Total marks – 84 Attempt Questions 1 – 7 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1(12 marks)Marks(a) Solve
$$\frac{4}{x+1} \ge 1$$
3(b) Evaluate $\int_{0}^{3} \frac{dx}{\sqrt{9-x^{2}}}$ 2(c) Let A be the point (-2, 1) and B be the point (5, 2). Find the coordinates of the point P which divides AB externally in the ratio 5:42

(d) Indicate on a number plane the region satisfied by both
$$x^2 + y^2 \le 1$$
 and $y \ge x$ 2

(e) Use the substitution
$$u^2 = x - 2$$
 to evaluate $\int_2^3 x \sqrt{x - 2} \, dx$ 3

Question 2(12 marks)Use a SEPARATE writing booklet.Marks

(a) The polynomial equation
$$2x^3 - 3x^2 + 4x - 7 = 0$$
 has roots α, β and γ .
Find the exact value of $\frac{1}{\alpha\beta} + \frac{1}{\alpha\gamma} + \frac{1}{\beta\gamma}$.

(b) Find
$$\frac{d}{dx}\cos^{-1}(4x^3)$$
. 2

2

3

The line AT is the tangent to the circle at A, and BT is a secant meeting the circle at B and C.

Given that AT = 6, BC = 4 and CT = x, find the exact value of x.

(d) Use the *t*-method to solve $5 \sin x - 2 \cos x = 2$, where $0^\circ \le x \le 360^\circ$

(e) A debating team of three people is to be chosen from five English teachers and four Mathematics teachers.

(i)	In how many ways can the team be chosen?	1
(ii)	What is the probability that that the whole of the team will be Mathematics teachers?	1

Question 3(12 marks)Use a SEPARATE writing booklet.Marks

(a) Find
$$\int \cos^2 6x \, dx$$
 2

(b) Let $P(x) = 3x^3 - ax^2 - bx + 1$, where P(x) is a polynomial and *a* and *b* are real numbers. **3** When P(x) is divided by (x - 1) there is no remainder. When P(x) is divided by (x + 2) the remainder is 15.

Find the values of *a* and *b*.

(c) Two parallel lines have equations x - my + 1 = 0 and x - my - 1 = 0

(i) Show that
$$\left(0,\frac{1}{m}\right)$$
 lies on $x - my + 1 = 0$. 1

(ii) Find m given that the perpendicular distance between the lines is 1 unit. 2

(d)

A plane is flying horizontally from *A* to *B* at a height of 2000m. From a point *E* the angle of elevation of *A* is 15° . From *E* the angle of elevation of *B* is 25° .

If $\angle DEC = 60^{\circ}$, calculate the distance *AB* to the nearest metre.

4

Question 4 Use a SEPARATE writing booklet. Marks (12 marks)

(a)	Use mathematica	l induction to prov	ve that		
	1 1	1	n		
	$\frac{1}{1\times5}$ + $\frac{1}{5\times9}$ + +	$\overline{(4n-3)(4n+1)} =$	$\frac{1}{4n+1}$		

The point $P(2ap, ap^2)$ lies on the parabola $x^2 = 4ay$. (b)

(i)	Prove that the tangent at <i>P</i> cuts the <i>y</i> -axis at $T(0, -ap^2)$.	2

- *M* is the midpoint of the interval *PT*. (ii) Find the locus of *M*.
- (c) Maddison is one of ten members of the chess club. Each week one member is selected at random to win a prize.

(i)	What is the probability that in the first 7 weeks Maddison will win at least 1 prize?	1
(ii)	Show that in the first 20 weeks, Maddison has a greater chance of winning exactly two prizes, than of winning exactly one prize.	2

For how many weeks must Maddison participate in the prize drawing so that 2 (iii) she has a greater chance of winning exactly 3 prizes than of winning exactly 2 prizes.

3

2

Question 5 (12 marks) Use a SEPARATE writing booklet.

(a) (i) Evaluate
$$\int_{2}^{8} \frac{8}{x} dx$$
, write your answer in the form $a \log 2$, where a is an integer 2

Use Simpson's Rule with 3 function values to find an approximation for $\int_{2}^{8} \frac{8}{x} dx$ 2 (ii)

Marks

1

1

- Hence find an approximation for log 2, correct to 3 decimal places. (iii)
- The diagram below shows a sketch of the graph y = f(x), where $f(x) = \frac{1}{1 + r^3}$, (b) for $x \ge 0$.

- 1 (i) Copy or trace this diagram into your answers. On the same set of axes, sketch the inverse function, $y = f^{-1}(x)$. State the domain of $f^{-1}(x)$. (ii) 1 Find an expression for $f^{-1}(x)$ in terms of x. 2
- The graphs of y = f(x) and $y = f^{-1}(x)$ meet at exactly one point *P*. (iv) Let α be the x-coordinate of P. Explain why α is a root of the equation

$$x^4 + x - 1 = 0.$$

(v) Take 0.5 as a first approximation to α . Use one application of Newton's 2 method to find a second approximation for α .

(iii)

Question 6 (12 marks) Use a SEPARATE writing booklet.

The points *A*, *B*, *C* and *D* are placed on a circle of radius *r* such that *AC* and *BD* meet at *E*. The lines *AB* and *DC* are produced to meet at *F*, and *BECF* is a cyclic quadrilateral.

Copy or trace this diagram into your answer booklet.

(i)	Find the size of $\angle DBF$, giving reasons for your answer.	2
(ii)	Find an expression for the length of <i>AD</i> in terms of <i>r</i> .	2

- (b) In the expansion of $(1+ax)^9$ the coefficient of x^5 is twice the coefficient of x^6 . 4 Find the value of the constant *a*.
- (c) A die is biased so that in any single throw the probability of an odd score is *p*, where *p* is a constant such that 0 .
 - (i) Show that in six throws of the die the probability of at most one even score 2 is given by $6p^5 5p^6$.
 - (ii) Find the probability that in six throws of the die the product of the scores is even. 2

Question 7 (12 marks) Use a SEPARATE writing booklet.

(a) *P* is a point on the curve $y = e^{-x^2}$. The origin is at *O* and perpendiculars through *P* 5 to the coordinate axes meet those axes at *Q* and *R*. Show that the maximum area of the rectangle *OQPR* is given by $\frac{1}{\sqrt{2e}}$.

(b) (i) Show that
$$\sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4} \right)$$
. 2

(ii) Prove that the derivative of
$$y = e^x \sin x$$
 is given by $\frac{dy}{dx} = \sqrt{2}e^x \sin\left(x + \frac{\pi}{4}\right)$ 2

(iii) If
$$y = e^x \sin x$$
 prove by mathematical induction that the *n*th derivative is
given by $\frac{d^n y}{dx^n} = (\sqrt{2})^n e^x \sin\left(x + \frac{n\pi}{4}\right)$.

Marks

3

Question	Criteria	Marks	Bands
1(a)	4	1	
	$\frac{1}{x+1} \ge 1, x \ne -1,$		
	Let $\frac{4}{2} = 1$		
	<i>x</i> +1	1	
	<i>x</i> = 3	1	
	$-1 \le x \le 3$	1	

HSC Extension 1 Mathematics Internal Examination Solutions 2005

Question	Criteria	Marks	Bands
1(b)	$\int_{0}^{3} \frac{dx}{\sqrt{9 - x^{2}}} = \left[\sin^{-1} \frac{x}{3}\right]_{0}^{3}$	1	
	$=\frac{\pi}{2}$	1	

Question	Criteria	Marks	Bands
1 (c)	(-2, 1) (5, 2). 5:-4		
	$x = \frac{kx_2 + lx_1}{k+l}, y = \frac{ky_2 + ly_1}{k+l}$		
	$x = \frac{5 \times 5 + -4 \times -2}{5 + -4}, y = \frac{5 \times 2 + -4 \times 1}{5 + -4}$	1	
	$x = 33, y = 6 \rightarrow P(33, 6)$	1	

Question	Criteria	Marks	Bands
1(d)	1 for correct graphs 1 for correct shading	1	

Question	Criteria	Marks	Bands
1(e)	$\int_{2}^{3} x\sqrt{x-2} dx x-2 = u^{2} \to x = u^{2} + 2 \to dx = 2udu$ $u^{2} = 2 2 \to u = 1 u^{2} = 2 2 \to u = 0$	1	
	$u_{1}^{3} = 5 - 2 \rightarrow u_{1} = 1, u_{1}^{3} = 2 - 2 \rightarrow u_{2} = 0$ $\int_{2}^{3} x \sqrt{x - 2} dx = \int_{0}^{1} (u^{2} + 2) \sqrt{u^{2}} 2u du$	1	
	$2\int_{0}^{1} \left(u^{4} + 2u^{2}\right) du = 2\left[\frac{u^{5}}{5} + \frac{2u^{3}}{3}\right]_{0}^{1} = \frac{26}{15}$	1	

Question	Criteria	Marks	Bands
2(a)	$2x^3 - 3x^2 + 4x - 7 = 0$		
	$\alpha + \beta + \gamma = \frac{3}{2}, \alpha\beta + \alpha\gamma + \beta\gamma = 2, \alpha\beta\gamma = \frac{7}{2}$	1	
	$\frac{1}{\alpha\beta} + \frac{1}{\alpha\gamma} + \frac{1}{\beta\gamma} = \frac{\gamma + \beta + \alpha}{\alpha\beta\gamma}$	1	
	$=\frac{3}{2}\div\frac{7}{2}=\frac{3}{7}$	1	

Question	Criteria		Marks	Bands
2(b)	$\frac{d}{dx}\cos^{-1}(4x^{3}) = \frac{-1}{\sqrt{1 - (4x^{3})^{2}}} \times 12x^{2}$	one mark if only the denominator is	1	
	$=\frac{-12}{\sqrt{1-16x^6}}$	correct	1	

Question	Criteria	Marks	Bands
2(c)	$x(x+4) = 6^2$ (product of secants = square of the tangent)		
	$x^2 + 4x = 36$	1	
	$\left(x+2\right)^2 = 40$		
	$x = -2 + 2\sqrt{10}$	1	

Question	Criteria	Marks	Bands
2(d)	$5\sin x - 2\cos x = 2 \to 5 \times \frac{2t}{1+t^2} - 2 \times \frac{1-t^2}{1+t^2} = 2$	1	
	$10t - 2 + 2t^2 = 2 + 2t^2$		
	$10t = 4 \rightarrow t = 0.4 \rightarrow \tan\frac{x}{2} = 0.4$		
	$\frac{x}{2} = 21^{\circ}48', x = 43^{\circ}36'$	1	
	check 180°; 5 sin 180° – 2 cos180°=2 \checkmark x = 43°36′,180°	1	

Question	Criteria	Marks	Bands
2(e)(i)	${}^{9}C_{3} = 84$	1	
2(e)(ii)	$\frac{{}^{4}C_{3}}{{}^{9}C_{3}} = \frac{4}{84} = \frac{1}{21}$	1	

Question	Criteria	Marks	Bands
3(a)	$\cos^2 x = \frac{1}{2} (\cos 2x + 1) \rightarrow \cos^2 6x = \frac{1}{2} (\cos 12x + 1)$	1	
	$\int \cos^2 6x dx = \int \frac{1}{2} (\cos 12x + 1) dx = \frac{\sin 12x}{24} + \frac{x}{2} + C$	1	
3(b)	$P(x) = 3x^3 - ax^2 - bx + 1$		
	$P(1) = 0 \rightarrow 3 - a - b + 1 = 0 \rightarrow a + b = 4$	1	
	$P(-2) = 15 \rightarrow -24 - 4a - 2b + 1 = 15 \rightarrow -2a + b = 19$	1	
	-2a + b = 19		
	$\underline{a+b=4}$		
	a = -5, b = 9	1	
3(c)(i)	x - my + 1 = 0		
	$0 - m\left(\frac{1}{m}\right) + 1 = 0, \left(0, \frac{1}{m}\right)$		
	$0 = 0 \checkmark$	1	
3(c)(ii)	$x - my - 1 = 0, \left(0, \frac{1}{m}\right)$		
	$p.d. = \frac{ ax_1 + by_1 + c }{\sqrt{a^2 + b^2}} x - my - 1 = 0, \left(0, \frac{1}{m}\right)$		
	$p.d. = \frac{ 0-1-1 }{\sqrt{1^2 + (-m)^2}}$	1	
	$=\frac{2}{\sqrt{1+m^2}}=1 \rightarrow m=\pm\sqrt{3}$	1	
3(d)	$A \qquad B \qquad D \qquad C$ $2000 \boxed{75^{\circ}} 2000 \boxed{65^{\circ}} 25^{\circ} E \qquad C \qquad E$	1	
	$\tan 75^\circ = \frac{DE}{2000}$ $\tan 65^\circ = \frac{CE}{2000}$ now $DC = AB$	1	
	$DE = 2000 \tan 75^\circ CE = 2000 \tan 65^\circ$		
	$DC^2 = (2000 \tan 65^\circ)^2 + (2000 \tan 75^\circ)^2$	1	
	$-2 \times 2000 \tan 65^{\circ} \times 2000 \tan 75^{\circ} \cos 60^{\circ}$ DC = 6488m (nearest metre)	1	
		I	
	(1 mark for diagrams, 1 for relationships for DE and CE)		

Question	Criteria	Marks	Bands
4(a)	$\frac{1}{1} + \frac{1}{1} + \dots + \frac{1}{1} = \frac{n}{1}$		
	$1 \times 5 5 \times 9 (4n-3)(4n+1) 4n+1$		
	Test $n = 1$: LHS = $\frac{1}{1 \times 5} = \frac{1}{5}$ RHS = $\frac{1}{4 \times 1 + 1} = \frac{1}{5}$	1	
	true for $n=1$		
	Suppose its true for some value of n , say k .		
	$\frac{1}{1\times5} + \frac{1}{5\times9} + \dots + \frac{1}{(4k-3)(4k+1)} = \frac{k}{4k+1}$		
	Prove true for $n = k + 1$;		
	k_{1P} : 1 1 1 1 k_{+1}		
	$\frac{1}{1\times5} + \frac{1}{5\times9} + \dots + \frac{1}{(4k-3)(4k+1)} + \frac{1}{(4k+1)(4k+5)} = \frac{n+1}{4k+5}$		
	k = 1		
	$LHS = \frac{1}{4k+1} + \frac{1}{(4k+1)(4k+5)}$		
	$-\frac{k(4k+5)+1}{2}$	1	
	$-\frac{1}{(4k+1)(4k+5)}$	1	
	$4k^2 + 5k + 1$ (4k+1)(k+1)		
	$-\frac{1}{(4k+1)(4k+5)}-\frac{1}{(4k+1)(4k+5)}$		
	$-\frac{k+1}{2}$	1	
	$-\frac{1}{4k+5}$		
	Proved by induction		
4(b)(i)	$x^{2} = 4ay \rightarrow y = \frac{x^{2}}{4a} \rightarrow \frac{dy}{dx} = \frac{2x}{4a} (2ap, ap^{2})$	1	
	$m = \frac{2 \times 2ap}{4a} = p \rightarrow y - ap^2 = p(x - 2a) \rightarrow y = px - ap^2$		
	cuts the y-axis when $x = 0 \rightarrow y = -ap^2 \rightarrow T = (0, -ap^2)$	1	
4(b)(ii)	$M = \left(\frac{2ap+0}{2}, \frac{-ap^{2}+ap^{2}}{2}\right) = (ap, 0)$	1	
	The locus of M is $y = 0$.	1	
4(c)(i)	P(at least one) = 1 - P(none)		
	$P(\text{at least one}) = 1 - \left(\frac{9}{10}\right)^7 = 0.52 \text{ (2dp)}$	1	
4(c)(ii)	$P(2 \text{ wins}) = {}^{20}C_2 \left(\frac{9}{10}\right)^{18} \left(\frac{1}{10}\right)^2 = 0.285 (3 \text{ dp})$	1	
	$P(1 \text{ win})^{20} C_1 \left(\frac{9}{10}\right)^{19} \left(\frac{1}{10}\right)^1 = 0.270 (3 \text{ dp})$	1	
	$\therefore P(2 \text{ wins}) > P(1 \text{ win})$	-	
4(c) (iii)	n = 30		

Question	Criteria	Marks	Bands
5(a)(i)	$\int_{-2}^{8} \frac{8}{x} dx = 8 \left[\ln x \right]_{2}^{8}$	1	
	$=8(\ln 8 - \ln 2)$		
	$= 8 \ln 4 = 8 \ln 2^{2}$		
	$= 16 \ln 2$	1	
5(a)(ii)	$\int_{2}^{8} \frac{8}{x} dx \approx \frac{8-2}{6} \left(f(2) + 4f(5) + f(8) \right)$	1	
	$=4+4\times 1.6+1$		
	=11.4	1	
5(a)(iii)	$16 \ln 216 \ln 2 \approx 11.4 \rightarrow \ln 2 \approx \frac{11.4}{16} = 0.7125$	1	
5(b)(i)		1	
5(b)(ii)	$x \leq 1$	1	
5(b)(iii)	$y = \frac{1}{1 + x^{3}}$ To find the inverse function swap x and y. $x = \frac{1}{1 + y^{3}}$	1	
	$1 + y^{3} = \frac{1}{x}$ $y^{3} = \frac{1}{x} - 1$ $\sqrt{1 - x}$		
	$y = \sqrt[3]{\frac{1-x}{x}}$	1	
5(b)(iv)	A function and its inverse intersect on the line $y = x$ $\frac{1}{1+x^3} = x \rightarrow 1 = x + x^4 \rightarrow x^4 + x - 1 = 0$	1	
5(b)(v)	$f(x) = x^4 + x - 1, f'(x) = 4x^3 + 1 \longrightarrow f\left(\frac{1}{2}\right) = \frac{-7}{16} \longrightarrow f'\left(\frac{1}{2}\right) = \frac{3}{2}$	1	
	$x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})} = \frac{1}{2} - \frac{f(\frac{1}{2})}{f'(\frac{1}{2})} = \frac{1}{2} - \frac{\frac{-7}{16}}{\frac{3}{2}} = \frac{19}{24}$	1	

Question	Criteria	Marks	Bands
6(a)	A F		
	$\angle ECD = x \text{ (straight angle)}$ $\angle ABD = x \text{ (subtended by arc } AD\text{)}$	1	
	$but \angle EBF + \angle ABD = 180^\circ \rightarrow 2x = 180^\circ \rightarrow x = 90^\circ$	1	
6(a)(ii)	From (i) $\angle DBF = 90^{\circ} \rightarrow \angle ABD = 90^{\circ}$ (straight angle) This means that $\angle ABD$ is the angle in a semi-circle. So AD is a diameter \rightarrow length of $AD = 2r$.	1 1	
6(b)	The coefficient of $x^5 = {}^9C_5a^5 = 126a^5$ The coefficient of $x^6 = {}^9C_6a^6 = 84a^6$	1 1	
	$126a^5 = 2 \times 84a^6$ $a = \frac{3}{4}$	1 1	
6(c)(i)	$P(\text{at most one even}) = P(\text{none even}) + P(\text{one even})$ $= p^{6} + {}^{6}C_{1}p^{5}(1-p)$ $= p^{6} + 6p^{5} - 6p^{6}$	1	
	$=6p^5-5p^6$	1	
6(c)(ii)	For the product to be odd – all scores would be odd. $P(\text{all odd}) = p^6 \rightarrow P(\text{even product}) = 1 - p^6$	1 1	

Question	Criteria	Marks	Bands
7	(x^2)		
	$P(x, e^{-x})$		
	$A = x \times e^{-x^2}$	1	
	$A' = e^{-x^2} \cdot 1 + x \cdot -2xe^{-x^2}$ $= e^{-x^2} (1 - 2x^2)$		
	Maximum area occurs when $A'=0$;	1	
	$e^{-x^2} = 0,$ $1-2x^2 = 0$ $e^{-x^2} = 0,$ $1-2x^2 = 0$		
	no solution $x = \frac{1}{\sqrt{2}}$ (since <i>P</i> is in the 1st quadrant)	1	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	
	So this is a maximum area.		
	$A = \frac{1}{\sqrt{2}} e^{-\left(\frac{1}{\sqrt{2}}\right)^2}$		
	$=\frac{1}{\sqrt{2}}e^{-\frac{1}{2}}=\frac{1}{\sqrt{2}}\frac{1}{\sqrt{e}}=\frac{1}{\sqrt{2e}}$	1	
7(b)(i)	$\sin x + \cos x = A \sin \left(x + \alpha \right)$		
	$\sin x + \cos x = A \sin x \cos \alpha + A \cos x \sin \alpha$		
	$A\cos\alpha = 1, A\sin\alpha = 1 \rightarrow \frac{A\sin\alpha}{A\cos\alpha} = 1 \rightarrow \tan\alpha = 1 \rightarrow \alpha = \frac{\pi}{4}$	1	
	$A = \sqrt{1^2 + 1^2} = \sqrt{2} \to \sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4} \right).$	1	
7(b)(ii)	$y = e^x \sin x \rightarrow y' = \sin x \cdot e^x + e^x \cdot \cos x = e^x \left(\cos x + \sin x\right)$	1	
	but $\sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4} \right)$		
	$y' = e^x \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) = \sqrt{2}e^x \sin\left(x + \frac{\pi}{4}\right)$	1	

7(b)(iii)	RTP $\frac{d^n y}{dx^n} = (\sqrt{2})^n e^x \sin\left(x + \frac{n\pi}{4}\right).$ when $n = 1$: $\frac{d^n y}{dx^n} = (\sqrt{2})^n e^x \sin\left(x + \frac{n\pi}{4}\right) \rightarrow \frac{dy}{dx} = (\sqrt{2})^1 e^x \sin\left(x + \frac{1\pi}{4}\right)$ true from (ii) suppose it is true for some value of n say k	1	
	$\frac{d^{k}y}{dx^{k}} = \left(\sqrt{2}\right)^{k} e^{x} \sin\left(x + \frac{k\pi}{4}\right).$ Prove it is true for $n = k + 1$ $\operatorname{RTP} \frac{d^{k+1}y}{dx^{k+1}} = \left(\sqrt{2}\right)^{k+1} e^{x} \sin\left(x + \frac{(k+1)\pi}{4}\right).$ $\frac{d^{k+1}y}{dx^{k+1}} = \frac{d}{dx} \frac{d^{k}y}{dx^{k}} = \frac{d}{dx} \left(\sqrt{2}\right)^{k} e^{x} \sin\left(x + \frac{k\pi}{4}\right).$ $= \left(\sqrt{2}\right)^{k} \left(\sin\left(x + \frac{k\pi}{4}\right)e^{x} + e^{x}\cos\left(x + \frac{k\pi}{4}\right)\right)$ $= \left(\sqrt{2}\right)^{k} e^{x} \left(\sin\left(x + \frac{k\pi}{4}\right) + \cos\left(x + \frac{k\pi}{4}\right)\right)$	1	
	$= \left(\sqrt{2}\right)^{k} e^{x} \sqrt{2} \sin\left(x + \frac{k\pi}{4} + \frac{\pi}{4}\right) \text{ from (i)}$ $= \left(\sqrt{2}\right)^{k+1} e^{x} \sin\left(x + \frac{(k+1)\pi}{4}\right)$ proved by induction.	1	