

KINCOPPAL-ROSE BAY SCHOOL OF THE SACRED HEART

2001

EXTENSION 1 MATHEMATICS

Friday 22nd June,2001

Time Allowed: Two hours (plus five minutes reading time)

DIRECTIONS TO CANDIDATES:

- All questions may be attempted
- Start each question in a new booklet.
- All questions are of equal value.
- All necessary working should be shown in every question.
- Marks may be deducted for careless or badly arranged work.
- Only Board-approved calculators are to be used.
- Standard integrals are printed on a separate page.

Question 1 (12 marks)

(a) Solve for
$$x$$
:
$$\frac{x^2 - 5x}{x - 4} \le 3$$

(b) Sketch the graph of $y = 3\sin^{-1}\frac{x}{2}$, showing essential features.

(c) Find the acute angle at which the tangents to the curve y=x(x-4) at x=-1 and x=3 meet to the nearest minute.

2

(d) The polynomial $P(x) = 2x^4 - 3x^3 - 4x^2 + ax + b$, where a and b are constants, is divisible by both (x-2) and (x+1).

4

- (i) Find the values of a and b
- (ii) Hence find all real roots of P(x) = 0 for these values of a and b

(a) Solve the equation $\cos 2\theta - 1 = 2\sin \theta$ for $0 \le \theta \le 2\pi$

3

- (b) It is known that the equation $e^{-x^2} 5x^2 0.99 = 0$ has a positive root close to the origin. Attempt to find this root by using Newton's method of approximation, starting with a value of x = 0. Explain why this attempt fails.
- (c) Evaluate $\int 2\cos^2\frac{x}{2}dx$
- (d) The region which lies between the x axis and the curve 3

$$f(x) = \frac{1}{\sqrt{x^2 + 9}}$$

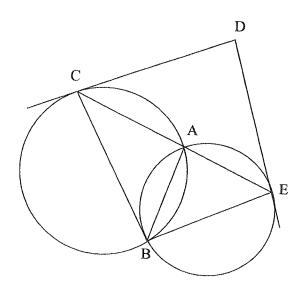
from x = 0 to x = 3 is rotated about the x axis to form a solid. Find the volume of the solid, leaving the answer in exact form.

Question 3 (12 marks)

(a) Solve
$$\int_0^{\sqrt{3}} \frac{1}{(1+t^2)^{\frac{3}{2}}} dt$$
 using the substitution $t = \tan x$

- (b) A spherical balloon is being inflated at the rate of 1000 cm^3s^{-1} .
 - (i) Show that $\frac{250}{\pi r^2}$ is an expression for the instantaneous rate of change of the radius
 - (ii) Find the rate of change of the surface area of the balloon when the radius is 15 cm.

(c)



Two circles intersect at A and B. CAE is a straight line where C is a point on the first circle and E is a point on the second circle. The tangent at C to the first circle and the tangent at E to the second circle meet at D.

- (i) Copy the diagram.
- (ii) Prove that BCDE is a cyclic quadrilateral.

Question 4 (12 marks)

(a) Using the function

$$f(x) = \frac{1}{x^2 - 1}$$

Draw a sketch of f(x). (i)

2

Explain why the function does not have an inverse function. (ii)

1

Suggest a suitable restriction to the domain so that the (iii) function will have an inverse.

1

Draw a sketch of $f^{-1}(x)$.

Co

(iv)

2

- Given the function $f(x) = 3\sin^{-1} x + 3\cos^{-1} x$ (b)
 - Find the value of f'(x). (i)

2

From part (i) what can be deduced from the graph of y = f(x)? (ii)

1

Explain why $f(x) = \frac{3\pi}{2}$. (iii)

1

Evaluate $\int_{-\frac{1}{2}}^{1} 3\sin^{-1}x + 3\cos^{-1}x \ dx$ (iv)

2

Question 5 (12 marks)

(a) P is the point $(2at, at^2)$ on the parabola $x^2 = 4ay$ and l is the tangent at P. S is the focus.

5

- (i) Prove that the equation of l is $y = tx at^2$.
- (ii) If l cuts the y axis at A, show that A is the point $(0, -at^2)$.
- (iii) Show that l makes equal angles with the y axis and with the interval PS.

.

- (b) In a raffle the chance of winning a prize is one out of ten.

 If I purchase twelve tickets, what is the probability of winning exactly two prizes? (Leave your answer in index form)
- (c) At time t the temperature T° of a body in a room of constant temperature 20° is decreasing according to the equation

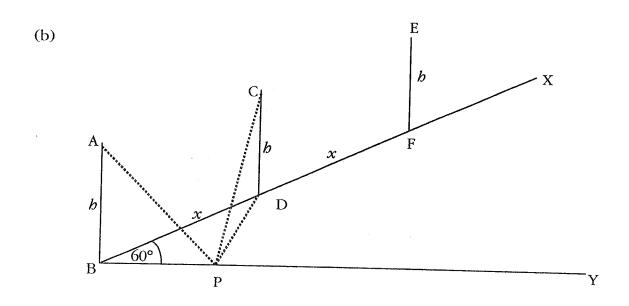
$$\frac{dT}{dt} = -k(T - 20) \text{ for some constant } k > 0$$

- (i) Verify that $T = 20 + Ae^{-kt}$, where A is a constant, is a solution of the above equation.
- (ii) The initial temperature of the body is 90° and it falls to 70° after 10 minutes. Find the temperature of the body after a further 5 minutes.

Question 6 (12 marks)

- (a) Find the term independent of x in the expansion of $\left(x + \frac{2}{x^2}\right)^{12}$ 3
- (b) (i) Write out the binomial expansion of $x(1+x)^n$
 - (ii) Hence, show that $\sum_{r=0}^{n} (r+1)^{n} C_{r} = (n+2)2^{n-1}$
- (c) (i) Show that $(n+1)! = (n+1) \times n!$
 - (ii) Use the method of mathematical induction to show that $1 \times 1! + 2 \times 2! + 3 \times 3! + ... + n \times n! = (n+1)! 1 \text{ for all positive integers } n.$

- (a) An employer wishes to choose two people for a job. There are eight applicants, three are women and five are men.
 - (i) If each applicant is interviewed separately and all of the women are interviewed before any of the men, find how many ways there are of carrying out the interviews.
 - (ii) If the employer chooses two of the applicants at random, find the probability that at least one of those chosen is a woman.



In the above diagram, BX and BY represent two roads intersecting at an angle of 60° . On the road BX are situated three telegraph poles AB, CD and EF all of equal height, the same distance, x metres apart. (ie BD = DF = x)

P is a point on the road BY and the angles of elevation of A and C from P are 45° and 30° respectively.

(i) Show that BP =
$$h$$
 and DP = $h\sqrt{3}$.

- (ii) By the use of the sine rule in triangle BDP, show that angle BDP = 30° and hence that triangle BDP is right-angled at P.
- (iii) Prove that x = 2h.
- (iv) By the use of the cosine rule in triangle PDF, show that PF = $h\sqrt{13}$ and hence show that the angle of elevation of E

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx' = \ln(x + \sqrt{x^2 + a^2})$$

$$\text{NOTE: } \ln x = \log_e x, \quad x > 0$$