The King’s School

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown for every question

Total marks - 84

- Attempt Questions 1-7
- All questions are of equal value
- Start a new booklet for each question
- Put your Student Number and the question number on the front of each booklet

Total marks - 84
Attempt Questions 1-7
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet.
Marks
(a) Find $\frac{d}{d x}\left(e^{\tan x}\right)$.
(b) The interval joining $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is trisected by the points $(-2,3)$ and $Q(1,0)$. Write down the coordinates of A and B.
(c) Find the acute angle, to the nearest degree, between the lines $x-y=2$ and $2 x+y=1$.
(d) Use the substitution $u=1-x$ to evaluate $3 \int_{-1}^{0} \frac{x}{\sqrt{1-x}} d x$.
(e) For a given series $T_{n+1}-T_{n}=7$ and $T_{1}=3$. Find the value of S_{100}, where Sn $=T_{1}+T_{2}+\ldots+T_{n}$ 。
(a) Solve $\frac{x^{2}-2}{x}<1$.
(b) Find
(i) $\int \frac{e^{2 x}}{1+e^{2 x}} d x$.
(ii) $\int \frac{3}{5+x^{2}} d x$.
(c) Solve the equation $2 \ln (3 x+1)-\ln (x+1)=\ln (7 x+4)$.
(d) Solve $2 \tan ^{3} \theta-3 \tan ^{2} \theta-2 \tan \theta+3=0$ for $0 \leq \theta \leq 360^{\circ}$, giving your answers to the nearest minute, where necessary.
(a) Use one application of Newton's Method to approximate the root of the equation
$e^{x}+x=2$ which is near 0.5 , correct to two decimal places.
(b)

In the diagram above $A B C D$ is a cyclic quadrilateral. $C D$ is produced to E. P is a point on the circle through A, B, C, D such that $\angle A B P=\angle P B C$.
(i) Copy the diagram showing the above information.
(ii) Explain why $\angle A B P=\angle A D P$.
(iii) Show that $P D$ bisects $\angle A D E$.
(iv) If $\angle B A P=90^{\circ}$ and $\angle A P D=90^{\circ}$, explain where the centre of the circle is located.
(c) (i) Write $\cos x-\sqrt{3} \sin x$ in the form $A \cos (x+\alpha)$ where $A>0,0<\alpha<\pi$.
(ii) Hence or otherwise, solve $\cos x-\sqrt{3} \sin x=1$ for all values of x.
(a) (i) Find the polynomial $P(x)$, if $P(x)$ has
(α) degree 4;
(β) factors of $(x+3)^{2}$ and $(x-3)^{2}$; and
(γ) a remainder of -50 when divided by $x+2$.
(ii) Sketch the curve.
(b) The speed $v \mathrm{~cm} / \mathrm{sec}$ of a particle moving with simple harmonic motion in a straight line is given by $v^{2}=6+4 x-2 x^{2}$, where $x \mathrm{~cm}$ is the magnitude of the displacement from a fixed point O.
(i) Show $\frac{d^{2} x}{d t^{2}}=-2(x-1)$.

2
(ii) Find the period of the motion.
(iii) Find the amplitude of the motion.
(c) A and B are the feet of two towers of equal height. B lies due North of A. From a point C, 40 m East of A and in the same horizontal plane, the angle of elevation of the top of the tower A is 53°. From the same point the angle of elevation of tower B is 35°. Find the distance between the towers, AB , correct to the nearest metre.

(a) For the function $y=3 \cos ^{-1} \frac{x}{2}$
(i) Find the domain and the range.
(ii) Sketch the curve.
(iii) Find the equation of the tangent to the curve at the point on the curve where $x=0$.
(b) O is the centre of a circle, radius 1 m and $\angle M O N=\theta$ radians. The shaded segment formed by $M N$ has an area A square metres and perimeter P metres.

(i) Prove $A=\frac{1}{2}(\theta-\sin \theta)$.
and $\quad P=\theta+2 \sin \frac{\theta}{2}$.
(ii) $\quad P$ is increasing at a constant rate of $R \mathrm{~m} / \mathrm{s}$. Find, in terms of R, the rate of increase of
(α) θ when $\angle M O N=\frac{2 \pi}{3}$; and
(β) A when $\angle M O N=\frac{2 \pi}{3}$.
(a) Find the coordinates of the focus and the equation of the directrix of the parabola $x^{2}=4(x+y)$.

2

4
(a) A stone is thrown from the top of a building 15 m high with an initial velocity of 26 m / s at an angle of $\tan ^{-1} \frac{5}{12}$ to the horizontal.

If the acceleration due to gravity is $10 \mathrm{~m} / \mathrm{sec}^{2}$, find
(i) the greatest height above the ground reached by the stone
(ii) the time of flight
(iii) the range of the stone
(iv) the velocity after 2 seconds
(b) Two of the roots of the equation $x^{3}+a x^{2}+b=0$ are reciprocals of each other where a and b are real numbers.

Show that
(i) the third root is equal to $-b$;
(ii) $\quad a=b-\frac{1}{b}$; and
(iii) the two roots, which are reciprocals, will be real if $-\frac{1}{2} \leq b \leq \frac{1}{2}$.

End of Examination

TKS THSC 2004
$1 \otimes \sec ^{2} x \cdot e$
(2)
(b)

$$
A\left(x_{1}, y_{1}\right) P\left(x_{1}\right){ }_{Q(1,0)} B\left(x_{2} y_{2}\right)
$$

$$
\begin{gathered}
T_{n+1}-T_{n}=7 \\
T_{1}=3 \\
T_{2}-T_{1}=7 \\
\therefore-T_{2}=10
\end{gathered}
$$

-... A:

$$
-2=\frac{x_{1+1}}{2} ; 3=\frac{y_{i}+D}{2}
$$

$$
T_{3}-T_{1}=7
$$

$$
\tau_{3}=17
$$

$-B:$

$$
\begin{aligned}
& x_{1}=-5 ; y_{1}=6 \\
& B: A(-5,6) \\
& A=\frac{-2+x^{2}}{2} \quad 0=\frac{3+y_{2}}{2} \\
& x_{2}=\frac{B(4,-3)}{y_{2}}=-3
\end{aligned}
$$

(c)

$$
\begin{aligned}
& l_{1}: m_{1}=1 \\
& l_{2}: m_{2}=-2 \\
& \tan \theta=\left|\frac{1+2}{1+7 x-2}\right| \\
&=3 \\
& \theta=72
\end{aligned}
$$

(d)

$$
\begin{aligned}
u & =1-x=-1, u=2 \\
\frac{d u}{d x} & =-1 \quad x=0, u=1 \\
I & =3 \int_{2}^{1} \frac{1-u}{\sqrt{u}}-d u \\
& =3 \int_{2}^{1} \frac{u-1}{u^{2}} d x \\
& =3 \int_{2}^{1} u^{\frac{1}{2}}-u^{-\frac{1}{2}} \cdot d u \\
& =3\left[\frac{2}{3} u^{2}-2 u^{2}\right]_{2}^{1} \\
& =3-\frac{2}{3}-2-\left(\frac{2}{3} \times \sqrt{8}-2 \sqrt{2}\right] \\
& =3\left[-4-\left(\frac{4}{3} \sqrt{2}-2 \sqrt{2}\right)\right] \\
& =-4-4 \sqrt{2}+6 \sqrt{2} \\
& =2 \sqrt{2}=4
\end{aligned}
$$

Q2Q $\quad \frac{x^{2}-2}{x}<1$
C. Voluns: $x=0$
\qquad

$$
\begin{aligned}
& x^{2}-2=x \\
& x^{2}-x-2=0 \\
& (x-2)(x+1)=0 \\
& x=201-1 \\
& 100,2
\end{aligned}
$$

test $x=-\frac{1}{2}=\frac{\frac{1}{2}-2}{-\frac{1}{2}}=\frac{-1 \frac{1}{4}}{-\frac{1}{2}}=3 \frac{1}{2}$ fulse
$x=1: \frac{1-2}{1}<1$ thue
(b) (i)

$$
\begin{aligned}
\therefore & \frac{x<-1 \text { or } 0<x<2}{\int \frac{e^{2 x}}{1+e^{2 x}} d x} \\
= & \frac{1}{2} \int \frac{2 e^{2 x}}{1+e^{2 x}} d x \\
= & \frac{1}{2} \ln \left(1+e^{2 x}\right)+c \\
& \int \frac{3}{5+x^{2}} d x \\
= & 3 \int \frac{1}{5+x^{2}} d x \\
= & \frac{3}{\sqrt{5}} \tan ^{-1} \frac{x}{\sqrt{5}}+c
\end{aligned}
$$

(c)

$$
\begin{aligned}
& 2 \ln (3 x+1)-\ln (x+1)=\ln (7 x+4) \\
& \therefore \frac{(3 x+1)^{2}}{x+1}=7 x+4 \\
& 9 x^{2}+6 x+1=7 x^{2}+41 x+4 \\
& 2 x^{2}-5 x-3=0 \\
& (2 x+1)(x-3)=0 \\
& \therefore x=-\frac{1}{2} \text { or } 3
\end{aligned}
$$

but $3 x+1>0$ \& $x+1>0+7 x+4>0$

$$
\begin{aligned}
& x>-\frac{1}{3}+x>-19 x>-4 \\
& \therefore x>-\frac{1}{3}
\end{aligned}
$$

\therefore Solution $x=3$
(d) $2 \tan ^{3} \theta-3 \tan ^{2} \theta-2 \tan \theta+3=$

$$
\begin{gathered}
\tan ^{2} \theta(2 \tan \theta-3)-1(2 \tan \theta-3) \\
\therefore(2 \tan \theta-3)(\tan \theta-1)=c \\
=\tan \theta=\frac{3}{2} \theta \pm 1 \\
\theta=45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ} \\
56^{\circ} 19^{\prime}, 236^{\circ} 19^{\prime} .
\end{gathered}
$$

Q3@y=ex+x-2

$$
\frac{4}{6 x}=e^{x}+1
$$

$$
\operatorname{Ret} x_{1}=0.5
$$

$$
x_{2}=x_{1}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

$$
-=0.5-\frac{e^{0.5}+0.52}{e^{0.5}+1}
$$

$$
=0.5=\frac{0-k+8}{2.648}
$$

$$
=0.44
$$

(b)

(c)

$$
\begin{aligned}
& \text { (i) } \cos x-\sqrt{3} \sin x \equiv A \cos (x+\alpha) \\
& \equiv A[\cos x . \cos \alpha+\sin x \\
& A \cos \alpha=1, A \sin \alpha=\sqrt{3} \\
& A=\sqrt{1^{2}+(\sqrt{3})^{2}}=2 \\
& \sin \alpha=\frac{1}{2} \\
& \alpha=\frac{\pi}{3} \\
& \therefore \cos x-\sqrt{3} \sin x=2 \cos (x+i \\
& \therefore 2 \cos \left(x+\frac{\pi}{3}\right)=1 \\
& \cos \left(x+\frac{\pi}{3}\right)=\frac{1}{2} \\
& x+\frac{\pi}{3}=2 n \pi \pm \cos ^{-1}\left(\frac{1}{2}\right) \\
& =2 \pi \pi \pm \frac{\pi}{3} \\
& \therefore x=2 n \pi 0+2 n \pi-2
\end{aligned}
$$

lot $\angle A B P=\angle P B C=\theta$
(ii) $\angle A B P=\angle A D P=\theta$ (angles in same segmant)
(iii) $\angle E D P=\angle P Q C=O$ (ext angle of cyelic quad $=$ int. of1 $)$. but $<A D P=\theta$ (ftom(i)) $\therefore P D$ lrisect $\angle A D E$
(iv) $B P$ and $A D$ are Qoth diameter (anglesin peni cirele $=90^{\circ}$ \therefore contre of circe is tha point of intersection of $B P A A D$.

Q4@(i)

$$
\begin{aligned}
& P(x)=a(x+3)^{2}(x-3)^{2} \\
& P(-2)=-50 \\
& \therefore-50=a(1)^{2}(-5)^{2} \\
& -50=25 a \\
& a=-2 \\
& P(x)=-2(x+3)^{2}(x-3)^{2}
\end{aligned}
$$

(ji)

(b) 1

$$
\begin{aligned}
v^{2} & =6+4 x-2 x^{2} \\
\frac{d^{2} x}{d t^{2}} & =\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) \\
& =\frac{d}{d x}\left(3+2 x-x^{2}\right) \\
& =2-2 x \\
& =-2(x-1)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \ddot{x}=-x^{2} x \\
& n=\sqrt{2} \\
& \therefore \text { Pariod }=\frac{2 \pi}{\sqrt{2}}=\sqrt{2} \pi \text { seco. } .
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& v=0 \\
& \therefore 2 x^{2}-4 x-6=0 \\
& x^{2}-2 x-3=0 \\
& (x-3)(x+1)=0 \\
& \therefore x=-10+3 \\
& 1=-x=-3 \\
& 1 \\
& \text { amplitude }=2 \mathrm{~cm} .
\end{aligned}
$$

(c)

$$
\tan 53^{\circ}=\frac{h}{40}
$$

$$
h=40^{\tan } 53^{\circ}
$$

$\tan 35^{\circ}=\frac{h}{B C}$

$$
B C=\frac{b}{\operatorname{com} 35^{\circ}}
$$

$$
\therefore B C=\frac{40 \tan 53^{\circ}}{\tan 35^{\circ}}
$$

$$
B C^{2}=x^{2}+40^{2}
$$

$$
=\left(\frac{40 \tan 53^{2}}{\tan 35^{\circ}}\right)^{2}+40
$$

$$
=4146.94 .9
$$

$$
x=63.396 .
$$

$$
=64 \mathrm{~m} .
$$

\qquad

Q5@ $y=3 \cos ^{-1} \frac{x}{2}$
(i)

$$
\begin{aligned}
& D:-1 \leq \frac{x}{2} \leq 1 \\
&-2 \leq x \leq 2 \\
& R: 0 \times 3 \leq y \leq 3 \times \pi \\
& 0 \leq y \leq 3 \pi
\end{aligned}
$$

(ii)

(iii)

$$
\begin{aligned}
y & =3 \cos ^{-1} \frac{x}{2} \\
y^{\prime} & =\frac{-3}{\sqrt{1-\frac{x^{2}}{4}}} \times \frac{1}{2}
\end{aligned}
$$

$$
\text { at } x=0, y^{\prime}=\frac{-3}{2 \sqrt{1}}=-\frac{3}{2}
$$

$$
y=\frac{3 \pi}{2}
$$

eqin of tangent is

$$
\begin{gathered}
y-\frac{3 \pi}{2}=-\frac{3}{2}(x-0) \\
2 y-3 \pi=-3 x \\
3 x+2 y-3 \pi=0
\end{gathered}
$$

(b) (i)

$$
\begin{aligned}
A & =\frac{1}{2} \times 1 \times 1 \times \theta-\frac{1}{2} \times 1 \times 1 \times \sin \{ \\
& =\frac{1}{2}(\theta-\sin \theta) \\
& =1 \times \theta+2 \times \sin \frac{\theta}{2}
\end{aligned}
$$

(ii) $R=\frac{d P}{d t}$
(凶) $\frac{d \theta}{d x}=$?

$$
\begin{aligned}
P & =\theta+2 \sin \frac{\theta}{2} \\
\frac{d P}{d t} & =1+\cos \frac{\theta}{2} \\
\text { whem } \theta & =\frac{2 \pi}{3}, \frac{d P}{d t}=1+\cos \\
& \begin{aligned}
\frac{d \theta}{d t} & =\frac{d \theta}{d P} \times \frac{d P}{d t}= \\
& =\frac{2}{3} \times R \\
& =\frac{3 R}{3} \text { tadims } / \mathrm{s}
\end{aligned}
\end{aligned}
$$

$$
\text { (B) } \begin{aligned}
\frac{d A}{d t} & =? \\
A & =\frac{1}{2}(\theta-\sin \theta) \\
\frac{d A}{d \theta} & =\frac{1}{2}(1-\cos \theta) \\
\text { whem } \theta & =\frac{2 \pi}{3} \frac{d A}{d \theta}=\frac{1}{2}(1-c \\
& =\frac{1}{2} \times 1 \\
& =? \\
\frac{d A}{d t} & =\frac{d A}{d \theta} \times \frac{d \theta}{d t} \\
& =\frac{3}{4} \times \frac{2 R}{3} \\
& =\frac{R}{2} \mathrm{~m}^{2} / \mathrm{se}
\end{aligned}
$$

Directrix $y=-2$
(b) When $n=1,3^{3 n}+2^{n+2}=3^{3}+2^{3}=35$
whin is duvibile dy 5
assume $\left.t+i={ }^{2}+2\right)$ or $~ x=k$
ie. $\frac{3^{3 a}+2^{h}+22^{5}}{3 a^{5}}=c$ (anintegel).

$$
\therefore 3^{3 k^{5}}=5 c-2^{k+2}
$$

Parve true for $n=k+1$
ie. $\frac{3^{3 k+3}+2^{k+3}}{5}=c_{1}($ an integer $)$

$$
\begin{aligned}
L H S & =\frac{3^{3 k} 3^{3}+2^{k+3}}{5} \\
& =\frac{\left(5 c-2^{k+2}\right) \cdot 27+2^{k+2} \cdot 2^{1}}{5} \\
& =\frac{5 \times 27 c-27 \times 2^{k+2}+2 \times 2^{k+2}}{5} \\
& =\frac{5\left[27 c-5.2^{k+2}\right]}{5}
\end{aligned}
$$

whish is an integer if cis anntega
$=$ if t is true for $x=4$, t true for $x=2+1$ since it is true for $x=1$, it is true $x=2$ and no on for all' n.
(c)

(i) $\frac{d y}{d x}=\frac{1}{2} x$
$\Delta T \quad \frac{d x}{d x}=-t$
eq'm of tangent at T
$y-t^{2}=-t(x+2 t$
$y-t^{2}=-t_{x}-2 t^{2}$
$y+t x+t^{2}=0$
(ii) $A(-t, 0)$
(iii) $m\left(-\frac{3 t}{2}, \frac{t^{2}}{2}\right)$
(iv)

$$
\begin{aligned}
x & =\frac{3 t}{2}, y= \\
t & =-\frac{2 x}{3} \\
\therefore y & =\frac{\left(-\frac{2 x}{3}\right)^{2}}{2} \\
& =\frac{4 x^{2}}{18} \\
y & =\frac{2}{9} x^{2}
\end{aligned}
$$

(i) greatest height $\dot{y}=0, t=1$

$$
y=-5+10+15
$$

$$
=20 \mathrm{~m}
$$

(ii) time of flight $y=0$
$t^{2}-2 t-3=0$

$$
(t+1)(t-3)=0
$$

$$
\therefore \quad t=-1003
$$

Time of fflugt $=3$ sees
(iii) when $t=3 \quad x=24 \times 3$

$$
=72 \mathrm{~m}
$$

(iv)

$$
\begin{aligned}
t=2 \quad \dot{x} & =24, \dot{y}=10-20=-10 \\
v & =\sqrt{24^{2}+(-10)^{2}} \\
& =26 \mathrm{~m} \text { for } \sec .
\end{aligned}
$$

Q. (b) $x^{3}+a x^{2}+b=0$
let +osto lee $\alpha, \frac{1}{\alpha}+\bar{\beta}$

$$
\begin{align*}
& \therefore \alpha+\frac{1}{\alpha}+\beta=-a \\
& \alpha \times \frac{1}{\alpha}+\alpha \beta+\frac{1}{\alpha} \times \beta=0 \tag{2}\\
& \alpha \times \frac{1}{\alpha} \times \beta=-b \tag{3}
\end{align*}
$$

(i)

$$
\therefore-\beta=-b \text { from } 3
$$

(ii)

$$
\begin{gathered}
\alpha+\frac{1}{\alpha}-b=-a \text { frem (1) } \\
\alpha+\frac{1}{\alpha}=b-a \\
1-\alpha-\frac{b}{\alpha}=0 \text { from (3) } \\
1-b\left(\alpha+\frac{1}{\alpha}\right)=0 \\
\therefore 1-b(b-a)=0 \\
1=b(b-a) \\
\frac{1}{b}=b-a \\
a=b-1
\end{gathered}
$$

(iii)

$$
\begin{aligned}
\alpha+\frac{1}{\alpha} & =b-a \\
& =b-b+\frac{1}{b} \\
\alpha+\frac{1}{\alpha} & =\frac{1}{b} \\
\alpha^{2}-\frac{1}{b} \alpha+1 & =0
\end{aligned}
$$

teal toots $\Delta \geq 0$

$$
\begin{aligned}
&=-\frac{1}{b^{2}}-4 \geqslant 0 \\
&-4 b^{2} \geqslant 0 \\
& b^{2} \leq \frac{1}{c} \\
&-\frac{1}{2} \leq b \leq \frac{1}{2}
\end{aligned}
$$

