Total marks - 84
Attempt Questions 1 - 7
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question $1 \quad$ (12 marks)
(a) Solve $\frac{4}{x+1} \geq 1$
(b) Evaluate $\int_{0}^{3} \frac{d x}{\sqrt{9-x^{2}}}$
(c) Let A be the point $(-2,1)$ and B be the point $(5,2)$.

Find the coordinates of the point P which divides $A B$ externally in the ratio 5:4
(d) Indicate on a number plane the region satisfied by both $x^{2}+y^{2} \leq 1$ and $y \geq x$
(e) Use the substitution $u^{2}=x-2$ to evaluate $\int_{2}^{3} x \sqrt{x-2} d x$

Question 2 (12 marks) Use a SEPARATE writing booklet.
(a) The polynomial equation $2 x^{3}-3 x^{2}+4 x-7=0$ has roots α, β and γ.

Find the exact value of $\frac{1}{\alpha \beta}+\frac{1}{\alpha \gamma}+\frac{1}{\beta \gamma}$.
(b) Find $\frac{d}{d x} \cos ^{-1}\left(4 x^{3}\right)$.
(e) A debating team of three people is to be chosen from five English teachers and four Mathematics teachers.
(i) In how many ways can the team be chosen?
(ii) What is the probability that that the whole of the team will be 1 Mathematics teachers?

Question 3 (12 marks) Use a SEPARATE writing booklet.
(a) Find $\int \cos ^{2} 6 x d x$
(b) Let $P(x)=3 x^{3}-a x^{2}-b x+1$, where $P(x)$ is a polynomial and a and b are real numbers.

When $P(x)$ is divided by $(x-1)$ there is no remainder.
When $P(x)$ is divided by $(x+2)$ the remainder is 15 .
Find the values of a and b.
(c) Two parallel lines have equations $x-m y+1=0$ and $x-m y-1=0$
(i) Show that $\left(0, \frac{1}{m}\right)$ lies on $x-m y+1=0$.
(ii) Find m given that the perpendicular distance between the lines is 1 unit.
(d)

A plane is flying horizontally from A to B at a height of 2000 m .
From a point E the angle of elevation of A is 15°.
From E the angle of elevation of B is 25°.
If $\angle D E C=60^{\circ}$, calculate the distance $A B$ to the nearest metre.
(a) Use mathematical induction to prove that
$\frac{1}{1 \times 5}+\frac{1}{5 \times 9}+\ldots+\frac{1}{(4 n-3)(4 n+1)}=\frac{n}{4 n+1}$
(b) The point $P\left(2 a p, a p^{2}\right)$ lies on the parabola $x^{2}=4 a y$.
(i) Prove that the tangent at P cuts the y-axis at $T\left(0,-a p^{2}\right)$.
(ii) $\quad M$ is the midpoint of the interval $P T$. Find the locus of M.
(c) Maddison is one of ten members of the chess club. Each week one member is selected at random to win a prize.
(i) What is the probability that in the first 7 weeks Maddison will win at least 1 prize?
(ii) Show that in the first 20 weeks, Maddison has a greater chance of winning exactly two prizes, than of winning exactly one prize.
(iii) For how many weeks must Maddison participate in the prize drawing so that she has a greater chance of winning exactly 3 prizes than of winning exactly 2 prizes.

Question 5 (12 marks) Use a SEPARATE writing booklet.
(a) (i) Evaluate $\int_{2}^{8} \frac{8}{x} d x$, write your answer in the form $a \log 2$, where a is an integer
(ii) Use Simpson's Rule with 3 function values to find an approximation for $\int_{2}^{8} \frac{8}{x} d x$
(iii) Hence find an approximation for $\log 2$, correct to 3 decimal places.
(b) The diagram below shows a sketch of the graph $y=f(x)$, where $f(x)=\frac{1}{1+x^{3}}$, for $x \geq 0$.

(i) Copy or trace this diagram into your answers. On the same set of axes, sketch the inverse function, $y=f^{-1}(x)$.
(ii) State the domain of $f^{-1}(x)$.
(iii) Find an expression for $f^{-1}(x)$ in terms of x.
(iv) The graphs of $y=f(x)$ and $y=f^{-1}(x)$ meet at exactly one point P. Let α be the x-coordinate of P. Explain why α is a root of the equation

$$
x^{4}+x-1=0 .
$$

(v) Take 0.5 as a first approximation to α. Use one application of Newton's method to find a second approximation for α.

Question 6 (12 marks) Use a SEPARATE writing booklet.
(a)

The points A, B, C and D are placed on a circle of radius r such that $A C$ and $B D$ meet at E. The lines $A B$ and $D C$ are produced to meet at F, and $B E C F$ is a cyclic quadrilateral.

Copy or trace this diagram into your answer booklet.
(i) Find the size of $\angle D B F$, giving reasons for your answer.
(ii) Find an expression for the length of $A D$ in terms of r.
(b) In the expansion of $(1+a x)^{9}$ the coefficient of x^{5} is twice the coefficient of x^{6}. Find the value of the constant a.
(c) A die is biased so that in any single throw the probability of an odd score is p, where p is a constant such that $0<p<1, p \neq \frac{1}{2}$.
(i) Show that in six throws of the die the probability of at most one even score is given by $6 p^{5}-5 p^{6}$.
(ii) Find the probability that in six throws of the die the product of the scores is even. 2

Question 7 (12 marks) Use a SEPARATE writing booklet.

(a) $\quad P$ is a point on the curve $y=e^{-x^{2}}$. The origin is at O and perpendiculars through P to the coordinate axes meet those axes at Q and R. Show that the maximum area of the rectangle $O Q P R$ is given by $\frac{1}{\sqrt{2 e}}$.
(b) (i) Show that $\sin x+\cos x=\sqrt{2} \sin \left(x+\frac{\pi}{4}\right)$.
(ii) Prove that the derivative of $y=e^{x} \sin x$ is given by $\frac{d y}{d x}=\sqrt{2} e^{x} \sin \left(x+\frac{\pi}{4}\right)$
(iii) If $y=e^{x} \sin x$ prove by mathematical induction that the $n^{\text {th }}$ derivative is given by $\frac{d^{n} y}{d x^{n}}=(\sqrt{2})^{n} e^{x} \sin \left(x+\frac{n \pi}{4}\right)$.

HSC Extension 1 Mathematics Internal Examination Solutions 2005

Question	Criteria	Marks	Bands
1 (a)	$\frac{4}{x+1} \geq 1, x \neq-1$,	1	
	Let $\frac{4}{x+1}=1$		
	$x=3$	1	
	$-1 \leq x \leq 3$	1	

Question	Criteria	Marks	Bands
$1(\mathrm{~b})$	$\int_{0}^{3} \frac{d x}{\sqrt{9-x^{2}}}=\left[\sin ^{-1} \frac{x}{3}\right]_{0}^{3}$	1	
	$=\frac{\pi}{2}$	1	

Question	Criteria	Marks	Bands
1 (c)	$(-2,1)(5,2) .5:-4$		
	$x=\frac{k x_{2}+l x_{1}}{k+l}, y=\frac{k y_{2}+l y_{1}}{k+l}$		
	$x=\frac{5 \times 5+-4 \times-2}{5+-4}, y=\frac{5 \times 2+-4 \times 1}{5+-4}$		
$x=33, y=6 \rightarrow P(33,6)$	1		

Question	Criteria	Marks	Bands	
1 (d)		1 for correct graphs 1 for correct shading	1	

Question	Criteria	Marks	Bands
$1(\mathrm{e})$	$\int_{2}^{3} x \sqrt{x-2} d x \quad x-2=u^{2} \rightarrow x=u^{2}+2 \rightarrow d x=2 u d u$	1	
$u_{1}^{2}=3-2 \rightarrow u_{1}=1, u_{1}^{2}=2-2 \rightarrow u_{2}=0$			
	$\int_{2}^{3} x \sqrt{x-2} d x=\int_{0}^{1}\left(u^{2}+2\right) \sqrt{u^{2}} 2 u d u$	1	1
$2 \int_{0}^{1}\left(u^{4}+2 u^{2}\right) d u=2\left[\frac{u^{5}}{5}+\frac{2 u^{3}}{3}\right]_{0}^{1}=\frac{26}{15}$			

Question	Criteria	Marks	Bands
2(a)	$2 x^{3}-3 x^{2}+4 x-7=0$		
	$\alpha+\beta+\gamma=\frac{3}{2}, \alpha \beta+\alpha \gamma+\beta \gamma=2, \alpha \beta \gamma=\frac{7}{2}$ 1		
	$\frac{1}{\alpha \beta}+\frac{1}{\alpha \gamma}+\frac{1}{\beta \gamma}=\frac{\gamma+\beta+\alpha}{\alpha \beta \gamma}$ $=\frac{3}{2} \div \frac{7}{2}=\frac{3}{7}$ 1		

Question	Criteria		Marks	Bands
2(b)	$\frac{d}{d x} \cos ^{-1}\left(4 x^{3}\right)=\frac{-1}{\sqrt{1-\left(4 x^{3}\right)^{2}}} \times 12 x^{2}$	one mark if only the denominator is correct	1	
$=\frac{-12}{\sqrt{1-16 x^{6}}}$		1		

Question	Criteria	Marks	Bands
2(c)	$x(x+4)=6^{2}$ (product of secants = square of the tangent)	1	
	$x^{2}+4 x=36$ $(x+2)^{2}$ $=40$ $x=-2+2 \sqrt{10}$ 1		

Question	Criteria	Marks	Bands
2(d)	$5 \sin x-2 \cos x=2 \rightarrow 5 \times \frac{2 t}{1+t^{2}}-2 \times \frac{1-t^{2}}{1+t^{2}}=2$		
$10 t-2+2 t^{2}=2+2 t^{2}$	1		
$10 t=4 \rightarrow t=0.4 \rightarrow \tan \frac{x}{2}=0.4$	1		
$\frac{x}{2}=21^{\circ} 48^{\prime}, x=43^{\circ} 36^{\prime}$			
check $180^{\circ} ; 5 \sin 180^{\circ}-2 \cos 180^{\circ}=2 \checkmark$			
$x=43^{\circ} 36^{\prime}, 180^{\circ}$			

Question	Criteria	Marks	Bands
2(e)(i)	${ }^{9} C_{3}=84$	1	
2(e)(ii)	$\frac{{ }^{4} C_{3}}{9}=\frac{4}{84}=\frac{1}{21}$	1	

Question	Criteria	Marks	Bands
3(a)	$\begin{aligned} & \cos ^{2} x=\frac{1}{2}(\cos 2 x+1) \rightarrow \cos ^{2} 6 x=\frac{1}{2}(\cos 12 x+1) \\ & \int \cos ^{2} 6 x d x=\int \frac{1}{2}(\cos 12 x+1) d x=\frac{\sin 12 x}{24}+\frac{x}{2}+C \end{aligned}$	1	
3(b)	$\begin{aligned} & P(x)=3 x^{3}-a x^{2}-b x+1 \\ & P(1)=0 \rightarrow 3-a-b+1=0 \rightarrow a+b=4 \\ & P(-2)=15 \rightarrow-24-4 a-2 b+1=15 \rightarrow-2 a+b=19 \\ & -2 a+b=19 \\ & \frac{a+b=4}{a=-5, b}=9 \end{aligned}$	1 1 1	
3(c)(i)	$\begin{aligned} & x-m y+1=0 \\ & 0-m\left(\frac{1}{m}\right)+1=0,\left(0, \frac{1}{m}\right) \\ & 0=0 \boxtimes \end{aligned}$	1	
3(c)(ii)	$\begin{aligned} & x-m y-1=0,\left(0, \frac{1}{m}\right) \\ & \text { p.d. }=\frac{\left\|a x_{1}+b y_{1}+c\right\|}{\sqrt{a^{2}+b^{2}}} x-m y-1=0,\left(0, \frac{1}{m}\right) \\ & \text { p.d. }=\frac{\|0-1-1\|}{\sqrt{1^{2}+(-m)^{2}}} \\ & \quad=\frac{2}{\sqrt{1+m^{2}}}=1 \rightarrow m= \pm \sqrt{3} \end{aligned}$	1 1	
3(d)		1 1 1 1	

Question	Criteria	Marks	Bands
4(a)	$\frac{1}{1 \times 5}+\frac{1}{5 \times 9}+\ldots+\frac{1}{(4 n-3)(4 n+1)}=\frac{n}{4 n+1}$ Test $n=1:$ LHS $=\frac{1}{1 \times 5}=\frac{1}{5}$ RHS $=\frac{1}{4 \times 1+1}=\frac{1}{5}$ true for $n=1$ Suppose its true for some value of n, say k. $\frac{1}{1 \times 5}+\frac{1}{5 \times 9}+\ldots+\frac{1}{(4 k-3)(4 k+1)}=\frac{k}{4 k+1}$ Prove true for $n=k+1$; RTP: $\begin{aligned} & \frac{1}{1 \times 5}+\frac{1}{5 \times 9}+\ldots+\frac{1}{(4 k-3)(4 k+1)}+\frac{1}{(4 k+1)(4 k+5)}=\frac{k+1}{4 k+5} \\ & \begin{aligned} \text { LHS } & =\frac{k}{4 k+1}+\frac{1}{(4 k+1)(4 k+5)} \\ & =\frac{k(4 k+5)+1}{(4 k+1)(4 k+5)} \\ & =\frac{4 k^{2}+5 k+1}{(4 k+1)(4 k+5)}=\frac{(4 k+1)(k+1)}{(4 k+1)(4 k+5)} \\ & =\frac{k+1}{4 k+5} \end{aligned} \end{aligned}$ Proved by induction	1 1 1	
4(b)(i)	$\begin{aligned} & x^{2}=4 a y \rightarrow y=\frac{x^{2}}{4 a} \rightarrow \frac{d y}{d x}=\frac{2 x}{4 a}\left(2 a p, a p^{2}\right) \\ & m=\frac{2 \times 2 a p}{4 a}=p \rightarrow y-a p^{2}=p(x-2 a) \rightarrow y=p x-a p^{2} \\ & \text { cuts the } y \text {-axis when } x=0 \rightarrow y=-a p^{2} \rightarrow T=\left(0,-a p^{2}\right) \end{aligned}$	1 1	
4(b)(ii)	$M=\left(\frac{2 a p+0}{2}, \frac{-a p^{2}+a p^{2}}{2}\right)=(a p, 0)$ The locus of M is $y=0$.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
4(c)(i)	$\begin{aligned} & P(\text { at least one })=1-P(\text { none }) \\ & P(\text { at least one })=1-\left(\frac{9}{10}\right)^{7}=0.52(2 \mathrm{dp}) \end{aligned}$	1	
4(c)(ii) 4(c) (iii)	$\begin{aligned} & P(2 \text { wins })={ }^{20} C_{2}\left(\frac{9}{10}\right)^{18}\left(\frac{1}{10}\right)^{2}=0.285(3 \mathrm{dp}) \\ & P(1 \text { win })^{20} C_{1}\left(\frac{9}{10}\right)^{19}\left(\frac{1}{10}\right)^{1}=0.270(3 \mathrm{dp}) \\ & \therefore P(2 \text { wins })>P(1 \text { win }) \\ & n=30 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	

Question	Criteria	Marks	Bands
5(a)(i)	$\begin{aligned} \int_{2}^{8} \frac{8}{x} d x & =8[\ln x]_{2}^{8} \\ & =8(\ln 8-\ln 2) \\ & =8 \ln 4=8 \ln 2^{2} \\ & =16 \ln 2 \end{aligned}$	1 1	
5(a)(ii)	$\begin{aligned} \int_{2}^{8} \frac{8}{x} d x & \approx \frac{8-2}{6}(f(2)+4 f(5)+f(8)) \\ & =4+4 \times 1.6+1 \\ & =11.4 \end{aligned}$	1 1	
5(a)(iii)	$16 \ln 216 \ln 2 \approx 11.4 \rightarrow \ln 2 \approx \frac{11.4}{16}=0.7125$	1	
5(b)(i)		1	
5(b)(ii)	$x \leq 1$	1	
5(b)(iii)	$y=\frac{1}{1+x^{3}}$ To find the inverse function swap x and y. $\begin{aligned} & x=\frac{1}{1+y^{3}} \\ & 1+y^{3}=\frac{1}{x} \\ & y^{3}=\frac{1}{x}-1 \\ & y=\sqrt[3]{\frac{1-x}{x}} \end{aligned}$	1 1	
5(b)(iv)	A function and its inverse intersect on the line $y=x$ $\frac{1}{1+x^{3}}=x \rightarrow 1=x+x^{4} \rightarrow x^{4}+x-1=0$	1	
5(b)(v)	$\begin{aligned} & f(x)=x^{4}+x-1, f^{\prime}(x)=4 x^{3}+1 \rightarrow f\left(\frac{1}{2}\right)=\frac{-7}{16} \rightarrow f^{\prime}\left(\frac{1}{2}\right)=\frac{3}{2} \\ & x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=\frac{1}{2}-\frac{f\left(\frac{1}{2}\right)}{f^{\prime}\left(\frac{1}{2}\right)}=\frac{1}{2}-\frac{\frac{-7}{16}}{\frac{3}{2}}=\frac{19}{24} \end{aligned}$	1 1	

Question	Criteria	Marks	Bands
6(a)			

Question	Criteria	Marks	Bands
7	$\begin{aligned} A & =x \times e^{-x^{2}} \\ A^{\prime} & =e^{-x^{2}} \cdot 1+x \cdot-2 x e^{-x^{2}} \\ & =e^{-x^{2}}\left(1-2 x^{2}\right) \end{aligned}$ Maximum area occurs when $A^{\prime}=0$; $\begin{aligned} & e^{-x^{2}}\left(1-2 x^{2}\right)=0 \\ & e^{-x^{2}}=0, \quad 1-2 x^{2}=0 \end{aligned}$ no solution $\quad x=\frac{1}{\sqrt{2}}$ (since P is in the 1st quadrant) So this is a maximum area. $\begin{aligned} A & =\frac{1}{\sqrt{2}} e^{-\left(\frac{1}{\sqrt{2}}\right)^{2}} \\ & =\frac{1}{\sqrt{2}} e^{-\frac{1}{2}}=\frac{1}{\sqrt{2}} \frac{1}{\sqrt{e}}=\frac{1}{\sqrt{2 e}} \end{aligned}$	1 1 1 1 1	
7(b)(i)	$\begin{aligned} & \sin x+\cos x=A \sin (x+\alpha) \\ & \sin x+\cos x=A \sin x \cos \alpha+A \cos x \sin \alpha \\ & A \cos \alpha=1, A \sin \alpha=1 \rightarrow \frac{A \sin \alpha}{A \cos \alpha}=1 \rightarrow \tan \alpha=1 \rightarrow \alpha=\frac{\pi}{4} \\ & A=\sqrt{1^{2}+1^{2}}=\sqrt{2} \rightarrow \sin x+\cos x=\sqrt{2} \sin \left(x+\frac{\pi}{4}\right) . \end{aligned}$	1 1	
7(b)(ii)	$\begin{aligned} & y=e^{x} \sin x \rightarrow y^{\prime}=\sin x \cdot e^{x}+e^{x} \cdot \cos x=e^{x}(\cos x+\sin x) \\ & \text { but } \sin x+\cos x=\sqrt{2} \sin \left(x+\frac{\pi}{4}\right) \\ & y^{\prime}=e^{x} \sqrt{2} \sin \left(x+\frac{\pi}{4}\right)=\sqrt{2} e^{x} \sin \left(x+\frac{\pi}{4}\right) \end{aligned}$	1 1	

7 (b)(iii)	RTP $\frac{d^{n} y}{d x^{n}}=(\sqrt{2})^{n} e^{x} \sin \left(x+\frac{n \pi}{4}\right)$. when $n=1:$ $\frac{d^{n} y}{d x^{n}}=(\sqrt{2})^{n} e^{x} \sin \left(x+\frac{n \pi}{4}\right) \rightarrow \frac{d y}{d x}=(\sqrt{2})^{1} e^{x} \sin \left(x+\frac{1 \pi}{4}\right)$ true from (ii) suppose it is true for some value of n say k. $\frac{d^{k} y}{d x^{k}}=(\sqrt{2})^{k} e^{x} \sin \left(x+\frac{k \pi}{4}\right)$. Prove it is true for $n=k+1$ RTP $\frac{d^{k+1} y}{d x^{k+1}}=(\sqrt{2})^{k+1} e^{x} \sin \left(x+\frac{(k+1) \pi}{4}\right)$. $\frac{d^{k+1} y}{d x^{k+1}}=\frac{d}{d x} \frac{d^{k} y}{d x^{k}}=\frac{d}{d x}(\sqrt{2})^{k} e^{x} \sin \left(x+\frac{k \pi}{4}\right)$. $=(\sqrt{2})^{k}\left(\sin \left(x+\frac{k \pi}{4}\right) e^{x}+e^{x} \cos \left(x+\frac{k \pi}{4}\right)\right)$ $=(\sqrt{2})^{k} e^{x}\left(\sin \left(x+\frac{k \pi}{4}\right)+\cos \left(x+\frac{k \pi}{4}\right)\right)$ $=(\sqrt{2})^{k} e^{x} \sqrt{2} \sin \left(x+\frac{k \pi}{4}+\frac{\pi}{4}\right)$ from(i) $=(\sqrt{2})^{k+1} e^{x} \sin \left(x+\frac{(k+1) \pi}{4}\right)$ proved by induction.	1

