

2008 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

# **Mathematics Extension 1**

### **General Instructions**

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Start a new booklet for each question

### Total marks – 84

- Attempt Questions 1 7
- All questions are of equal value

Kincoppal-Rose Bay, School of the Sacred Heart Mathematics HSC Trial Examination, August 2008

**Blank Page** 

# Question 1 (12 marks) Use a SEPARATE writing booklet

(a) Solve the inequality  $\frac{4-2x}{x+5} \le 2$  3

(b) Find 
$$\lim_{x \to 0} \frac{\sin\left(\frac{\pi}{3}x\right)}{2x}$$
 2

(c) Given that 
$$0 < \alpha < \frac{\pi}{2}$$
, show that  $S_{\infty} = 2 \cot \alpha$  for the geometric series 2

 $\sin 2\alpha + \sin 2\alpha \cos^2 \alpha + \sin 2\alpha \cos^4 \alpha + \sin 2\alpha \cos^6 \alpha + \dots$ 

(d) A function is given by the rule 
$$y = \frac{x+1}{x+2}$$
. Find the rule for the inverse function. 2

(e) Find 
$$\int \frac{-2}{\sqrt{9-4x^2}} dx$$
 3

**End of Question 1** 

AD/ND 6<sup>th</sup> August 2008

Marks

## Question 2 (12 marks) Use a SEPARATE writing booklet.

#### Marks

2

1

(a) *CD* is a tangent to the circle and *AC* is a secant to the circle intersecting the circle at *B*.



(i) Prove that  $\triangle CDB \parallel \mid \triangle CAD$ .

(ii) Hence show that 
$$(CD)^2 = CA \times CB$$



AC is a secant to the circle, centre O, intersecting the circle at B. CD is a tangent to the circle. BC is 6cm and AD is 8cm.

Find the exact length of *DC*, giving reasons.

2

## **Question 2 continued on page 5**

(b)

### Question 2 (continued)

On one expressway driving to the Blue Mountains there are five toll gates.
 Three of these gates are automatically operated and the other two are manually operated.
 Drivers with an official "etag" are able to use any of the gates but those without must use one of the manually operated gates.

Si Ting, Yuki and Ikuko drive through the toll gates everyday with their "etag".

- (i) One day Si Ting has left her "etag" at home.
   2
   Find the number of ways in which the three drivers can go through the toll gates so that they all use different gates.
- (ii) On another day all drivers have their "etags".
   2
   Find the number of ways in which the three drivers can go through the toll gates so that exactly one goes through a manually operated gate.
- (d) Find the constant term in the expansion of  $\left(x \frac{1}{2x^3}\right)^{20}$  3

Question 3 (12 marks) Use a SEPARATE writing booklet.Marks(a) The point  $P(2ap, ap^2)$  lies on the parabola  $x^2 = 4ay$ . The focus S is the point (0, a).<br/>The tangent at P meets the y axis at Q.The focus S is the point (0, a).<br/>The tangent at P meets the y axis at Q.(i) Given that the equation of the tangent at P is  $y = px - ap^2$ ,<br/>find the coordinates of Q1(ii) Prove that SP = SQ2

(b) (i) Express  $\cos \theta - \sqrt{3} \sin \theta$  in the form  $R \cos(\theta + \alpha)$  where  $\alpha$  is in radians. 2 (ii) Hence, or otherwise, graph  $\cos \theta - \sqrt{3} \sin \theta$  3

for 
$$0 \le \theta \le 2\pi$$
, indicating all **intercepts**

(c) Use the process of Mathematical Induction to prove that for all positive integers n, 4 where  $n \ge 1$ :

$$\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$$

| Question 4 (12 marks) Use a SEPARATE writing booklet. |                                                                      |                                                                                                                                     |   |  |  |  |
|-------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|
| (a)                                                   | The function $f(x) = x^3 - \ln(x+1)$ has one root between 0.5 and 1. |                                                                                                                                     |   |  |  |  |
|                                                       | (i)                                                                  | Show that the root lies between 0.8 and 0.9.                                                                                        | 1 |  |  |  |
|                                                       | (ii)                                                                 | Hence, use the Halving of the Interval method once,<br>to find the root correct to one decimal place. You must justify your choice. | 2 |  |  |  |
| (b)                                                   | Let $f($                                                             | $f(x) = \frac{x}{x^2 - 1}$                                                                                                          |   |  |  |  |
|                                                       | (i)                                                                  | For what values of x is $f(x)$ undefined.                                                                                           | 1 |  |  |  |
|                                                       | (ii)                                                                 | Show that $y = f(x)$ is odd.                                                                                                        | 1 |  |  |  |
|                                                       | (iii)                                                                | Show that $y = f(x)$ is decreasing for all values of x for which the function is defined.                                           | 2 |  |  |  |
|                                                       | (iv)                                                                 | Hence sketch $y = f(x)$ .                                                                                                           | 2 |  |  |  |
| (c)                                                   | (i)                                                                  | Write down the expression for $\tan 2A$ in terms of $\tan A$ .                                                                      | 1 |  |  |  |
|                                                       | (ii)                                                                 | Given $f(a) = a \cot a$ (i.e. $f(b) = b \cot b \operatorname{etc}$ ), show that<br>$f(2a) = (1 - \tan^2 a) f(a)$                    | 2 |  |  |  |

Question 5 (12 marks) Use a SEPARATE writing booklet.

(a) Differentiate 
$$\sin^{-1}(e^{-x})$$
 2

- (b) Two of the roots  $x^3 + ax^2 + b = 0$  are reciprocals of each other, *a*, *b* are real numbers.
  - (i) Show that the third root is equal to -b. 1

Marks

(ii) Show that 
$$a = b - \frac{1}{b}$$
. 3

- (c) The two curves  $y = e^x 1$  and  $y = 2e^{-x}$  intersect at the point *P*.
  - (i) Solve the equations simultaneously in order to show that the **3** coordinates of the point *P* are  $(\ln 2, 1)$
  - (ii) Find the acute angle between the tangents to the curves  $y = e^x 1$  3 and  $y = 2e^{-x}$  at the point *P*. Give your answer correct to the nearest degree.

#### Question 6 (12 marks) Use a SEPARATE writing booklet.

(a) Use the substitution 
$$x = u^2$$
 ( $u > 0$ ) to show

$$\int_{\frac{1}{4}}^{\frac{1}{2}} \frac{1}{\sqrt{x}\sqrt{1-x}} \, dx = \frac{\pi}{6}$$

- (b) From the top of a cliff an observer spots two ships out at sea. One is on a true bearing of 042° with an angle of depression of 6° while the other is on a true bearing of 312° with an angle of depression of 4°.
  If the two ships are 200 metres apart, find the height of the cliff, to the nearest metre.
- (c) Consider the expansion  $(7+3x)^{25}$

(i) Show that 
$$\frac{t_{k+1}}{t_k} = \frac{3(25-k)}{7(k+1)}$$
, 3

where  $t_k$  is defined to be the coefficient of the term in  $x^k$ ,  $0 \le k \le 25$ .

(ii) Hence, or otherwise, find the greatest coefficient  $t_k$ . 2

You may leave your answer in the form  $\binom{25}{k} 7^c 3^d$ .

#### **End of Question 6**

Marks

4

**Question 7** (12 marks) Use a SEPARATE writing booklet.

# (a) Consider the function $f(x) = \cos^{-1} \sqrt{x}$

| (i) | Explain why the domain of $f(x)$ is $0 \le x \le 1$ . | 1 |
|-----|-------------------------------------------------------|---|
|     |                                                       |   |

Marks

- (ii) Find the range of the function and sketch the graph of y = f(x) 2
- (iii) Use Simpson's Rule with three function values to find an approximation to the **2** area bounded by the curve y = f(x) and the coordinate axes.
- (iv) Use integration to find the exact area bounded by the curve y = f(x) 4 and the coordinate axes.
- (b)(i)Write down the expansion of  $x(1+x)^n$ .1(ii)By first differentiating with respect to x, then substituting x=1,2

show that  ${}^{n}C_{0} + 2{}^{n}C_{1} + 3{}^{n}C_{2} + \dots + (n+1){}^{n}C_{n} = (n+2)2^{n-1}$ 

Kincoppal-Rose Bay, School of the Sacred Heart Mathematics HSC Trial Examination, August 2008

**Blank Page** 

| Question | Criteria                                                                                                                    | Marks | Bands |
|----------|-----------------------------------------------------------------------------------------------------------------------------|-------|-------|
| 1(a)     | $\frac{4-2x}{x+5} \le 2 \qquad \text{where } x \ne -5$                                                                      | 1     |       |
|          | $4 - 2x \le 2x + 10$                                                                                                        | 1     |       |
|          | $-4x \le 6$ $x \ge -1.5$                                                                                                    | -     |       |
|          | By checking: $x < -5$ and $x > -1.5$                                                                                        | 1     |       |
| 1(b)     | $\frac{1}{\sin\left(\frac{\pi}{2}x\right)} = \frac{1}{\sin\left(\frac{\pi}{2}x\right)} \left(\frac{\pi}{2}x\right)$         | 1     |       |
|          | $\lim_{x \to 0} \frac{(3)}{2x} = \lim_{x \to 0} \frac{(3)}{(\frac{\pi}{3}x)} \times \frac{(3)}{2x}$                         | 1     |       |
|          | $=1\times\frac{\left(\frac{\pi}{3}x\right)}{2x}$                                                                            |       |       |
|          | $=\frac{\pi}{6}$                                                                                                            | 1     |       |
| 1(c)     | $a = \sin 2\alpha,  r = \cos^2 \alpha$                                                                                      | 1     |       |
|          | $S_{\infty} = \frac{\sin 2\alpha}{1 - \frac{2}{2}}$                                                                         |       |       |
|          | $=\frac{2\sin\alpha\cos\alpha}{\sin\alpha\cos\alpha}$ substitution and cancelling                                           | 1     |       |
|          | $\sin^2 \alpha$                                                                                                             |       |       |
|          | $=\frac{2\cos\alpha}{\sin\alpha}$                                                                                           |       |       |
|          | $= 2 \cot \alpha$                                                                                                           |       |       |
| 1(d)     | $f: y = \frac{x+1}{x+2}$                                                                                                    |       |       |
|          | $f^{-1}: x = \frac{y+1}{y+2}$                                                                                               | 1     |       |
|          | xy + 2x = y + 1                                                                                                             |       |       |
|          | xy - y = 1 = 2x                                                                                                             |       |       |
|          | y(x-1) = 1 - 2x                                                                                                             | 1     |       |
|          | $y = \frac{1 - 2x}{x - 1}$                                                                                                  | 1     |       |
| 1(e)     | $(e)  \int \frac{-2}{\sqrt{9-4x^2}} dx$                                                                                     |       |       |
|          | method 1: or method 2:                                                                                                      |       |       |
|          | $-2\int \frac{1}{\sqrt{4(\frac{9}{4}-x^{2})}}dx \qquad 2\int \frac{-1}{\sqrt{4(\frac{9}{4}-x^{2})}}dx$                      | 1     |       |
|          | $-2\int \frac{1}{2\sqrt{(\frac{9}{4}-x^2)}}dx \qquad \qquad 2\int \frac{-1}{2\sqrt{(\frac{9}{4}-x^2)}}dx$                   |       |       |
|          | $-\int \frac{1}{\sqrt{\left(\frac{9}{4}-x^2\right)}}dx \qquad \qquad \int \frac{-1}{\sqrt{\left(\frac{9}{4}-x^2\right)}}dx$ | 1     |       |
|          | $=-\sin^{-1}\left(\frac{x}{\frac{3}{2}}\right) \qquad \qquad =\cos^{-1}\left(\frac{x}{\frac{3}{2}}\right)$                  |       |       |
|          | $= -\sin^{-1}\frac{2x}{3} + C \qquad \qquad = \cos^{-1}\frac{2x}{3} + C$                                                    | 1     |       |
|          |                                                                                                                             |       | 1     |

#### Mathematics Extension 1 HSC Trial Exam 2008 Solutions

| Question | Criteria                                                           | Marks | Bands |
|----------|--------------------------------------------------------------------|-------|-------|
| 2(a)(i)  | $\angle CDB = \angle DAB$                                          |       |       |
|          | angle between the tangent and the chord equal to the angle         | 1     |       |
|          | in the alternate segment                                           |       |       |
|          | $\angle ACD = \angle BCD$                                          | 1     |       |
|          | common                                                             | -     |       |
|          | $\therefore \Delta CDB \parallel \Delta CAD$                       |       |       |
| 2(a)(ii) | $\frac{CD}{CB}$                                                    | 1     |       |
|          | CA CD                                                              |       |       |
|          | matching sides of simialr triangles                                |       |       |
|          | $\therefore CD^2 = CB.CA$                                          |       |       |
| 2(b)     | $\angle ADB = 90^{\circ}$                                          |       |       |
|          | angle in a semi-circle is a right angle                            | 1     |       |
|          | AB = 10cm Pythagoras                                               | 1     |       |
|          | $CD^2 = CA \times CB$                                              |       |       |
|          | $CD^2 = 16 \times 6$                                               |       |       |
|          | $\therefore CD = \sqrt{96}$ or $4\sqrt{6}$                         |       |       |
|          |                                                                    | 1     |       |
|          | Since $\triangle BDC$ is isosceles (2 sides equal)                 |       |       |
|          | $\angle BDC = \angle BCD$ (base angles equal)                      |       |       |
|          | Or $\angle BCD = \angle BAD$ (both equal to $\angle BDC$ )         |       |       |
|          | $\therefore \Delta ADC$ also isosceles                             |       |       |
|          | $\therefore AD = DC = 8$                                           |       |       |
| 2(c)(i)  | Si Ting 2 choices                                                  |       |       |
|          | Yuki 4 choices                                                     | 1     |       |
|          | Ikuko 3 choices $2x 4x^2 = 24$                                     | 1     |       |
| 2(c)(ii) | $2 \times 4 \times 3 = 24$                                         | 1     |       |
| 2(0)(11) | gate 1:                                                            |       |       |
|          | 3 choices for person through manual gate 1                         |       |       |
|          | 3 choices for auto gate for person 2                               |       |       |
|          | 3 choices for auto gate for person 3                               | 1     |       |
|          | $3 \times 3 \times 3$                                              |       |       |
|          | counting now many ways that one person goes through manual gate 2: |       |       |
|          | 3 choices for person through manual gate 2                         |       |       |
|          | 3 choices for auto gate for person 2                               |       |       |
|          | 3 choices for auto gate for person 3                               |       |       |
|          | 3×3×3                                                              |       |       |
|          | Total = 54 ways                                                    | 1     |       |

| 2(d) | $T_{k+1} = {}^{20}C_k x^k \left(\frac{1}{2}\right)^k \left(x^{-3}\right)^{20-k}$ |   |  |
|------|----------------------------------------------------------------------------------|---|--|
|      | $= {}^{20}C_k x^k \left(\frac{1}{2}\right)^k x^{3k-60}$                          | 1 |  |
|      | $= {}^{20}C_k x^{4k-60} \left(\frac{1}{2}\right)^k$                              |   |  |
|      | 4k - 60 = 0                                                                      | 1 |  |
|      | $\therefore k = 15$                                                              |   |  |
|      | ${}^{20}C_5\left(-\frac{1}{2}\right)^5 = \frac{-969}{2} = -485\frac{1}{2}$       | 1 |  |
|      |                                                                                  |   |  |

| Question | Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marks | Bands |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| 3(a)(i)  | $Q(0,-ap^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1     |       |
| 3(a)(ii) | $SP = PM = a + ap^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1     |       |
|          | definition of a parabola PM is perp. distance from directrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |
|          | $SQ = QS + QQ = a + \left -ap^2\right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1     |       |
|          | $\therefore SP = SQ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •     |       |
| 3(b)(i)  | <i>R</i> = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1     |       |
|          | $\alpha = \frac{\pi}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     |       |
|          | $2\cos\left(\theta + \frac{\pi}{3}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |       |
| 3(b)(ii) | y<br>3<br>- $\frac{2}{1}$<br>- $\frac{\pi}{3}$<br>- $\frac{\pi}{3}$<br>- $\frac{\pi}{3}$<br>- $\frac{\pi}{3}$<br>- $\frac{\pi}{3}$<br>- $\frac{\pi}{3}$<br>- $\frac{2\pi}{3}$<br>- $\frac{\pi}{3}$<br>- $\frac{2\pi}{3}$<br>- $\frac{\pi}{3}$<br>- $\frac{2\pi}{3}$<br>- $\frac{\pi}{3}$<br>- $\frac{4\pi}{3}$<br>- $\frac{5\pi}{3}$<br>- $\frac{5\pi}{3}$<br>- $\frac{2\pi}{3}$<br>- $\frac{4\pi}{3}$<br>- $\frac{5\pi}{3}$<br>- $\frac{2\pi}{3}$<br>- $\frac{4\pi}{3}$<br>- $\frac{5\pi}{3}$<br>- $\frac{2\pi}{3}$<br>- $\frac{1}{3}$<br>- $\frac{1}{3}$ |       |       |

3(c) Test for n = 1 $LHS = \frac{1}{3}$  $RHS = \frac{1}{2+1} = \frac{1}{3}$ 1  $\therefore$  *LHS* = *RHS* true for *n* = 1 Assume true for n = k $\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots + \frac{1}{(2k-1)(2k+1)} = \frac{k}{2k+1}$ Prove true for n = k + 1*i.e.*  $\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots + \frac{1}{(2k+1)(2k+3)} = \left[\frac{k+1}{2k+3}\right]$ 1  $LHS = \frac{k}{2k+1} + \frac{1}{(2k+1)(2k+3)}$ 1  $=\frac{k(2k+3)+1}{(2k+1)(2k+3)}$  $=\frac{2k^2+3k+1}{(2k+1)(2k+3)}$  $=\frac{(2k+1)(k+1)}{(2k+1)(2k+3)}$  $=\frac{\left(k+1\right)}{\left(2k+3\right)}$ 1  $\therefore$  true for n = k + 1It has been proved true for n = k + 1, and from above it was proved true for n = 1therefore it is true for n = 1 + 1, *i.e.* n = 2 and n = 3 and so on. Therefore it is true for all integers  $n \ge 1$ 

| Question  | Criteria                                            | Marks | Bands |
|-----------|-----------------------------------------------------|-------|-------|
| 4(a)(i)   | $f(x) = x^3 - \ln(x+1)$                             |       |       |
|           |                                                     |       |       |
|           | $f(0.8) = 0.8^3 - \ln(1.8)$                         |       |       |
|           | = -0.075                                            |       |       |
|           | $f(0.9) = 0.9^3 - \ln(1.9)$                         |       |       |
|           | = 0.087                                             |       |       |
|           |                                                     | 1     |       |
|           | $\therefore 0.8 < root < 0.9$ due to change of sign | 1     |       |
|           |                                                     |       |       |
| 4(a)(ii)  | $f(0.85) = 0.85^3 - \ln(1.85)$                      |       |       |
|           | = -0.00106                                          | 1     |       |
|           |                                                     |       |       |
|           | 0.85 < root < 0.9 due to change of sign             | 1     |       |
|           | $root \approx 0.9$ (to one decimal place)           |       |       |
|           |                                                     |       |       |
| 4(b)(i)   | $f(x) = \frac{x}{x}$                                | 1     |       |
|           | $x^{2}-1$                                           |       |       |
|           |                                                     |       |       |
|           | x is undefined for $x = \pm 1$                      |       |       |
|           |                                                     |       |       |
| 4(b)(ii)  | $f(-x) = \frac{-x}{x}$                              | _     |       |
|           | $(-x)^2 - 1$                                        | 1     |       |
|           | $=\frac{-x}{2}$                                     |       |       |
|           | $x^2 - 1$                                           |       |       |
| 4(b)(iii) | $(x^2 - 1) - 2x^2$                                  |       |       |
| 4(0)(11)  | $f'(x) = \frac{(x^2 - 1) - 2x}{(x^2 - 1)^2}$        |       |       |
|           | $-r^2 - 1$                                          |       |       |
|           | $=\frac{1}{(x^2-1)^2}$                              |       |       |
|           | $-(x^2+1)$ $\checkmark$ neg                         | -     |       |
|           | $=\frac{1}{(x^2-1)^2}$                              |       |       |
|           | which is negative for all $x$ . always decreasing   | 1     |       |
|           |                                                     |       |       |

## Mathematics Extension 1 HSC Task 3 2008 Solutions

Kincoppal-Rose Bay, School of the Sacred Heart Mathematics Extension 1 HSC Task 3 2008



| Question | Criteria                                                                                                                | Marks | Bands |
|----------|-------------------------------------------------------------------------------------------------------------------------|-------|-------|
| 5(a)     | $\frac{d}{d}(\sin^{-1}e^{-x}) = \frac{1}{d} + e^{-x}$                                                                   | 1     |       |
|          | $dx^{(5)} = \sqrt{1 - (e^{-x})^2} \wedge c$                                                                             |       |       |
|          | $-e^{-x}$                                                                                                               | 1     |       |
|          | $=\frac{1}{\sqrt{1-e^{-2x}}}$                                                                                           |       |       |
| 5(b)(i)  | let the roots of $x^3 + ax^2 + b = 0$ be $\alpha, \frac{1}{\alpha}, \beta$                                              |       |       |
|          | $\alpha \times \frac{1}{\alpha} \times \beta = \frac{-b}{1}$                                                            | 1     |       |
|          | $\therefore \beta = -b$                                                                                                 |       |       |
| 5(b)(ii) | $\alpha + \frac{1}{\alpha} + \beta = -a$ also $\alpha \times \frac{1}{\alpha} + \alpha\beta + \frac{\beta}{\alpha} = 0$ | 1     |       |
|          | $\alpha + \frac{1}{\alpha} = b - a \dots A \qquad 1 - \alpha \beta - \frac{b}{\alpha} = 0$                              |       |       |
|          | $1 - b\left(\alpha + \frac{1}{\alpha}\right) = 0B$                                                                      | 1     |       |
|          | substitute A into B $(-b)^3 + a(-b)^2 + b = 0$                                                                          |       |       |
|          | 1-b(b-a) = 0<br>$1^{3} + a^{2} + b = 0$                                                                                 |       |       |
|          | $1-b^2+ab=0$                                                                                                            |       |       |
|          | $ab^2 = b^3 - b$                                                                                                        |       |       |
|          | $a=b-\frac{1}{b}$ as required $a=b-\frac{1}{b}$                                                                         | 1     |       |
| 5(c)(i)  | let $v_{x} = e^{x} - 1$ $v_{y} = 2e^{-x}$                                                                               |       |       |
|          | Point of intersection is when $y_1 = y_2$                                                                               |       |       |
|          | <i>i.e.</i> $e^x - 1 = 2e^{-x}$                                                                                         |       |       |
|          | $e^x - 1 = \frac{2}{x}$                                                                                                 | 1     |       |
|          | $e^{2x}$ $e^{x}$ $2 - 0$                                                                                                |       |       |
|          | $e^{-e^{-2}} - 2 = 0$                                                                                                   |       |       |
|          | $(e^{-x} + 1)(e^{-x} - 2) = 0$<br>$e^{x} - 1$ $e^{x} - 2$                                                               | 1     |       |
|          | e = -1 $e = 2$                                                                                                          |       |       |
|          | $x = \frac{1}{2}$                                                                                                       |       |       |
|          | y = 2 $1 = 1\therefore point of intersection (ln 2.1)$                                                                  | 1     |       |
|          |                                                                                                                         |       |       |
|          |                                                                                                                         |       |       |

5(c)(ii) 
$$y_1' = e^x$$
  $y_2' = -2e^{-x}$   
 $m_1 = e^{\ln 2} = 2$   $m_2 = -2e^{-\ln 2} = -1$   
 $\tan \theta = \frac{2 - -1}{1 + 2(-1)} = -3$   
 $\theta = 72^\circ \text{ (nearest degree)}$  1

| 6(a) | $if x = u^2$                                                                                                                                                 |   |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
|      | $\frac{dx}{dx} = 2u$ $\frac{1}{2} = u^2 \Rightarrow u = \frac{1}{\sqrt{2}}$                                                                                  |   |  |
|      | $du = 2u$ $2 \sqrt{2}$                                                                                                                                       | 1 |  |
|      | $dx = 2udu \qquad \qquad \qquad \frac{1}{4} = u^2 \Longrightarrow u = \frac{1}{2}$                                                                           | 1 |  |
|      | $\int_{\frac{1}{4}}^{\frac{1}{2}} \frac{1}{\sqrt{x}\sqrt{1-x}} dx = \int \frac{2udu}{u\sqrt{1-u^2}}$                                                         | 1 |  |
|      | $= \int \frac{2udu}{u\sqrt{1-u^2}}$                                                                                                                          |   |  |
|      | $=2[\sin^{-1}u]$                                                                                                                                             | 1 |  |
|      | $= 2 \left[ \sin^{-1} \sqrt{x} \right]_{\frac{1}{4}}^{\frac{1}{2}} \qquad 2 \left[ \sin^{-1} u \right]_{\frac{1}{2}}^{\frac{1}{\sqrt{2}}}$                   |   |  |
|      | $= 2 \left[ \sin^{-1} \frac{1}{\sqrt{2}} - \sin^{-1} \frac{1}{2} \right] = 2 \left[ \frac{\pi}{4} - \frac{\pi}{6} \right]$                                   |   |  |
|      | $= 2\left\lfloor \frac{\pi}{4} - \frac{\pi}{6} \right\rfloor$                                                                                                | 1 |  |
|      | $=\frac{\pi}{6}$                                                                                                                                             |   |  |
| 6(b) | C.A.                                                                                                                                                         |   |  |
|      |                                                                                                                                                              |   |  |
|      | N                                                                                                                                                            |   |  |
|      |                                                                                                                                                              |   |  |
|      |                                                                                                                                                              | 1 |  |
|      |                                                                                                                                                              | 1 |  |
|      | $5.42$ $6^{\circ}$ B                                                                                                                                         |   |  |
|      | 0                                                                                                                                                            |   |  |
|      |                                                                                                                                                              |   |  |
|      | $\tan 6^\circ = \frac{h}{h} \Rightarrow QB = \frac{h}{h}$ $200^2 = \frac{h^2}{h^2 + h^2} + \frac{h^2}{h^2 + h^2}$                                            | 1 |  |
|      | $\frac{\tan^2 \Theta}{\partial B} \qquad \tan^2 \Theta \qquad \tan^2 \Theta \qquad \tan^2 \Theta$                                                            | 1 |  |
|      | $\tan 4^\circ = \frac{h}{OA} \Longrightarrow OA = \frac{h}{\tan 4^\circ} \qquad \qquad h = \sqrt{\frac{200 \tan 6 \tan 4}{\tan^2 4^\circ + \tan^2 6^\circ}}$ |   |  |
|      | $AB^{2} = \left(\frac{h}{\tan 6^{\circ}}\right)^{2} + \left(\frac{h}{\tan 4^{\circ}}\right)^{2} = 11.6$<br>= 12 metres                                       | 1 |  |
|      | $h^2(\cot^2 6 + \cot^2 4) = 200^2$                                                                                                                           |   |  |
|      | $2200^{2}$                                                                                                                                                   |   |  |
|      | Or $h^2 = \frac{200}{(\cot^2 6 + \cot^2 4)}$                                                                                                                 |   |  |
|      | <i>h</i> = 1.6 m                                                                                                                                             |   |  |

| 6(c)(i)  |                                                                                                                                                                 |   |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
|          | $(7+3x)^{25} = {\binom{25}{0}}7^{25}(3x)^0 + {\binom{25}{1}}7^{24}(3x)^1 + {\binom{25}{3}}7^{23}(3x)^2 + \dots$                                                 |   |  |
|          | $+\binom{25}{1}7^{25-k}(3x)^{k}++\binom{25}{25}7^{0}(3x)^{25}$                                                                                                  |   |  |
|          | $\begin{pmatrix} k \end{pmatrix}$ (25)                                                                                                                          |   |  |
|          | $T_{k+1} = \binom{25}{k} 7^{25-k} (3x)^k$                                                                                                                       |   |  |
|          | $=\binom{25}{k}7^{25-k}3^{k}x^{k}$                                                                                                                              |   |  |
|          | $t_{k} = \begin{pmatrix} 25\\k \end{pmatrix} 7^{25-k} 3^{k} \qquad \qquad T_{k+1} = {}^{25}C_{k} 7^{25-k} (3x)^{k} \\ T_{k} = {}^{25}C_{k-1} 7^{25-(k-1)} (3x)$ | 1 |  |
|          | $t_{k+1} = \binom{25}{k+1} 7^{24-k} 3^{k+1} $                                                                                                                   |   |  |
|          | $\frac{t_{k+1}}{T_k} = \frac{\binom{25}{k+1}}{\binom{25}{2}} 7^{24-k} 3^{k+1} \qquad \qquad \frac{T_{k+1}}{T_k} = \frac{3(26-k)}{7k}$                           | 1 |  |
|          | $t_k \begin{pmatrix} 25\\k \end{pmatrix} 7^{25-k} 3^k$                                                                                                          | 1 |  |
|          | $=\frac{3}{7}\left[\frac{\frac{25!}{(k+1)!(25-(k+1))!}}{\frac{25!}{25!}}\right]$                                                                                |   |  |
|          | $\begin{bmatrix} \frac{25!}{k!(25-k)!} \end{bmatrix}$                                                                                                           |   |  |
|          | $=\frac{3}{2}\left[\frac{25!}{(k-1)!k!(2k-k)!}\times\frac{k!(2k-k)!(2k-k)!}{2k!(2k-k)!}\right]$                                                                 | 1 |  |
|          | $7 \lfloor (k+1)k!(24 \neq k)!$ 25! ]                                                                                                                           |   |  |
|          | $=\frac{5(25-k)}{7(k+1)}$                                                                                                                                       |   |  |
|          |                                                                                                                                                                 |   |  |
| 6(c)(11) | Largest coefficient is when                                                                                                                                     |   |  |
|          | $\frac{t_{k+1}}{t_k} > 1$                                                                                                                                       |   |  |
|          | 75 - 3k > 7k + 7                                                                                                                                                | 1 |  |
|          | 68 > 10 <i>k</i>                                                                                                                                                | 1 |  |
|          | <i>k</i> < 6.8                                                                                                                                                  |   |  |
|          | <i>k</i> = 6                                                                                                                                                    |   |  |
|          | $\therefore t_7 = {}^{25}C_7 7^{18} 3^7$                                                                                                                        | 1 |  |

| Question  | Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                                                       |                    | Marks | Bands |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------|--------------------|-------|-------|
| 7(a)(i)   | $-1 \le \sqrt{x} \le 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 1                                                     |                    |       |       |
|           | $\therefore x \le 1$ , but small                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | est $x$ can be is 0           |                                                       |                    |       |       |
|           | $\therefore 0 \le x \le 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                                                       |                    |       |       |
| 7(a)(ii)  | $0 \le x \le 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                                                       |                    |       |       |
|           | $\cos^{-1} 1 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1(1)                          |                                                       |                    |       |       |
|           | $\pi^{-1}$ $\alpha$ $\pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | I (grapn)                                             |                    |       |       |
|           | $\cos 0 = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                       |                    |       |       |
|           | $0 \le v \le \frac{\pi}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |                                                       |                    |       |       |
|           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                       |                    | 1     |       |
| 7(a)(iii) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                                                       |                    |       |       |
|           | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                             | 1                                                     | 1                  |       |       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | $\overline{2}$                                        |                    | 1     |       |
|           | у                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\pi$                         | π                                                     | 0                  |       |       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                             | 4                                                     |                    |       |       |
|           | 05(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )                             |                                                       |                    |       |       |
|           | $A = \frac{0.5}{2} \left\{ \frac{\pi}{2} + 4 \frac{\pi}{4} \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | + + 0                         |                                                       |                    |       |       |
|           | 3(2 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J                             |                                                       |                    |       |       |
|           | $=\frac{1}{\epsilon}\left\{\frac{3\pi}{2}\right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                                                       |                    |       |       |
|           | 6 [ 2 ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                                       |                    |       |       |
|           | $=\frac{\pi}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                                                       |                    | 1     |       |
|           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                       |                    |       |       |
| 7(a)(iv)  | $v = \cos^{-1} \sqrt{x} \implies$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                       |                    |       |       |
|           | $r = \cos^2 y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ••••                          |                                                       |                    |       |       |
|           | $x = \cos y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                                                       |                    | 1     |       |
|           | $\int_0^{\frac{1}{2}} \cos^2 y  dy$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | -                                                     |                    |       |       |
|           | $=\frac{1}{2}\int_{0}^{\frac{\pi}{2}}(\cos 2y+1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) <i>dy</i>                   |                                                       |                    | 1     |       |
|           | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |                                                       |                    |       |       |
|           | $=\frac{1}{2}\left[\frac{1}{2}\sin 2x+x\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | 1                                                     |                    |       |       |
|           | 2L2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                                                       |                    |       |       |
|           | $=\frac{1}{2}\sin \pi + \frac{\pi}{2} - \frac{1}{2}\sin \pi + \frac{\pi}{2$ |                               |                                                       |                    |       |       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                                                       |                    |       |       |
|           | $=\frac{1}{2}\times\frac{\pi}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                       |                    |       |       |
|           | <br>π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | 1                                                     |                    |       |       |
|           | $=\frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | · ·                                                   |                    |       |       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                                                       |                    |       |       |
| 7(b)(i)   | $x(1+x)^n = x\left\{ {}^nC\right.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $C_0 + {}^nC_1x + {}^nC_2x^2$ | $x^{2} + {}^{n}C_{3}x^{3} + \dots + {}^{n}C_{3}x^{3}$ | ${}^{n}C_{n}x^{n}$ | 1     |       |
|           | $= {}^{n}C_{0}x + {}^{n}C_{1}x^{2} + {}^{n}C_{2}x^{3} + {}^{n}C_{3}x^{4} + \dots + {}^{n}C_{n}x^{n+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                       |                    |       |       |

| $\frac{d}{dx} \left\{ {}^{n}C_{0}x + {}^{n}C_{1}x^{2} + {}^{n}C_{2}x^{3} + {}^{n}C_{3}x^{4} + \dots + {}^{n}C_{n}x^{n+1} \right\}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $= {}^{n}C_{0} + 2{}^{n}C_{1}x + 3{}^{n}C_{2}x^{2} + 4{}^{n}C_{3}x^{3} + \dots + (n+1){}^{n}C_{n}x^{n}$                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\frac{d}{dx}x(1+x)^{n} = (1+x)^{n} + nx(1+x)^{n-1}$                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\therefore (1+x)^{n} + nx(1+x)^{n-1} = {}^{n}C_{0} + 2{}^{n}C_{1}x + 3{}^{n}C_{2}x^{2} + 4{}^{n}C_{3}x^{3} + \dots$               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $+(n+1)^{n}C_{n}x^{n}$                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| let $x = 1$ :                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $2^{n} + n \cdot 2^{n-1} = {}^{n}C_{0} + 2^{n}C_{1} + 3^{n}C_{2} + 4^{n}C_{3} + \dots + (n+1)^{n}C_{n}$                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\therefore 2^{n-1} (2+n) = {}^{n}C_{0} + 2^{n}C_{1} + 3^{n}C_{2} + 4^{n}C_{3} + \dots + (n+1)^{n}C_{n}$                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                    | $\frac{d}{dx} \left\{ {}^{n}C_{0}x + {}^{n}C_{1}x^{2} + {}^{n}C_{2}x^{3} + {}^{n}C_{3}x^{4} + \dots + {}^{n}C_{n}x^{n+1} \right\}$ $= {}^{n}C_{0} + 2{}^{n}C_{1}x + 3{}^{n}C_{2}x^{2} + 4{}^{n}C_{3}x^{3} + \dots + (n+1){}^{n}C_{n}x^{n}$ $\frac{d}{dx}x(1+x)^{n} = (1+x)^{n} + nx(1+x)^{n-1}$ $\therefore (1+x)^{n} + nx(1+x)^{n-1} = {}^{n}C_{0} + 2{}^{n}C_{1}x + 3{}^{n}C_{2}x^{2} + 4{}^{n}C_{3}x^{3} + \dots$ $+ (n+1){}^{n}C_{n}x^{n}$ $\operatorname{let} x = 1:$ $2^{n} + n.2^{n-1} = {}^{n}C_{0} + 2{}^{n}C_{1} + 3{}^{n}C_{2} + 4{}^{n}C_{3} + \dots + (n+1){}^{n}C_{n}$ $\therefore 2^{n-1}(2+n) = {}^{n}C_{0} + 2{}^{n}C_{1} + 3{}^{n}C_{2} + 4{}^{n}C_{3} + \dots + (n+1){}^{n}C_{n}$ | $\frac{d}{dx} \left\{ {}^{n}C_{0}x + {}^{n}C_{1}x^{2} + {}^{n}C_{2}x^{3} + {}^{n}C_{3}x^{4} + \dots + {}^{n}C_{n}x^{n+1} \right\}$ $= {}^{n}C_{0} + 2{}^{n}C_{1}x + 3{}^{n}C_{2}x^{2} + 4{}^{n}C_{3}x^{3} + \dots + (n+1){}^{n}C_{n}x^{n}$ $\frac{d}{dx}x(1+x)^{n} = (1+x)^{n} + nx(1+x)^{n-1}$ $\therefore (1+x)^{n} + nx(1+x)^{n-1} = {}^{n}C_{0} + 2{}^{n}C_{1}x + 3{}^{n}C_{2}x^{2} + 4{}^{n}C_{3}x^{3} + \dots$ $+ (n+1){}^{n}C_{n}x^{n}$ $\operatorname{let} x = 1:$ $2^{n} + n.2^{n-1} = {}^{n}C_{0} + 2{}^{n}C_{1} + 3{}^{n}C_{2} + 4{}^{n}C_{3} + \dots + (n+1){}^{n}C_{n}$ $\therefore 2^{n-1}(2+n) = {}^{n}C_{0} + 2{}^{n}C_{1} + 3{}^{n}C_{2} + 4{}^{n}C_{3} + \dots + (n+1){}^{n}C_{n}$ $1$ |