hest answers the question. Fill in the response oval completely.
Sample: $2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
A
B
$\mathrm{C} \bigcirc$
D \bigcirc

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A
B

C

$\mathrm{D} \bigcirc$
If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word corvect and drawing an arrow as follows.

Ext1-Multiple Choice Answers - 2017 Trial.

1

$$
\begin{gathered}
y=(\sin x)^{2} \\
y^{\prime}=2 \sin x \cos x=\sin 2 x \\
y=-\frac{1}{2} \cos 2 x \\
y^{\prime}=-\frac{1}{2} \times 2 x-\sin 2 x=-\sin 2 x \\
y=-\cos ^{2} x=-(\cos x)^{2} \\
y^{\prime}=2 x-x-\sin x \times \cos x \\
=2 \sin x \cos x=\sin 2 x \\
\therefore \text { (D) }
\end{gathered}
$$

2... need 2 men from 6, 3 women from 8
$\therefore C_{2}^{6} \times C_{3}$ it is C not P as a committee
\therefore (D) (order is unimportant)
$3 \rightarrow$ you can sub. in values + test
$O R$

$$
e^{6 x}-7 e^{3 x}+6=0
$$

let $u=e^{3 x}$

$$
\begin{aligned}
& \therefore u^{2}-7 u+6=0 \\
& (u-6)(u-1)=0
\end{aligned}
$$

$$
\therefore u=6,1
$$

when $u=1$

$$
\begin{aligned}
e^{3 x} & =1 \\
\ln \left(e^{3 x}\right) & =\ln (1) \\
\therefore 3 x & =0 \\
\therefore x & =0
\end{aligned}
$$

when $u=6$

$$
\begin{gathered}
e^{3 x}=6 \\
\ln \left(e^{3 x}\right)=\ln (6) \\
\therefore 3 x=\ln (6) \\
\therefore x=\frac{\ln (6)}{3}
\end{gathered}
$$

$\therefore(c)$

$$
\begin{aligned}
4 . & \left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y z+n y}{m+n}\right) \\
& (-1, z) \quad(-2,3) \\
& \left(x_{1}, y_{1}\right) \quad\left(x_{2}, y_{2}\right) \quad(m, n) \\
= & (-2 \times 3+3 \times-1 \\
1 & (-9,4) \therefore(D)
\end{aligned}
$$

5

$$
\begin{align*}
& \lim _{x \rightarrow 0} \frac{\sin \frac{3 x}{2}}{6 x} \\
& =\lim _{x \rightarrow 0} \frac{1}{4}\left(\frac{\sin \frac{3 x}{2}}{\frac{6 x}{4}}\right) \\
& =\lim _{x \rightarrow 0} \frac{1}{4}\left(\frac{\sin \frac{3 x}{2}}{\frac{3 x}{2}}\right) \quad\left(\text { ax } \lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right) \\
& =\frac{1}{4} \quad \therefore \text { (A) } \tag{A}
\end{align*}
$$

$6 \quad g[f(x)]=2 \sin \left(\frac{1}{x}\right)$
as $\frac{1}{x}$ has domain all real x except $x \neq 0$
\therefore this is just like $2 \sin x$ in terms of range

$$
\begin{array}{ll}
\sin x & -1 \leq y \leq 1 \\
2 \sin x & -2 \leq y \leq 2 \tag{D}
\end{array}
$$

7. $\tan \left[\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)\right]$

$$
\begin{aligned}
& \cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6} \\
& \therefore \tan \left(\frac{\pi}{6}\right)=\frac{1}{\sqrt{3}}
\end{aligned}
$$

8

$$
\begin{align*}
& \cos ^{-1}\left[\cos \left(\cos ^{-1}(-x)\right)\right] \\
= & \cos ^{-1}\left[\cos \left(\pi-\cos ^{-1}(x)\right)\right] \\
= & \cos ^{-1}[\cos \pi-x] \\
= & \pi-\cos ^{-1}(x) \quad \therefore \text { (B) } \tag{B}
\end{align*}
$$

9

$$
\begin{align*}
& x=6 t, y=3 t^{2} \\
& t=\frac{x}{6} \quad y=3 \times\left(\frac{x}{6}\right)^{2}=\frac{3 x^{2}}{36} \\
& y=\frac{x^{2}}{12} \\
& y^{\prime}=\frac{2 x}{12}=\frac{x}{6}
\end{align*}
$$

10

$$
\begin{aligned}
x(x+1) & =2(2+4) \\
x^{2}+x & =12 \\
x^{2}+x-12 & =0 \\
(x+4)(x-3) & =0 \\
\therefore x & =-4,3 \quad \text { as } x \nless 0 \\
& \therefore x=3 \quad \therefore \text { (c) }
\end{aligned}
$$

Question 11 Solutions

(a) Solve the inequality $\frac{5}{x-2} \leq 4$

3 marks answer and excluding $x=2$
2 marks correct answer not excluding $x=2$
1 mark correct expression with ($\mathrm{x}-2$) factor
$5(x-2) \leq 4(x-2)^{2}$
$5(x-2)-4(x-2)^{2} \leq 0$
$(x-2) \mid 5-4 x+8] \leq 0$
$(x-2)(13-4 x) \leq 0$
$x \leq 2 \quad x \geq \frac{13}{4}$
$x<2$ as $x \neq 2 \quad x \geq \frac{13}{4}$

Question was done well. There was no penalty if the solution was not graphed or tested
(b) Use the substitution $u=x+2$ to evaluate $\int_{1}^{3} \frac{x+1}{(x+2)^{2}} d x$ giving the answer $\quad 3$ in simplest exact form.

$$
\begin{array}{rlrl}
u & =x+2 & & \\
\frac{d u}{d x} & =1 & \\
d u & =d x \\
x+1 & =u-1 \\
& \int_{3}^{5} \frac{(u-1)}{u^{2}} d u \\
& =\int_{3}^{5} \frac{1}{u}-u^{-2} d u \\
& =\left[\ln u-\frac{u^{-1}}{-1}\right]_{3}^{5} \\
& =\left[\ln u+\frac{1}{u}\right]_{3}^{5} \\
& =\left(\ln 5+\frac{1}{5}\right)-\left(\ln 3+\frac{1}{3}\right) \\
& =\ln \left(\frac{5}{3}\right)-\frac{2}{15}
\end{array}
$$

Common error was forgetting that $\int \frac{1}{u} d u=\ln u$, and not changing the terminals Many students lost a mark for not simplifying the last line
(c) The polynomial $P(x)=2 x^{3}+b x^{2}-8 x+5$ has a remainder of 2 when divided by $(x+3)$, calculate the remainder when when divided by $(x+2)$.

3 marks correctly value of remainder with correct working 2 marks correct value of b
1 mark correct substitution(-3)

$$
\begin{equation*}
P(-3)=2(-27)+9 b+24+5=2 \tag{1}
\end{equation*}
$$

$-25+9 b=2$
$9 b=27$
$b=3$
$P(x)=2 x^{3}+3 x^{2}-8 x+5$
$P(-2)=2(-8)+3(4)+16+5$
$=17$
(d) i. Show that that $y=e^{-x}-3 x$ has only one real root.
ii. The root lies in the interval $0.2<x<0.3$ Taking $x_{1}=0.25$ as

1
2 the first approximation, use one application of Newton's method to determine a better approximation. Give your answer correct to 3 signilicant figures.
(i)

1 mark correct working showing graphs or equivalent working
$e^{-x}-3 x=0$
$e^{-x}-3 x=0$
$e^{-x}=3 x$
sketching graphs they intersect at only 1 point $\therefore 1$ solution only

This question was done poorly. Students who graphed the function
 were successful.
Many students showed that $f(x)<0$ for all x and then stated that there were no turning points. This was not sufficient to show there is only 1 root, as there could be no roots. You must show that $f(x)$ changes sign as well.

Some students found the descriminant and showed that $\Delta<0$. This is incorrect as the descriminant is only valid for quadratics.
(ii)

2 marks correct value of x_{2} with correct working
1 mark correct derivative and substitution into the correct formula, or 1 error

$$
\begin{align*}
x_{2} & =x_{1}-\frac{f\left(x_{17}\right.}{f^{\prime}\left(x_{1}\right)} \\
f(x) & =e^{-x}-3 x \\
f^{\prime}(x) & =-e^{-x}-3 \tag{1}\\
x_{2} & =0.25-\frac{\left[e^{-0.25}-3(0.25)\right]}{\left[-e^{-0.25}-3\right]} \\
& =0.2576 \ldots \\
& =0.258 \tag{2}
\end{align*}
$$

Done well. There was no penalty for incorrect rounding this time, but students need to take care.
(e) Using the word COWABUNGA
i. How many arrangements of the 9 letters are possible? 1
ii. How many arrangements of the 9 letters are possible if the 3 letters COW have to be place together? Note the letters COW can be placed in any order but they must be together.
(i)

$$
\begin{aligned}
& 1 \text { mark correct answer } \\
& \frac{9!}{2!} \text { or } \frac{2262880}{2}=181440
\end{aligned}
$$

(ii)

> 2 marks correct answer no working required 1 mark correct answer with 1 error
> $\frac{7!\times 3!}{2!}=15120$

COW
-COW -----
-- COW ----
$---C O W---$
$----\mathrm{COW}_{--}$
-----COW -
$------C O W$
$\frac{6!\times 3!\times 7}{2}=\frac{30240}{2}=15120$
Done well, common error was not allowing for Double letter A

Yri2 Ext! Marking Scheme
Q12
a

$$
\begin{gathered}
x^{3}-3 x^{2}+k x+48 \\
\alpha+\beta+\gamma=\frac{-b}{a}=3 \\
\alpha \beta+\alpha \gamma+\beta t=\frac{c}{a}=k \\
\alpha \beta+=\frac{-\alpha}{a}=-48
\end{gathered}
$$

roots α, β, γ
$\left.\begin{array}{l}\text { (1) } \\ \text { (2) } \\ \text { (3) }\end{array}\right\}$
(mark)

Let $\beta=-\alpha \quad \therefore \quad$ © $\rightarrow \alpha+-\alpha+\gamma=3$
$\delta=3 \quad$ (imanh)
(3)

$$
\begin{aligned}
\alpha-\alpha \gamma & =-48 \\
-\alpha^{2} \times 3 & =-48 \\
3 \alpha^{2} & =48 \\
\alpha^{2} & =16 \\
\alpha & =4,-\alpha=-4
\end{aligned}
$$

\therefore (3) Becomes

$$
\begin{aligned}
& \alpha-\alpha+\alpha k-\alpha k=k \\
& 4 x-4=k \\
& \therefore k=-16 \quad(1 \text { mat })
\end{aligned}
$$

(lose lmanhif α is incorrect)

126

$$
\begin{aligned}
& x=a \cos (n t+\varepsilon) \\
& \ddot{x}=-4 x \quad t=0, x=\sqrt{3}, \dot{x}=6
\end{aligned}
$$

i

$$
\begin{aligned}
\ddot{x}= & -n^{2} x \\
-4 x & =-n^{2} x \\
\therefore & n^{2}=4 \\
& \therefore n=2
\end{aligned}
$$

\ddot{i} when $t=0$

$$
\begin{aligned}
& x=a \cos \varepsilon \\
& \therefore \quad \sqrt{3}=a \cos \varepsilon \\
& \text { as } x=a \cos (n t+\varepsilon) \\
& x=-n a \sin (n t+\varepsilon) \\
& \text { when } t=0 \quad 6=-2 a \sin \varepsilon
\end{aligned}
$$

$$
\begin{equation*}
a \sin E=-3 \tag{2}
\end{equation*}
$$

(2)

$$
\begin{aligned}
\div(1) \quad \frac{a \sin \varepsilon}{a \cos \varepsilon} \frac{-3}{\sqrt{3}} & =-\sqrt{3} \\
\therefore \tan \varepsilon & =-\sqrt{3} \\
\therefore \varepsilon & =\frac{-\pi}{3}
\end{aligned}
$$

Gmark: tect anvarded
now get a

$$
\begin{aligned}
& \sqrt{3}=a \cos \epsilon \\
& \sqrt{3}=a \cdot \cos \left(-\frac{\pi}{3}\right) \\
& \sqrt{3}=a \times \frac{1}{2} \\
& \therefore a=2 \sqrt{3} \\
& \therefore \quad x=2 \sqrt{3} \cos \left(2 t-\frac{\pi}{3}\right) \quad(1 \operatorname{mar} k)
\end{aligned}
$$

$12 b$

$$
\begin{gathered}
\frac{1}{2} v^{2}=\int-4 x d x \\
\frac{1}{2} v^{2}=-2 x^{2}+c \\
v^{2}=-4 x^{2}+c \text { when } x=\sqrt{3}, v=6 \\
6^{2}=-4 x(\sqrt{3})^{2}+c \\
6^{2}=-12+c \\
36=-12+c \\
\therefore-c=48 \\
\therefore v^{2}=-4 x^{2}+48 \\
v^{2}=n^{2}\left(a^{2}-x^{2}\right) \\
v^{2}=4\left(12-x^{2}\right) \\
\therefore a^{2}=12 \\
a=\sqrt{12}=2 \sqrt{3}
\end{gathered}
$$

op

$$
x=2 \sqrt{3} \cos (2 t+\alpha)
$$

when $t=0, x=\sqrt{3}$

$$
\sqrt{3}=2 \sqrt{3} \cos \alpha
$$

$$
\frac{1}{2}=\cos \alpha \quad \therefore \alpha=\frac{\pi}{3} \quad \quad \text {-p note } x=-4 \sqrt{3} \sin \left(2 t \pm \frac{\pi}{3}\right)
$$

check $\dot{x}=6, t=0 \quad 6=-4 \sqrt{3}\left(\sin \frac{-\pi}{3}\right)$

$$
\therefore x=2 \sqrt{3} \cos \left(2 t-\frac{\pi}{3}\right)^{3}
$$

due to $\frac{S / A^{2}}{T C^{2}}$

$$
\left(\begin{array}{cc}
\operatorname{ton} y & 2 / 2 \\
\text { lerror of } \\
\text { process } \\
\text { good }
\end{array}\right)
$$

$12 c \quad y=\frac{1}{2} \sin ^{-1}(1-3 x)$
$y=\sin ^{-1} x \quad$ domain $-1 \leqslant x \leqslant 1$

$$
\text { range } \frac{-\pi}{2} \leqslant y \leqslant \frac{\pi}{2}
$$

domain

$$
\left.\begin{array}{ll}
-1 & \leqslant 1-3 x \leqslant 1 \\
-2 \leqslant-3 x \leqslant 0 \\
\frac{2}{3} \geqslant x \geqslant 0
\end{array} \quad \therefore \quad 0 \leqslant x \leqslant \frac{2}{3}\right\} 1 \text { mar } 4
$$

$\left.\begin{array}{c}\text { range is half normal range } \\ \therefore \frac{-\pi}{4} \leqslant y \leqslant \frac{\pi}{4}\end{array}\right\}$ imenh

$12 d i$

$$
\begin{aligned}
& y=\frac{1}{2}(p+q) x-a p q \\
& \text { sub }(0,5 a) \\
& 5 a=\frac{1}{2}(p+q) \times 0-a p q \\
& (5 a=-a p q) \div-a \\
& p q=-5
\end{aligned}
$$

12d $\quad x+p y=2 a p+a p^{3} \quad \rightarrow \quad x=2 a p+a p^{3}-2 y$
ii

$$
\begin{aligned}
& x+z y=2 a q+a q^{3} \\
& \downarrow \\
& -p y+2 a p+a p^{3}+q y=2 a q+a q^{3} \\
& y(q-p)=2 a q-2 a p+a q^{3}-a p^{3} \\
& y(q-p)=2 a(z-p)+a\left(q^{3}-p^{3}\right) \\
& y(2 x)=2 a(z-p)+a(z-p)\left(q^{2}+p q+p^{2}\right) \\
& y=2 a+a\left(q^{2}+p q+q^{2}\right) \\
& y=a\left(p^{2}+p q+q^{2}+2\right) \quad(\operatorname{mar})
\end{aligned}
$$

sub- into $\quad x=2 a p+a p^{3}-p y$

$$
\begin{aligned}
& x=2 a p+a p^{3}-p a\left(p^{2}+p q+q^{2}+2\right) \\
& x=2 a p+a p^{3}-a p^{3}-a p^{2} q-a p q^{2}-2 a p \\
& \therefore \\
& x=-a p q(p+q) \quad(\operatorname{mar})
\end{aligned}
$$

(3) maik if ralid athempa owf mend \& 4 and x)

12d iii use $p q=-5$

$$
\left.\begin{array}{l}
x=-a p q(p+q) \\
\therefore p+q=\frac{-x}{a p q}=\frac{-x}{-5 a}=\frac{x}{5 a} \\
y=a\left(p^{2}+p q+q^{2}+2\right) \\
y=a\left(p^{2}+z^{2}-5+2\right) \\
y=a\left[(p+q)^{2}-2 p q-3\right] \quad(1 \text { ma .h) } \\
y=a\left[\left(\frac{x}{5 a}\right)^{2}-2 x-5-3\right] \\
\left.y=a\left(\frac{x^{2}}{25 a^{2}}+7\right)\right] \\
y=\frac{x^{2}}{25 a}+7 a .
\end{array}\right\} \quad(\operatorname{man} k)
$$

put into form $(x-h)^{2}=4 a(y-k)$

$$
\begin{aligned}
& y-7 a=\frac{x^{2}}{25 a} \\
& 25 a(y-7 a)=x^{2}
\end{aligned}
$$

(smack if worked forvand-

Markers Feedback XI Trial Q12
Polynomials,
a was very well done by most students a few made minor errors, but most got full mako.
6. many students had trouble with part ii \rightarrow when you reed to get the angle ' ''
it is easier to get 2 equations (1) from x and (2) from x to get $\tan \alpha$, then get a.
$\rightarrow \operatorname{man} y$ did $\frac{1}{2} v^{2}=\int-4 x d x$
this could enable them to get a' easily bit was more challenging to get α, as have to wise
\rightarrow some integrated inverse trig function doing $2=6, t=0$. way to much work for the marks.
c Inverse trig
c mont calculated the domain te range correctly However, about 30% of student o showed room for improvement showing insufficient stills.
\rightarrow Many drew the graph incorrectly -this is a shame as substituting $x=0$ would quickly confirm where the graph lay.
Parametric
d i done very well
ii most did this question well, about 20% of student o need to Revise their Parametric e work on finding intersection of 2 point Q. Students should show $q^{3} p^{3}=(q-p)\left(q^{2}+q p+p^{2}\right)$ when breaking down difference of 2 cukes, to ensure they get all marks.
\ddot{u}_{i} about 40% of student o struggled.
they need to remember the purpose is to eliminate
$\frac{p \text { and } q}{a n d} \rightarrow u \operatorname{sing} p q=-5, p+q=\frac{x}{5 a}$
and $p^{2}+q^{2}=(p+q)^{2}-2 p q$

Q13
a) i) $\frac{x^{2}+x+1}{x+1}=\frac{x(x+1)+1}{x+1} \quad x \neq-1$

$$
=x+\frac{1}{x+1}
$$

(1) mark correct algebraic method working from LHS \rightarrow RHS

Many strders still wore RHS $\rightarrow 1+5$
not what wes ackal
many studa-b not accurate enozin with gresph noa arymptols

b) $i v) \operatorname{In} \triangle T P Q$
$T P=T Q \quad\left(\begin{array}{l}\text { tangents to a cures } \\ \text { fran an externalpoin }\end{array}\right.$ are equal)

$$
\begin{aligned}
& \therefore \angle F P Q=\angle T Q P \text { (equal angles opposite } \\
& \Delta T P Q) \\
& \therefore<P T Q=T-\left(\frac{T}{2}-\alpha+H / 2-\alpha\right) \quad\binom{\text { angle sumiof }}{n T P Q=100} \\
& \therefore \angle P T Q=2 \alpha
\end{aligned}
$$

* 2 marks all correct reasons
* Lark one incorrect reason

Generally well done but many still using incorrect reasoning Gi ven inefficury methods
c) id

$$
\begin{aligned}
\text { i) } & \dot{x}=18 x\left(x^{2}+1\right) \\
\therefore & \frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=18 x^{3}+18 x \\
\therefore & \int \frac{d}{d x}\left(\frac{1}{2} v^{2}\right) \cdot d x=\int 18 x^{3}+18 x \cdot d x \\
\therefore & \frac{1}{2} v^{2}=\frac{18 x^{4}}{4}+\frac{18 x^{2}}{2}+\frac{c}{2} \\
\therefore \quad & v^{2}=9 x^{4}+18 x^{2}+c
\end{aligned}
$$ motisate what they are integrating $\omega r+$

when $x=0, v=3 \rightarrow 9=c$

$$
\begin{aligned}
v^{2} & =9 x^{4}+18 x^{2}+9 \\
v^{2} & =9\left(x^{4}+2 x^{2}+1\right) \\
& =9\left(x^{2}+1\right)^{2}
\end{aligned}
$$

but when $x=0, v=3 \rightarrow v>0$
$\therefore v=3\left(x^{2}+1\right) \checkmark(1)$ for have reason negation
Many students did not see
the factorisation

* many gave no reason for igrorms
the negative and lost a mange
(13)
c)

$$
\text { ii) } \begin{aligned}
& v=\frac{d x}{d x}=3\left(x^{2}+1\right) \\
& \therefore \frac{d t}{d x}=\frac{1}{3\left(x^{2}+1\right)} \\
& \therefore \int \frac{d t}{d x} \cdot d x=\frac{1}{3} \int \frac{1}{x^{2}+1} \cdot d x \\
&=t=\frac{1}{3} \tan ^{-1}(x)+c \\
& \text { when } t=0, x=0 \rightarrow c=0 \\
& \therefore t=\frac{1}{3} \tan ^{-1}(x) \\
& \therefore x=\tan ^{(3}(3)
\end{aligned}
$$

\checkmark (1) sethers op standand integ-d
(1) succressfulty nouriondy
-many failed to recognice standod xamegral left ansumer as $t=\frac{1}{3} \tan ^{-1}(x)$
\rightarrow look at question
a)

$$
\begin{aligned}
& \sqrt{3} \sin 3 x-\cos 3 x=R \sin (3 x-\alpha) \\
& \therefore R=\sqrt{(\sqrt{3})^{2}+1}=2 \\
& \tan \alpha=\frac{1}{\sqrt{3}} \rightarrow \alpha=\pi / 6 \\
& \therefore \sqrt{3} \sin 3 x-\cos 3 x=2 \sin (3 x-\pi / 6) \\
& \therefore \sqrt{3} \sin 3 x-\cos 3 x=2 \sin (3 x-\pi / 6)=0 \\
& 2 \sin (3 x-\pi / 6)=0 \\
& \therefore \sin (3 x-1 \pi / 6)=0 \\
& \therefore 3 x-\pi / 6=n \pi \\
& 3 x=n \pi+\pi / 6 \\
& x=\frac{n \pi}{3}+\frac{\pi}{18}
\end{aligned}
$$

\mathcal{N} (i) for correct α
v (1) For correct R

Q14
a)

$$
\begin{gathered}
\rightarrow \dot{x}=0 \\
\int \frac{d \dot{x}}{d t} \cdot d t=\int 0 d t \\
\dot{x}=c \\
t=\theta, \dot{x}=v \cos \theta \\
\dot{x}=v \cos \theta \\
\int \frac{d x}{d t} \cdot d t=\int v \cos \theta \cdot d x \\
x=v \cos \theta \cdot t+D \\
t=\sin x=0 \\
\therefore D=0 \\
\therefore x=v a s \theta \cdot t \\
a s=45 \\
x=\frac{v t}{\sqrt{2}}
\end{gathered}
$$

ค $\ddot{y}=-9$
(1 mororl)
Many jtudenis did noir cleowt show?
(i) integraining
(i monls) iosh respers to what?
(ii) evoduraling fur constands
(iii) Na diveihom of $\quad \ddot{x}$ oul if exs thing au vector qualisher.

$$
\begin{aligned}
& \int \frac{d \dot{y}}{d t} \cdot d t=\int-g d t \\
& y=-g t+E \\
& t=0, y=v \sin 0 \\
& \therefore E=v \sin \theta \\
& \dot{y}=-g t+v \sin v \\
& \int \frac{d y}{d t} d t=\int-g t+v \sin \theta d t \\
& \begin{array}{l}
y=-\frac{1}{2} g t^{2}+v \sin \theta t+F, \theta=4 j \\
A-n=0 \Rightarrow F=0 \quad \therefore-\frac{10}{2} t t^{2}+\frac{v}{2} b
\end{array}
\end{aligned}
$$

Qif (il)

$$
\left.\begin{array}{rl}
x & =\frac{v t}{\sqrt{2}} \Rightarrow t=\frac{\sqrt{2} x}{v} \\
y & =\frac{v t}{\sqrt{2}}-\frac{1}{2} g t^{2} \\
& =\frac{v}{\sqrt{2}} \cdot \frac{\sqrt{3} x}{v}-\frac{1}{2} g \cdot \frac{2 x^{2}}{v^{2}} \\
& =x-\frac{g x^{2}}{v^{2}}
\end{array}\right\}-(1 \text { movern })
$$

(iin

Applying the result $f y=x-\frac{g x^{2}}{v^{2}}$ fum
a (ii),
For the dounhill motion

$$
-60 \sin \theta=60 \cos \theta-\frac{9}{v^{2}}(60 \cos \theta)^{2}
$$

(il)

$$
\begin{align*}
60 \cos \theta+6 \cos \theta=\frac{2}{v^{2}}(60 \cos \theta)^{2} \\
\rightarrow(1 \mathrm{n} \omega \mathrm{~s} h)
\end{align*}
$$

for ithe uiplull inwion \rightarrow (1 mwoh)

$$
\begin{aligned}
& 30 \sin \theta=30 \cos \theta-\frac{9}{2}(30 \cos \theta)^{2} \\
& 20 \cos \theta-30 \sin \theta=\underline{y}(30 \cos \theta)^{2}
\end{aligned}
$$

$$
\text { (ix) } 30 \operatorname{cose} \theta-30 \sin \theta=\frac{3}{7^{2}}(30000)^{2}
$$

(1)

$$
\begin{aligned}
& \therefore(2) \frac{2(\cos \theta+\sin \theta)}{(\cos \theta-\sin \theta)}=4 \\
& \Rightarrow 3 \sin \theta=\cos \theta \\
& \Rightarrow \quad \tan \theta=\frac{1}{3} \Rightarrow \theta=\tan ^{-1}\left(\frac{1}{3}\right)
\end{aligned}
$$

moser got then corvent
mavey sindints exifinimeso dsificielt with this poute coved nar ger the equiliors (1) and (2) with wiwest signs, ago Leisinge of war panysing viltenth jo la dowil

Qif ${ }^{(b)}$
$S=$ surface Aved of me bushe
$V=$ velume of Liblule

$$
\begin{array}{rl}
V=\frac{4 \pi}{3} r^{3} & S=4 \pi r^{2} \\
\begin{aligned}
\frac{d v}{d r}=4 \pi r^{2} & \frac{d s}{d r}=8 \pi \\
\frac{d v}{d t} & =\frac{d v}{d r} \cdot \frac{d r}{d s} \cdot \frac{d s}{d t} \\
& =4 \pi r^{2} \cdot \frac{1}{8 \pi r} \cdot(1 \cdot 9) \\
& =\frac{1 \cdot 9 r}{2}
\end{aligned}
\end{array}
$$

Whm $v=0.6 \mathrm{~mm}$,

$$
\begin{aligned}
\frac{d v}{d t} & =\frac{19 \times 0 \cdot 6}{2} \\
& =0.57 \mathrm{~mm}^{3} / \mathrm{s}
\end{aligned}
$$

Masny got 110 comeret bins same dilit noir sturios clear novilory

$$
\begin{aligned}
& Q_{14}(c) \cos x-\cos (x+2 \theta) \\
& =\operatorname{Cos}[(x+\theta)-\theta]-\operatorname{Cos}[(x+\theta)+\theta] \text { (} 1 \text { and } x] \\
& =\cos (x+\theta) \cos \theta+\sin (5+0) \sin \theta-\cos y+0) \cos \theta \\
& =2 \sin (x+\theta) \sin \theta \\
& +\sin (x+\theta) \cos 6 \\
& \sum_{r=1}^{n} \sin 2 r-v \theta=\frac{1-\cos 2 n \theta}{2 \sin \theta}
\end{aligned}
$$

For $n=1$

$$
\begin{aligned}
& \text { Lats }=\sin (2-1) \theta=\sin \theta \\
& \text { Ris }=\frac{1-\cos 2 \theta}{2 \sin \theta}=\frac{2 \sin ^{2} \theta}{2 \sin \theta}=\sin \theta \\
& \Rightarrow \text { Lits }=\cos
\end{aligned}
$$

(it) The prejesition is ture for $n=$)
As sume truefor $n=k$

$$
\text { (it) } \sum_{r=1}^{6} \sin (2 v-1) \theta=\frac{1-\cos 2 k \theta}{2 \sin \theta} \text {, }
$$

For $n=k+1$ bo porvetteral

$$
\sum_{r=1}^{k+1} \sin (2 v-1) \theta=\frac{1-\cos 2(k+1) \theta}{2 \sin \theta}
$$

LISS $\sum_{r=1}^{k+1} \sin (2 v-1) \theta=\sum_{r=1}^{k} 3 \sin (2 r-1) \theta+\infty$

$$
\sin \left[\left(2^{(k+1)-3)}\right]\right.
$$

uscuin has assumposen

$$
\begin{aligned}
& =\frac{1-\cos 2 k \theta}{2 \sin 0}+\sin +1 \\
& +\operatorname{Sin}[2(x+1)-1] 0 \\
& =\frac{1-\operatorname{cis} 2 k \theta+2 \sin \theta^{2} \sin ^{2}}{2 \sin \theta}
\end{aligned}
$$

Let $x=2 k \theta$

$$
\begin{aligned}
& \text { some shindwh } \\
& \begin{array}{l}
\text { shonggled as } \\
\text { ghin count }
\end{array} \\
& \text { cise tor nesmet } \\
& \text { fum provions } \\
& =\frac{1-\cos x+2 \sin (x+\theta)}{2 \sin \theta} \\
& =\frac{1-6 \cos x+\cos n-\cos (x+2 \theta)}{2 \sin \theta} \\
& =\frac{1-\cos (x+2 \theta)}{2 \sin \theta} \quad(1 \text { wovin) } \\
& \begin{array}{l}
=\frac{1-\cos [2(\overline{k+1})-1]^{\theta}}{2 \sin \theta} \\
=x+t)
\end{array}
\end{aligned}
$$

\therefore Thi posposition is true for $n=k_{t 1}$.
The pepersto is here for $n=1$ and if it is the for $n=w$ hem it is tum for $n=k+1$.
Thearfer by tei metho of matherwati cal induc (uear) it is tum 和 woll poive inkgus

