

THE KING'S SCHOOL

2005 Higher School Certificate Trial Examination

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided
- All necessary working should be shown in every question

Total marks - 84

- Attempt Questions 1-7
- All questions are of equal value

Total marks – 84 Attempt Questions 1-7 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet.

(a) Find
$$\int \frac{dx}{\sqrt{9-4x^2}}$$
 2

(b) P(3,7) divides the interval AB in the ratio m:n, where A = (-1,2) and B = (11,17).

Find the ratio m:n.

(c) Let
$$f(x) = \ln(\tan x), \ 0 < x < \frac{\pi}{2}$$

Show that
$$f'(x) = 2\csc 2x$$

(d) Two lines have gradients $2 + \sqrt{3}$ and 1.

Find the size of the acute angle between these lines.

(e) Use the substitution
$$u = 1 + x^2$$
 to evaluate $\int_{1}^{\sqrt{3}} 6x\sqrt{1 + x^2} dx$ 3

End of Question 1

Marks

2

3

(ii) Evaluate
$$\frac{\lim_{x \to 0} \frac{\cos 2x - 1}{2x^2}}{2x^2}$$
 2

(b) Find
$$\int 4\sin^2 x \, dx$$
 2

(c)

AB is the diameter of a circle, centre O.

AB produced meets the secant CD at P.

CD = 5, DP = 4 and BP = 3

Find the diameter of the circle.

(d) (i) Solve
$$\frac{x+1}{x^2+1} > 1$$
 2

(ii) Without solving, explain why x < -1 is a solution of $\frac{x^2 + 1}{x + 1} < 1$ 1

(iii) Hence, or otherwise, solve
$$\frac{x^2+1}{x+1} < 1$$

End of Question 2

2

(a) The roots of $x^3 - 6x + 1 = 0$ are α , β , γ .

Find values for

(i) $\alpha + \beta + \gamma$ 1

(ii)
$$\alpha^2 + \beta^2 + \gamma^2$$
 2

- (b) Use the substitution $t = \tan \frac{x}{2}$ to solve $\sin x 7\cos x 5 = 0$, $0^{\circ} < x < 360^{\circ}$, giving your answers to the nearest degree.
- (c) (i) A particle is moving along the x axis so that at any time $t \ge 0$ its velocity is v and its acceleration is $\frac{dv}{dt}$.

Prove that
$$\frac{dv}{dt} = \frac{d\left(\frac{1}{2}v^2\right)}{dx}$$
 2

(ii) A particle is moving along the x axis in simple harmonic motion with its velocity v given by the equation $v^2 = 4x - 2x^2$.

Find

 (α) its amplitude

and (β) its period.

End of Question 3

2

3

(a)
$$f(x) = 5\sqrt{1 + x^6 - 7x}$$
 has a zero near $x = 1$.

Use Newton's method once to find a two decimal place approximation to this zero.

(b) Use mathematical induction to prove that for all integers $n \ge 1$,

$$(1^{2}+1) 1! + (2^{2}+1) 2! + \dots + (n^{2}+1) n! = n(n+1)!$$
 4

(c)

AB is the diameter of a semi-circle ABCD.

DB meets AC at P and $PQ \perp AB$ at Q.

(i) Explain why
$$\angle DAC = \angle CBD$$
 1

(ii) Prove that *QBCP* is a cyclic quadrilateral.

(iii) Deduce that PQ bisects $\angle DQC$.

End of Question 4

3

2

Two particles *P* and *Q* are projected at the same time in the same vertical plane. The only force acting on the particles is due to gravity, where $g = 10 m/s^2$.

Taking axes of reference as in the diagram, particle *P* is projected from *O* on horizontal ground with velocity v m/s at an elevation of θ and particle *Q* is projected horizontally at 30 m/s from a point *A* 125 *m* above *O*. The two particles meet at the same time *t* at a point *B* on ground level.

You may assume the equations of motion for particle *P* are:

$\ddot{x} = 0$	$\ddot{y} = -10$
$\dot{x} = v \cos \theta$	$\dot{y} = -10t + v\sin\theta$
$x = (v\cos\theta) t$	$y = -5t^2 + (v\sin\theta)t$

[DO NOT PROVE THESE]

(i)	Write down the equations of motion for particle Q	2
(ii)	Find the time taken for particle Q to reach B and determine the horizontal distance it has travelled.	2
(iii)	Find the velocity of projection and angle of elevation for particle P , i.e. find v and θ	3
(iv)	Find the cartesian equation of the parabolic path of particle P .	2

Question 5 continues on the next page

1

2

(b) You are given
$$P(x) = (2x^2 - x - 3)^3 \equiv 8x^6 - 12x^5 - 30x^4 + 35x^3 + Ax^2 - 27x - 27$$

- (i) Find the value of A.
- (ii) Find two of the roots of P''(x) = 0

End of Question 5

(a)

The tangent at $T(2t, t^2)$, $t \neq 0$, on the parabola $x^2 = 4y$ meets the x axis at A.

P(x, y) is the foot of the perpendicular from A to OT, where O is the origin.

The equation of the tangent at *T* is $y = tx - t^2$

- (i) Prove that the equation of AP is $y = -\frac{2}{t}(x-t)$ 2
- (ii) Show that the equation of *OT* is $t = \frac{2y}{x}$ 1
- (iii) Hence, or otherwise, prove that the locus of P(x, y) lies on a circle with centre (0,1) and give its radius.

Question 6 continues on the next page

(b) The surface area S of a spherical bubble is changing at a constant rate of $k \ cm^2 / s$.

Prove that the volume is changing at a rate proportional to the radius at any time t.

$$\left[S = 4\pi r^2, \quad V = \frac{4}{3}\pi r^3\right]$$
3

(c) If $\log_6 9 = A$, express $\log_3 2$ in terms of A.

End of Question 6

(a) Consider the function
$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

(i) Show that
$$f(-x) = -f(x)$$
 1

(ii) Show that
$$f(x) = 1 - \frac{2}{e^{2x} + 1}$$
 1

- (iii) Explain why f(x) < 1 for all values of x
- (iv) Hence, or otherwise, sketch y = f(x) in the number plane.
- (v) Explain why the inverse function $f^{-1}(x)$ exists without any restriction on the domain of f(x)
- (vi) Sketch $y = f^{-1}(x)$ in the number plane.

(vii) For
$$y = f^{-1}(x)$$
, express y in terms of x 2

(b) (i) Show that
$$\frac{\binom{3n}{k}}{\binom{3n}{k-1}} = \frac{3n-k+1}{k}$$
 1

(ii) Find the greatest term in the expansion of $\left(1+\frac{x}{2}\right)^{3n}$, *n* a positive integer, when x = 1

End of Examination

1

2

1

1

STANDARD INTEGRALS

$\int x^n dx$	$=\frac{1}{n+1}x^{n+1}, \ n\neq -1; \ x\neq 0, \text{ if } n<0$		
$\int \frac{1}{x} dx$	$= \ln x, x > 0$		
$\int e^{ax} dx$	$=\frac{1}{a}e^{ax}, a \neq 0$		
$\int \cos ax dx$	$=\frac{1}{a}\sin ax, a \neq 0$		
$\int \sin ax dx$	$=-\frac{1}{a}\cos ax, a \neq 0$		
$\int \sec^2 ax dx$	$=\frac{1}{a}\tan ax, a \neq 0$		
$\int \sec ax \tan ax dx$	$=\frac{1}{a}\sec ax, a \neq 0$		
$\int \frac{1}{a^2 + x^2} dx$	$=\frac{1}{a}\tan^{-1}\frac{x}{a}, a\neq 0$		
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$	$=\sin^{-1}\frac{x}{a}, a > 0, -a < x < a$		
$\int \frac{1}{\sqrt{x^2 - a^2}} dx$	$= \ln \left(x + \sqrt{x^2 - a^2} \right), x > a > 0$		
$\int \frac{1}{\sqrt{x^2 + a^2}} dx$	$= \ln \left(x + \sqrt{x^2 + a^2} \right)$		
NOTE : $\ln x = \log_e x$, $x > 0$			

\

TKS MATHEMATICS EXT 1 TRIAL H.S.C. SOLUTIONS 2005

$$\frac{G_{\mu}}{2} \left(a\right) \frac{1}{2} \sin^{-1} \frac{2x}{3} \quad (+c)$$

(c)
$$f(x) = \frac{\sec^2 x}{\tan x} = \frac{1}{\sin x \cos x}$$

= $\frac{2}{\sin^2 x} = 2 \operatorname{cosec} 2x$

(d)
$$tand = \frac{2+\sqrt{3}}{1+2+\sqrt{3}} = \frac{1+\sqrt{3}}{3+\sqrt{3}}$$

$$= \frac{1+\sqrt{3}}{\sqrt{3}(1+\sqrt{3})} = \frac{1}{\sqrt{3}}$$
$$\implies \lambda = \frac{\pi}{6} \quad \text{or} \quad 30^{\circ}$$

$$(\ell) \quad u = 1 + \chi^{2}$$

$$\frac{du}{d\chi} = 2\chi \qquad \therefore \qquad I = \int_{-\infty}^{+\infty} 3\sqrt{u} \, du$$

$$: \chi = i, u = 2 \qquad \qquad 2$$

$$\chi = \sqrt{3}, \, \alpha = 4 \qquad \qquad = 3.2 \left(\frac{u}{3}\right)_{-2}^{+1}$$

$$= 2 \left(8 - 2\sqrt{2}\right)$$

$$= 4 \left(4 - \sqrt{2}\right)$$

On 2

$$(a) (i) \cos (A+B) = \cos A \cos B - \sin A \sin B$$
$$\implies \cos 2x = \cos^{2} x - \sin^{2} x$$
$$= 1 - \sin^{2} x - \sin^{2} x = 1 - 2\sin^{2} x$$

$$(ii) \lim_{x \to 0} \frac{-2\sin^2 x}{2x^2} = -\lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2 = -1$$

(b)
$$I = 2 \int (1 - \cos 2\pi) dx = 2 \left(x - \frac{\sin 2\pi}{2} \right) (+ c)$$

= $2x - \sin 2\pi (+ c)$

(c)
$$\implies 3(d+3) = 9 \times 4$$

 $\therefore d+3 = 12$
ie diameter = 9

$$(d) (i) \quad \therefore x+1 \neq x^{2} + 1$$

$$i^{e} x^{2} - x < 0$$

$$x (x-1) < 0$$

$$\Rightarrow \quad 0 < x < 1$$

$$(ii) \quad x < -1 \quad \Rightarrow \quad x+1 < 0 \quad \text{and since } x^{2} + 1 > 0,$$

$$\vdots \quad \frac{x^{2} + 1}{x+1} < 0 \quad \Rightarrow \quad \frac{x^{2} + 1}{x+1} < 1$$

x+1

$$\frac{\partial n 3}{(a) (i) d + \beta + j = 0}$$
(a) (i) $d + \beta + j = 0$
(ii) $d^{2} + \beta^{2} + j^{2} = (d + \beta + \beta)^{2} - 2(d + \beta + \beta + \beta^{2})$

$$= 0 - 2(-6) - 12$$

(c) (i)
$$\frac{dv}{dt} = \frac{dw}{dx} \cdot \frac{dx}{dt}$$

$$= \frac{v}{dx} \frac{dv}{dx}$$

$$= \frac{d(\frac{1}{2}v^{2})}{\partial x} \cdot \frac{dw}{dx} = \frac{d(\frac{1}{2}v^{2})}{dx}$$
(ii) (d) $v = 0 \Rightarrow 2x(2-x) = 0$
 $v = 2x(2-x) = 0$
 $v = 2x - x^{2}$
 $\therefore anglithede = 1$
(b) $\frac{1}{2}v^{2} = 2x - x^{2}$
 $\therefore x = 2 - 2x = -2(x-1)$
 $\Rightarrow n^{2} = 2$ in usual notation
 $v = n = \sqrt{2}$
 $\therefore period$ $T = \frac{2\pi}{\sqrt{2}} = \sqrt{2}$ T

$$\frac{\partial u}{\partial t} \frac{H}{t}$$
(n) $f'(n) = 5 \cdot \frac{1}{2} ((+z^{k})^{-\frac{1}{2}} 6n^{5} - 7 = \frac{15x^{5}}{\sqrt{16x^{5}}} - 7$

$$\frac{x}{1} = 1 - \frac{5\sqrt{5} - 7}{\frac{15}{\sqrt{6}} - 7} \approx 0.9P$$
(d) For $n = 1$, $LS = (1^{2} + 1)1! = 2$

 $RS = 1(2!) = 2$

$$\frac{RS = 1(2!)}{RS = (1^{2} + 1)1! + \dots + (n^{2} + 1)n!} = n(n+1)! \quad for some integer n > 1$$
Then $(1^{n} + 1)1! + \dots + (n^{n} + 1)n! + ((n+1)^{n} + 1)(n+1)!$

 $= n(n+1)! + (n^{n} + 2n+2)(n+1)! , nsing the assumption$

$$= (n+1)! (n+1)(n+2)$$

$$= (n+1)! (n+1)(n+2)$$

$$= (n+1)(n+2)! = RS \quad for n+1$$
(i) $(----\cdots)$
(c) (i) angles in the same segnent

(ii) $(ACB = 90^{n}, L = centi-cink$

 $= (PRB, given$
... $(PRD = LCBP, given$

 $HRC = LCBP, given$

 $HRC = LCBP, given$

 $HRC = LCBP, given$

On 5

(a) (i)
$$\ddot{x} = 0$$
 $\dot{y} = -10$
 $\dot{x} = 30$ $\dot{y} = -10t$
 $x = 30t$ $y = -5t^{2} + 125$
(ii) at β , $y=0$ $\therefore 5t^{2} = 125$
 $w t^{2} = 25$ $\therefore t = 5$
 $y = 50$ $x = 30 \times 5 = 150$
 $16t^{2}$ 5_{3} to reach β $150 \sim 4 \text{ arginstally}$
(iii) From (ii), $150 = 5 \text{ v cm}\theta$ (ii) $v \sin\theta = 25$
 $\therefore v^{2} = 30^{2} + 25^{2} \Rightarrow v = \sqrt{30^{2} + 25^{2}}$
 $= 561 \text{ m/r} \int_{0}^{0} \sqrt{1525}$
 $and ta \theta = \frac{35}{30} \Rightarrow \theta = ta^{-1}(\frac{5}{6}) \begin{bmatrix} x & 39.9^{\circ} \\ 0 & 7 \end{bmatrix}$
(iv) From (iii), $x = 30t$, $y = -5t^{2} + 25t$
 $\therefore \text{ Contension pack is } y = -5(\frac{x}{30}) \text{ [will do]}$
 $16 \quad y = -\frac{x^{2}}{180} + \frac{5x}{6}$
(1)[i] Post $x = -1$, then $(2 + 1-3) = \beta + 12 - 30 - 35 + A = 0$
 $\therefore A = 455$

$$(ii) P(x) = (2x^{2} - x - 3)^{2} = ((x + i)(2x - 3))^{3}$$

$$\implies x = -1 \quad \text{and} \quad \frac{3}{2} \quad \text{are triple roots of } R_{rs} = 0$$

$$\therefore \text{ two roots of } P''(x) = 0 \quad \text{are } x = -1, \frac{3}{2}$$

$$\begin{aligned} \underbrace{(a)}_{(i)} & \underbrace{T_{ingest}}_{iso} dt T is \quad y = tx - t^{2} \\ \therefore at A , \quad 0 = tx - t^{2} \implies x = t \\ & \text{is } A = (t, 0) \\ & \text{gradiant } qt \quad 0T = \frac{x^{1}}{2t} = \frac{x}{2} \\ \therefore AP \quad is \quad y = -\frac{2}{t}(x - t) \end{aligned}$$

$$\begin{aligned} (ii) \quad 0T \quad is \quad y = \frac{x}{2}x \quad \text{or } t = \frac{3x}{2} \\ (iii) \quad from (ii), \quad locus \quad ef P(x, y) \quad is \\ & y = -\frac{3x}{2y}(x - \frac{3y}{2x}) \\ & a \quad y^{2} = -x^{2} + 2y \\ \implies x^{2} + y^{2} - 2y = 0 \\ & \text{is } x^{2} + (y - 1)^{2} = 1, \\ & a \quad circle \quad centre (0, 1), \quad randoins 1 \quad [except ide point (0, 0)] \end{aligned}$$

$$\begin{aligned} \underbrace{OBELLUISE}_{i} & using \quad y = -\frac{1}{2}(x - t) \quad ad \quad y = \frac{x}{2}x \\ & ue Lane \quad \frac{x}{2}x = -\frac{1}{2}(x - t) \quad ad \quad y = \frac{x}{2}x \\ & is \quad y^{2} = \frac{x}{2} \cdot \frac{ut}{t^{2}+4} = \frac{2t}{t^{2}+4} \\ & \therefore x^{2} + (y - 1)^{2} = \frac{I(x^{2})}{(t^{2}+4)^{2}} = \frac{I(t^{2})}{(t^{2}+4)^{2}} = 1 \end{aligned}$$

(f)
$$\frac{dS}{dt} = k$$

$$\frac{dV}{dt} = \frac{dV}{dr} \cdot \frac{dr}{dt}$$

$$= \frac{dV}{dr} \cdot \frac{dr}{ds} \cdot \frac{dS}{dt} \qquad : \frac{dS}{dr} = 877r$$

$$= 47r^{*} \cdot \frac{1}{ds} \cdot k$$

$$= \frac{k}{2} + \frac{r}{since} \quad k \text{ is constant}$$

(c) $\log_{6} 9 = \frac{\log_{3} 9}{\log_{3} 6} = \frac{2}{\log_{3}^{3} + \log_{3}^{2}}$

$$\Rightarrow A = \frac{2}{1 + \log_{3}^{2}}$$

$$\therefore 1 + \log_{3}^{2} = \frac{2}{A}$$

$$r = \log_{3}^{2} - \frac{2}{A} = 1 \quad \text{or } \frac{2-A}{A}$$

On 7

(a) (i)
$$f(-x) = \frac{e^{-x} - e^{x}}{e^{-x} + e^{x}} = -\left(\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}\right)$$

$$= -f(x)$$
[\Rightarrow odd function]
(ii) $f(x) = \frac{e^{2x} - 1}{e^{2x} + 1} = \frac{(e^{2x} + 1) - 2}{e^{2x} + 1}$

$$= 1 - \frac{2}{e^{2x} + 1}$$

$$\binom{1}{1} \frac{2}{e^{2\pi} + 1} > 0 \quad \forall n \quad \therefore \quad f(a) < 1 \quad f(a) < 0$$

(ii) Now,
$$\frac{u_{k+1}}{u_k} = \frac{3n-k+1}{k} \cdot \frac{x}{2}$$
 for (i)
 $\therefore f_{N} x = 1$, $\frac{u_{k+1}}{u_k} \ge 1 \Longrightarrow 3n-k+1 \ge 2k$
 $\Rightarrow 3k \le 3n+1$
or $k \le n+\frac{1}{3}$
 $\Rightarrow u_{k+1} > u_k$ for $k \le n$
 ie' greatest term = $\binom{3n}{2^n} \frac{i}{2^n}$ when $x = i$
 $\int u_{k+1}$ will do \int