KINCOPPAL-ROSE BAY
SCHOOL OF THE SACRED HEART

2009

HIGHER SCHOOL CERTIFICATE
TRIAL EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Start a new booklet for each question

Total marks - 84

- Attempt Questions 1 - 7
- All questions are of equal value

Blank Page

Total marks - 84
Attempt Questions 1-7
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet
(a) The polynomial $P(x)=x^{3}-2 x+7$ is divided by $x-5$. What is the remainder?

1
(b) Differentiate $y=\tan ^{-1}\left(\frac{x}{3}\right)$ with respect to x.
(c) Evaluate $\int_{0}^{\frac{3}{4}} \frac{1}{\sqrt{9-4 x^{2}}} d x$
(d) If $x=8 \cos \theta, y=5 \sin \theta$ find $\frac{d y}{d x}$ when $\theta=\frac{\pi}{4}$.

End of Question 1

Question 2 (12 marks) Use a SEPARATE writing booklet.
(a) Find $\int \sin ^{2} 4 x d x$

2
(b)

(i) The above graph has equation $y=a x(x-b)(x+c)^{d}$.

Write down values for a, b, c and d.
(ii) The approximate root was chosen as $x=1$. Explain why this choice will not give a better approximation to the root using Newton's Method.
(c) The function $f(x)=\sin x-\log _{e} x$ has a zero near $x=2.5$

Use one application of Newton's method to obtain another approximation to this zero. Give your answer correct to two decimal places.
(d) (i) How many numbers greater than 50000 can be formed with the digits is
$2,3,5,7,9$ if no digit repeated?
(ii) What is the probability that if the numbers are selected at random and laid next to each other, that the number formed is greater than 50000 but less than 90000 ?

End of Question 2

Question 3 (12 marks) Use a SEPARATE writing booklet.
(a) Find, as an integer, the coefficient of x^{3} in the expansion of $(2 x-3)^{9}$.
(b) The polynomial $x^{3}-15 x^{2}+71 x-105=0$ had roots α, β, γ which form an arithmetic sequence with a common difference of 2 . Find the value of the three roots.
(c) $\quad C T$ is a tangent to the circle, centre O, touching at P. Quadrilateral $P A B C$ is a rhombus and $C T$ is parallel to $A B$.

(i) Let $\angle T P A=x$ and prove that $\angle P O B=2 x$
(ii) Find the value of x such that $P O B C$ is a cyclic quadrilateral.

You must support your answer with geometrical reasons.
(d) In Poker 5 cards are dealt to each player. The deck has 4 suits with 13 cards in each suit. For the following questions leave your answer in unsimplified form.
(i) How many different hands are possible?
(ii) Find the probability of a "flush" (all five cards are from the same suit).

End of Question 3

Question 4 (12 marks) Use a SEPARATE writing booklet.
(a) Solve $\sin x+\cos x=1$, using " t " method, in the domain $0 \leq x \leq \pi$.
(b) By using the substitution $u=\tan x$, or otherwise, find $\int \frac{\sec ^{2} x}{\sqrt{1+2 \tan x}} d x$.
(c) (i) Show that the equations of the tangent and normal to the parabola $x^{2}=4 a y$, at the point $P\left(2 a p, a p^{2}\right)$ are:

$$
\begin{array}{ll}
\text { Tangent: } & y=p x-a p^{2} \\
\text { Normal: } & y p=-x+2 a p+a p^{3}
\end{array}
$$

(ii) $\quad T$ and G are the points where the tangent and normal meet the axis of the parabola. Find the coordinates of these points.
(iii) If S is the focus of the parabola, explain why P, T and G all lie on the circle with centre S.

End of Question 4

Question 5 (12 marks) Use a SEPARATE writing booklet.

Marks

(a) Prove by mathematical induction that, for all integers $n \geq 1$

$$
2+2^{3}+2^{5}+\ldots+2^{2 n-1}=\frac{2\left(2^{2 n}-1\right)}{3}
$$

(b) If $f(x)=\tan ^{-1} x+\tan ^{-1} \frac{1}{x}$
(i) Show that $f^{\prime}(x)=0$
(ii) State the domain of $f(x)=\tan ^{-1} x+\tan ^{-1} \frac{1}{x}$
(iii) Sketch $f(x)$ in its domain
(c) A balloon rises vertically from level ground. Two projectiles are fired horizontally in 3 the same direction from the balloon at a velocity of $80 \mathrm{~ms}^{-1}$.
The first is fired at a point 100 m from the ground and the second when it has risen a further 100 m from the ground.

How far apart will the projectiles hit the ground (give your answer to the nearest metre)? (Use $g=10 \mathrm{~ms}^{-2}$)

End of Question 5

Question 6 (12 marks) Use a SEPARATE writing booklet.
(a) The diagram shows a conical drinking cup of height 12 cm and radius 3 cm . The cup is being filled with water at the rate of $2 \mathrm{~cm}^{3}$ per second. The height of the water at time t seconds is $h \mathrm{~cm}$ and the radius of the water's surface is $r \mathrm{~cm}$

(i) Show that $r=\frac{1}{4} h$
(ii) Find the rate at which the height is increasing when the height of the water is 8 cm . (Volume of a cone $=\frac{1}{3} \pi r^{2} h$)
(b) A household iron is cooling in a room of constant temperature $23^{\circ} C$. At time t minutes its temperature T decreases according to the equation
$\frac{d T}{d t}=-k(T-23)$ where k is a positive constant.
The initial temperature of the iron is $90^{\circ} \mathrm{C}$ and it cools to $70^{\circ} \mathrm{C}$ after 10 minutes.
(i) Verify that $T=23+A e^{-k t}$ is a solution of this equation where A is a constant.
(ii) Find the exact values of A and k.
(iii) How long will it take for the iron to cool to a temperature of 40° ?

Give your answer to the nearest minute.
(c) If $(1+x)^{n}=\sum_{r=0}^{n}{ }^{n} C_{r} x^{r}$ prove $\sum_{r=1}^{n} r^{n} C_{r}=n .2^{n-1}$

End of Question 6

Blank Page

(Question 7 continues on page 10)

Question 7 (12 marks) Use a SEPARATE writing booklet.
(a) A projectile is fired from the origin O with velocity V and with angle of elevation θ, Where $\theta \neq \frac{\pi}{2}$. You may assume that:

$$
x=V t \cos \theta \text { and } y=-\frac{1}{2} g t^{2}+V t \sin \theta
$$

where x and y are the horizontal and vertical displacements of the projectile in metres from O at time t seconds after firing.
(i) Show that the equation of flight (trajectory) of the projectile can be written as:

$$
y=x \tan \theta-\frac{x^{2}}{4 h}\left(1+\tan ^{2} \theta\right) \quad \text { where } h=\frac{V^{2}}{2 g}
$$

(ii) Show that the point (X, Y), where $X \neq 0$, can be hit by firing the projectile at two different angles θ_{1} and θ_{2} provided:

$$
X^{2}<4 h(h-Y)
$$

Question 7 continued on page 11

(b) An observer's eye E looks up at a large painting on a vertical wall. The top of the painting is a metres above the level of E and the bottom of the painting is b metres above the level of $E . \theta$ is the angle subtended at the observer's eye by the top and bottom of the painting. E is x metres from the wall. The observer can move backwards and forwards changing x to find the position of best view when x is a maximum.

(i) Explain why $\theta=\tan ^{-1} \frac{a}{x}-\tan ^{-1} \frac{b}{x}$
(ii) Show that $\frac{d \theta}{d x}=\frac{(a-b)\left(a b-x^{2}\right)}{\left(a^{2}+x^{2}\right)\left(b^{2}+x^{2}\right)}$
(iii) If $a=3 b$, find the maximum possible value for θ.

End of Test

Blank Page

STANDARD INTEGRALS

$$
\int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0
$$

$$
\int \frac{1}{x} d x=\ln x, x>0
$$

$$
\int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0
$$

$$
\int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0
$$

$$
\int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0
$$

$$
\int \sec ^{2} a x d x=\frac{1}{a} \tan a x, a \neq 0
$$

$$
\int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0
$$

$$
\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0
$$

$$
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a \neq 0,-a<x<a
$$

$$
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0
$$

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \quad \text { NOTE: } \ln x=\log _{e} x, x>0
$$

2009

HIGHER SCHOOL CERTIFICATE
TRIAL EXAMINATION

Mathematics Extension 1 (SOLUTIONS)

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Start a new booklet for each question

Total marks - 84

- Attempt Questions 1-7
- All questions are of equal value

Question	Criteria	Marks	Bands
1(a)	$P(x)=x^{3}-2 x+7$ Remainder is $P(5)=5^{3}-2 \times 5+7=122$	1	
1(b)	$\begin{aligned} y & =\tan ^{-1}\left(\frac{x}{3}\right) \\ \frac{d y}{d x} & =\frac{1}{1+\left(\frac{x}{3}\right)^{2}} \times \frac{1}{3} \\ & =\frac{3}{9+x^{2}} \end{aligned}$	2	
1(c)	$\begin{aligned} \int_{0}^{\frac{3}{4}} \frac{1}{\sqrt{9-4 x^{2}}} d x & =\int_{0}^{\frac{3}{4}} \frac{1}{\sqrt{4\left(\frac{9}{4}-x^{2}\right)}} d x \\ & =\int_{0}^{\frac{3}{4}} \frac{1}{2 \sqrt{\left(\frac{9}{4}-x^{2}\right)}} d x \\ & =\frac{1}{2}\left[\sin ^{-1}\left(\frac{2 x}{3}\right)\right]_{0}^{\frac{3}{4}} \\ & =\frac{1}{2}\left[\sin ^{-1}\left(\frac{2 \times \frac{3}{4}}{3}\right)-\sin ^{-1}(0)\right] \\ & =\frac{1}{2} \sin ^{-1} \frac{1}{2} \\ & =\frac{1}{2} \times \frac{\pi}{6} \\ & =\frac{\pi}{12} \end{aligned}$	3	
1(d)	$\begin{aligned} &\left.\begin{array}{rl} \frac{d x}{d \theta} & =-8 \sin \theta \\ \frac{d y}{d \theta} & =5 \cos \theta \end{array}\right\} \\ & \text { when } \theta=\frac{\pi}{4}, \frac{d y}{d x}=\frac{d y}{d \theta} \times \frac{d \theta}{d x}=5 \cos \frac{\not 2}{4} \times \frac{1}{-8 \sin \frac{\not t}{4}} \\ &= \frac{-5}{8} \end{aligned}$	2	

Question	Criteria	Marks	Bands
2(a)	$\cos 8 x$	$=1-2 \sin ^{2} 4 x$	$\mathbf{2}$
	$\sin ^{2} 4 x$	$=\frac{1}{2}(1-\cos 8 x)$	
	$\int \sin ^{2} 4 x d x$	$=\frac{1}{2} \int(1-\cos 8 x) d x$	\checkmark
	$=\frac{x}{2}-\frac{\sin 8 x}{16}+c$	\checkmark	
	$=\frac{8 x-\sin 8 x}{16}+c$		

2(b)(i)	$\begin{gathered} \begin{array}{c} b=-1 \\ \left.\begin{array}{c} c=-3 \\ d \end{array}\right\} \\ \text { when } x=1, y=-16 \end{array} \\ \begin{array}{c} -16=a(1+1)(1-3)^{3} \\ a=1 \end{array} \end{gathered}$	3	
2(b)(ii)	A tangent to the curve at $x=1$ will be horizontal and will not therefore cut through the x-axis again to produce a new approx. to the root.	1	
2(c)(i)	$f(x)=\sin x-\log _{e} x, f^{\prime}(x)=\cos x-\frac{1}{x}$ let the new approx. be x_{1} $\begin{aligned} x_{1} & =2.5-\frac{f(2.5)}{f^{\prime}(2.5)} \\ & =2.5-\frac{\sin 2.5-\log _{e} 2.5}{\cos 2.5-\frac{1}{2.5}} \\ & =2.24 \end{aligned}$	2	
2(d)(i)	$\begin{aligned} & 3 \times \underbrace{4 \times 3}_{\text {remainder } \curlyvee} \times 2 \times 1 \\ & 5,7,9 \end{aligned}$	2	
2(d)(ii)	$\begin{aligned} \frac{2 \times 4!(\checkmark)}{5!} & =\frac{48}{120} \\ & =\frac{2}{5} \end{aligned}$	2	

Question	Criteria	Marks	Bands	
3(a)	$\begin{aligned} & { }^{9} C_{6}(2 x)^{3}(-3)^{6}=489888 x^{3} \quad \checkmark \checkmark \\ & \therefore 489888 \end{aligned}$	2		
3(b)	$\begin{aligned} & \text { let the roots be } \alpha-2, \alpha, \alpha+2 \checkmark \\ & \text { sum of the roots : } \quad \begin{array}{l} \alpha-2,+\alpha+\alpha+2=15 \\ 3 \alpha=15 \end{array} \\ & \qquad \begin{array}{l} \alpha=5 \end{array} \\ & \therefore \text { roots are: } 3,5,7 \checkmark \end{aligned}$	3		
3(c)(i)	$\begin{aligned} & \angle P A B=x \quad(\text { alternate } \angle \text { 's; } C T \\| B A) \\ & \angle P O B=2 x\binom{\text { angle at the centre is twice the angle on the }}{\text { circumference }} \end{aligned}$	2 $\mathrm{Nb}-1$ for both reasons		

		wrong				
3(c)(ii)	$\angle P C B=x \quad$(opposite angles of a rhombus are equal) \checkmark $x+2 x=180$	opposite angles of a cyclic quadrialteral add to 180°	\checkmark			
$\therefore x=60^{\circ}$					\quad	(d)
:---						

Question	Criteria	Marks	Bands
4(a)	$\begin{aligned} & \frac{2 t}{1+t^{2}}+\frac{1-t^{2}}{1+t^{2}}=1 \\ & 2 t+1-t^{2}=1+t^{2} \\ & 2 t^{2}-2 t=0 \\ & 2 t(t-1)=0 \\ & t=0,1 \quad \\ & \tan \frac{x}{2}=0 \quad \tan \frac{x}{2}=1 \\ & \frac{x}{2}=0 \quad \frac{x}{2}=\frac{\pi}{4} \\ & x=0, \frac{\pi}{2} \quad \checkmark \\ & \text { Test } x=\pi ; \quad \sin \pi+\cos \pi=-1 \\ & \therefore x \neq \pi \end{aligned}$	3	
4(b)	$\begin{aligned} & \int \frac{\sec ^{2} x}{\sqrt{1+2 \tan x}} d x \\ & \int \frac{d u}{\sqrt{1+2 u}} \quad \text { let } u=\tan x \quad d u=\sec ^{2} x d x \\ & =\int(1+2 u)^{-\frac{1}{2}} d u \\ & =\frac{2(1+2 u)^{\frac{1}{2}}}{2} d u \\ & =\sqrt{1+2 \tan x}+c \end{aligned} \quad \checkmark \quad l$	3	

4(c)(i)	$\begin{aligned} & y=\frac{x^{2}}{4 a} \quad \frac{d y}{d x}=\frac{2 x}{4 a} \\ & \text { at }\left(2 a p, a p^{2}\right) \frac{d y}{d x}=p \\ & y-a p^{2}=p(x-2 a p) \end{aligned}$ tangent: $\quad y=p x-a p^{2}$ $\begin{aligned} & y-a p^{2}=-\frac{1}{p}(x-2 a p) \\ & y p-a p^{3}=-x+2 a p \\ & \text { normal: } \quad y p=2 a p+a p^{3}-x \end{aligned}$	2	
4(c)(ii)	$\begin{aligned} & \left(0,-a p^{2}\right) \\ & \left(0,2 a+a p^{2}\right) \end{aligned}$	2	
4(c)(iii)	$G T$ forms the diameter of a circle through P since $\angle G P T=90^{\circ}$ Midpoint of $G T x=0 \quad y=\frac{2 a+a p^{2}-a p^{2}}{2}=a$ \therefore centre of circle is $S(0, a) \checkmark$	2	

Question	Criteria	Marks
5(a)	$2+2^{3}+2^{5}+\ldots+2^{2 n-1}=\frac{2\left(2^{2 n}-1\right)}{3}$ Step 1: Prove true for $n=1$ $\begin{array}{rlrl} \text { LHS } & =2^{2(1)-1} & R H S & =\frac{2\left(2^{2(1)}-1\right)}{3} \\ & =2 & =\frac{2(3)}{3} \\ & =2 \end{array}$ Step 2 : assume true for $n=k$ $i e: 2+2^{3}+2^{5}+\ldots+2^{2 k-1}=\frac{2\left(2^{2 k}-1\right)}{3}$ Step 3: Pr ove true for $n=k+1$ $\begin{array}{r} R T P: 2+2^{3}+2^{5}+\ldots+2^{2(k+1)-1}=\frac{2\left(2^{2(k+1)}-1\right)}{3} \\ i e: 2+2^{3}+2^{5}+\ldots+2^{2 k+1}=\frac{2\left(2^{2 k+2}-1\right)}{3} \end{array}$ $\text { LHS : } 2+2^{3}+2^{5}+\ldots+2^{2 k-1}+2^{2(k+1)-1}$ $=2+2^{3}+2^{5}+\ldots+2^{2 k-1}+2^{2 k+1}$ $=\frac{2\left(2^{2 k}-1\right)}{3}+2^{2 k+1} \quad(\text { using step } 2)$ $\text { sub step } 2 \text { step } 3$ $=\frac{2^{2 k+1}-2+3.2^{2 k+1}}{3}$ $=\frac{2^{2 k+1}(1+3)-2}{3}$ $=\frac{2^{2 k+1}(4)-2}{3}$ $=\frac{2^{2 k+1}\left(2^{2}\right)-2}{3}$ $=\frac{2^{2 k+3}-2}{3}$ $=\frac{2\left(2^{2 k+2}-1\right)}{3}$ proving RTP statement \therefore true for $n=k+1$ step 4: if it is true $n=1$ and $n=1+2=2$, and it is true for $n=k$ and $n=k+1$ then it is true for integers $n \geq 1$	4

5(b)(i)	$\begin{array}{rlrl} f(x) & =\tan ^{-1} x+\tan ^{-1} \frac{1}{x} \\ f^{\prime}(x) & =\frac{1}{1+x^{2}}+\frac{1}{1+\left(\frac{1}{x}\right)^{2}} \times \frac{-1}{x^{2}} & \boxed{v} & \text { differentiation } \\ & =\frac{1}{1+x^{2}}+\frac{1}{\frac{x^{2}+1}{x^{2}}} \times \frac{-1}{x^{2}} \\ & =\frac{1}{1+x^{2}}+\frac{x^{2}}{x^{2}+1} \times \frac{-1}{x^{2}} & & \\ & =\frac{1}{1+x^{2}}+\frac{-1}{x^{2}+1} & \boxed{~ s i m p l i f i c a t i o n ~} \\ & =0 & & \end{array}$	2
5(b)(ii)	all real $x(x \in \mathbb{R})$ except $x=0$	1
5(b)(iii)		2
5(c)	From 100m: $\begin{array}{ll} x=80 t \cos (0) & y=-5 t^{2}+80 t \sin (0)+100 \Rightarrow y=-5\left(\frac{x}{80}\right)^{2}+100 \\ \therefore x=80 t & y=-5 t^{2}+100 \end{array}$ From 200m: $\begin{array}{ll} x=80 t \cos (0) & y=-5 t^{2}+80 t \sin (0)+200 \Rightarrow y=-5\left(\frac{x}{80}\right)^{2}+200 \tag{2}\\ \therefore x=80 t & y=-5 t^{2}+200 \end{array}$ Hits ground when $y=0$ (1) $-5\left(\frac{x}{80}\right)^{2}+100=0 \quad \Rightarrow-5\left(\frac{x}{80}\right)^{2}=-100 \quad \therefore 358$ metres (2) $-5\left(\frac{x}{80}\right)^{2}+200=0 \quad \Rightarrow-5\left(\frac{x}{80}\right)^{2}=-200 \quad \therefore 506$ metres \therefore difference in range is 506-358 $=148$ metres.	3

Question	Criteria	Marks
6(a)(i)		1
6(a)(ii)	$\begin{array}{ll} \mathrm{V}=\frac{1}{3} \pi r^{2} h \text { and } r=\frac{h}{4} & \therefore V=\frac{1}{3} \pi\left(\frac{h}{4}\right)^{2} h \end{array} \quad \begin{aligned} & \frac{d V}{d h}=\frac{\pi h^{3}}{48} \\ & \frac{d h}{d t}=\frac{d h}{d V} \times \frac{d V}{d t} \\ & \frac{d h}{d t}=\frac{16}{\pi h^{2}} \times 2 \\ & \frac{d h}{d t}=\frac{32}{\pi h^{2}} \quad \text { since } h=8 \\ & \frac{d h}{d t}=\frac{1}{2 \pi} \quad \mathrm{~cm} / \mathrm{s} \end{aligned}$	3
6(b)(i)	$T=23+A e^{-k t} \Rightarrow A e^{-k t}=T-23$ $\begin{aligned} \frac{d T}{d t} & =-k A e^{-k t} \\ & =-k(T-23) \end{aligned}$	1
6(b)(ii)	$\begin{array}{lll} t=0 \text { and } T=90 & \therefore 90=23+A e^{-k(0)} & \Rightarrow A=67 \\ t=10 \text { and } T=70 & \therefore 70=23+67 e^{-k(10)} & \Rightarrow k=-\frac{1}{10} \ln \left(\frac{47}{67}\right) \end{array}$	2
6(b)(iii)	$\begin{aligned} & T=23+67 e^{-k t} \quad \text { where } k=-\frac{1}{10} \ln \left(\frac{47}{67}\right) \\ & 40=23+67 e^{-k t} \\ & 17=67 e^{-k t} \\ & \left(\frac{17}{67}\right)=e^{-k t} \\ & t=\frac{\ln \left(\frac{17}{67}\right)}{-k} \\ & t=38.68 \\ & t=39 \mathrm{mins} \end{aligned}$	2

6(c)	$\begin{aligned} & \text { If }(1+x)^{n}=\sum_{r=0}^{n}{ }^{n} C_{r} x^{r} \text { prove } \sum_{r=1}^{n} r^{n} C_{r}=n .2^{n-1} \\ & (1+x)^{n}={ }^{n} C_{0}(1)^{n}(x)^{0}+{ }^{n} C_{1}(1)^{n-1}(x)^{1}+{ }^{n} C_{2}(1)^{n-2}(x)^{2}+\ldots+{ }^{n} C_{n}(1)^{0}(x)^{n} \end{aligned}$ Differentiate both sides: $n(1+x)^{n-1}={ }^{n} C_{1}(1)^{n-1}(x)^{0}+2^{n} C_{2}(1)^{n-2}(x)+\ldots+n^{n} C_{n}(1)^{0}(x)^{n-1}$ If $x=1$ $\begin{aligned} & n(2)^{n-1}={ }^{n} C_{1}+2^{n} C_{2}+3^{n} C_{3}+\ldots+n^{n} C_{n} \\ & n(2)^{n-1}=\sum_{r=1}^{n} r^{n} C_{r} \end{aligned}$	3

Question	Criteria	Marks
7(a)(i)	$\begin{aligned} & x=V t \cos \theta \quad y=-\frac{1}{2} g t^{2}+V t \sin \theta \\ & t=\frac{x}{V \cos \theta} \quad \therefore y=-\frac{1}{2} g\left(\frac{x}{V \cos \theta}\right)^{2}+V\left(\frac{x}{V \cos \theta}\right) \sin \theta \quad \square \text { sub of } t \\ & y=\frac{-g x^{2}}{2 V^{2} \cos ^{2} \theta}+x \tan \theta \quad \checkmark \text { rearranging and substitution } \\ & y=\frac{-g x^{2}}{2 V^{2}} \sec ^{2} \theta+x \tan \theta \\ & y=x \tan \theta-\frac{x^{2}}{4 h}\left(1+\tan ^{2} \theta\right) \quad \boxed{\text { substitution of } h \text { and }} \\ &\left(\sec ^{2} \theta=1+\tan ^{2} \theta\right) \end{aligned}$	3
7(a)(ii)	$\begin{aligned} & y=x \tan \theta-\frac{x^{2}}{4 h}\left(1+\tan ^{2} \theta\right) \\ & X \tan \theta-\frac{X^{2}}{4 h}\left(\tan ^{2} \theta+1\right)-y=0 \\ & X^{2} \tan ^{2} \theta-4 h X \tan \theta+X^{2}+4 h Y=0 \end{aligned}$ Hits at two different angles θ_{1} and θ_{2} when $\Delta>0$ $\begin{gathered} \Delta=(4 h X)^{2}-4\left(X^{2}\right)\left(X^{2}+4 h Y\right)>0 \\ 16 h^{2} X^{2}-4 X^{4}-16 X^{2} h Y>0 \\ 4 X^{4} h<16 h^{2} X^{2}-16 X^{2} h Y \\ X^{2}<4 h^{2}-4 h Y \\ X^{2}<4 h(h-Y) \end{gathered}$	3

7(b)(i)	$\begin{aligned} & \tan (\angle L E G)=\frac{a}{x} \Rightarrow \tan ^{-1}\left(\frac{a}{x}\right)=\angle L E G \\ & \tan (\angle M E G)=\frac{b}{x} \Rightarrow \tan ^{-1}\left(\frac{b}{x}\right)=\angle M E G \\ & \sin \text { ce } \theta=\angle L E G-\angle M E G \\ & \therefore \theta=\tan ^{-1}\left(\frac{a}{x}\right)-\tan ^{-1}\left(\frac{b}{x}\right) \end{aligned}$	1
7(b)(ii)	$\begin{aligned} & \theta=\tan ^{-1}\left(\frac{a}{x}\right)-\tan ^{-1}\left(\frac{b}{x}\right) \\ & \frac{d \theta}{d x}=\frac{1}{1+\left(\frac{a}{x}\right)^{2}} \times \frac{-a}{x^{2}}-\frac{1}{1+\left(\frac{b}{x}\right)^{2}} \times \frac{-b}{x^{2}} \\ & \frac{d \theta}{d x}=\frac{-a}{x^{2}+a^{2}}-\frac{-b}{x^{2}+b^{2}} \\ & \frac{d \theta}{d x}=\frac{-a x^{2}-a b^{2}+b x^{2}+b a^{2}}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)} \\ & \frac{d \theta}{d x}=\frac{-x^{2}(a-b)+a b(a-b)}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)} \\ & \frac{d \theta}{d x}=\frac{(a-b)\left(-x^{2}+a b\right)}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)} \\ & \end{aligned}$	3

7(b)(iii)	$\begin{aligned} & \frac{d \theta}{d x}=\frac{(a-b)\left(-x^{2}+a b\right)}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)} \\ & \frac{d \theta}{d x}=\frac{(3 b-b)\left(-x^{2}+(3 b) b\right)}{\left(x^{2}+(3 b)^{2}\right)\left(x^{2}+b^{2}\right)} \quad \text { if } a=3 b \\ & \frac{d \theta}{d x}=\frac{2 b\left(-x^{2}+3 b^{2}\right)}{\left(x^{2}+9 b^{2}\right)\left(x^{2}+b^{2}\right)} \end{aligned}$ \max occurs when $\frac{d \theta}{d x}=0$ $\begin{array}{r} \therefore \frac{2 b\left(-x^{2}+3 b^{2}\right)}{\left(x^{2}+9 b^{2}\right)\left(x^{2}+b^{2}\right)}=0 \\ 2 b\left(-x^{2}+3 b^{2}\right)=0 \\ -x^{2}+3 b^{2}=0 \\ x^{2}=3 b^{2} \\ x= \pm \sqrt{3} b \end{array}$ since x is a distance then $x>0$ then $x=\sqrt{3} b$ $\begin{aligned} & \theta=\tan ^{-1}\left(\frac{3 b}{x}\right)-\tan ^{-1}\left(\frac{b}{x}\right) \quad \text { if } a=3 b \\ & \theta=\tan ^{-1}\left(\frac{3 b}{\sqrt{3} b}\right)-\tan ^{-1}\left(\frac{b}{\sqrt{3} b}\right) \\ & \theta=\tan ^{-1}\left(\frac{3 b}{\sqrt{3} b}\right)-\tan ^{-1}\left(\frac{b}{\sqrt{3} b}\right) \\ & \theta=60^{\circ}-30^{\circ} \\ & \theta=30^{\circ} \end{aligned}$

