The King’s School

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided
- All necessary working should be shown in every question

Total marks - 84

- Attempt Questions 1-7
- All questions are of equal value

Total marks - 84
Attempt Questions 1-7
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Marks

Question 1 (12 marks) Use a SEPARATE writing booklet.
(a) Find $\int \frac{d x}{\sqrt{9-4 x^{2}}}$
(b) $\quad P(3,7)$ divides the interval $A B$ in the ratio $m: n$, where $A=(-1,2)$ and $B=(11,17)$.

Find the ratio $m: n$.
(c) Let $f(x)=\ln (\tan x), 0<x<\frac{\pi}{2}$

Show that $f^{\prime}(x)=2 \operatorname{cosec} 2 x$
(d) Two lines have gradients $2+\sqrt{3}$ and 1 .

Find the size of the acute angle between these lines.
(e) Use the substitution $u=1+x^{2}$ to evaluate $\int_{1}^{\sqrt{3}} 6 x \sqrt{1+x^{2}} d x$
(a) (i) Use the expansion of $\cos (A+B)$ to show that $\cos 2 x=1-2 \sin ^{2} x$
(ii) Evaluate $\lim _{x \rightarrow 0} \frac{\cos 2 x-1}{2 x^{2}}$
(b) Find $\int 4 \sin ^{2} x d x$
(c)

$A B$ is the diameter of a circle, centre O .
$A B$ produced meets the secant $C D$ at P.
$C D=5, D P=4$ and $B P=3$
Find the diameter of the circle.
(d) (i) Solve $\frac{x+1}{x^{2}+1}>1$
(ii) Without solving, explain why $x<-1$ is a solution of $\frac{x^{2}+1}{x+1}<1$
(iii) Hence, or otherwise, solve $\frac{x^{2}+1}{x+1}<1$
(a) The roots of $x^{3}-6 x+1=0$ are $\alpha, \beta, \quad \gamma$.

Find values for
(i) $\alpha+\beta+\gamma$
(ii) $\alpha^{2}+\beta^{2}+\gamma^{2}$
(b) Use the substitution $t=\tan \frac{x}{2}$ to solve $\sin x-7 \cos x-5=0,0^{\circ}<x<360^{\circ}$, giving your answers to the nearest degree.
(c) (i) A particle is moving along the x axis so that at any time $t \geq 0$ its velocity is v and its acceleration is $\frac{d v}{d t}$.

Prove that $\frac{d v}{d t}=\frac{d\left(\frac{1}{2} v^{2}\right)}{d x}$
(ii) A particle is moving along the x axis in simple harmonic motion with its velocity v given by the equation $v^{2}=4 x-2 x^{2}$.

Find
(α) its amplitude
and (β) its period.
(a) $\quad f(x)=5 \sqrt{1+x^{6}}-7 x$ has a zero near $x=1$.

Use Newton's method once to find a two decimal place approximation to this zero.
(b) Use mathematical induction to prove that for all integers $n \geq 1$,

$$
\begin{equation*}
\left(1^{2}+1\right) 1!+\left(2^{2}+1\right) 2!+\ldots+\left(n^{2}+1\right) n!=n(n+1)! \tag{4}
\end{equation*}
$$

(c)

$A B$ is the diameter of a semi-circle $A B C D$.
$D B$ meets $A C$ at P and $P Q \perp A B$ at Q.
(i) Explain why $\angle D A C=\angle C B D$
(ii) Prove that $Q B C P$ is a cyclic quadrilateral.
(iii) Deduce that $P Q$ bisects $\angle D Q C$.
(a)

Two particles P and Q are projected at the same time in the same vertical plane. The only force acting on the particles is due to gravity, where $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

Taking axes of reference as in the diagram, particle P is projected from O on horizontal ground with velocity $v \mathrm{~m} / \mathrm{s}$ at an elevation of θ and particle Q is projected horizontally at $30 \mathrm{~m} / \mathrm{s}$ from a point $A 125 \mathrm{~m}$ above O. The two particles meet at the same time t at a point B on ground level.

You may assume the equations of motion for particle P are:
$\ddot{x}=0$
$\ddot{y}=-10$
$\dot{x}=v \cos \theta$
$\dot{y}=-10 t+v \sin \theta$
$x=(v \cos \theta) t$

$$
y=-5 t^{2}+(v \sin \theta) t
$$

[DO NOT PROVE THESE]

(i) Write down the equations of motion for particle Q
(ii) Find the time taken for particle Q to reach B and determine the horizontal distance it has travelled.
(iii) Find the velocity of projection and angle of elevation for particle P, i.e. find v and θ
(iv) Find the cartesian equation of the parabolic path of particle P.

Question 5 continues on the next page

(b) You are given $P(x)=\left(2 x^{2}-x-3\right)^{3} \equiv 8 x^{6}-12 x^{5}-30 x^{4}+35 x^{3}+A x^{2}-27 x-27$
(i) Find the value of A.
(ii) Find two of the roots of $P^{\prime \prime}(x)=0$
(a)

The tangent at $T\left(2 t, t^{2}\right), t \neq 0$, on the parabola $x^{2}=4 y$ meets the x axis at A.
$P(x, y)$ is the foot of the perpendicular from A to $O T$, where O is the origin.
The equation of the tangent at T is $y=t x-t^{2}$
(i) Prove that the equation of $A P$ is $y=-\frac{2}{t}(x-t)$
(ii) Show that the equation of $O T$ is $t=\frac{2 y}{x}$
(iii) Hence, or otherwise, prove that the locus of $P(x, y)$ lies on a circle with centre (0,1) and give its radius.
(b) The surface area S of a spherical bubble is changing at a constant rate of $\mathrm{kcm}^{2} / \mathrm{s}$.

Prove that the volume is changing at a rate proportional to the radius at any time t.

$$
\left[S=4 \pi r^{2}, \quad V=\frac{4}{3} \pi r^{3}\right]
$$

(c) If $\log _{6} 9=A$, express $\log _{3} 2$ in terms of A.

End of Question 6

(a) Consider the function $f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
(i) Show that $f(-x)=-f(x)$
(ii) Show that $f(x)=1-\frac{2}{e^{2 x}+1}$
(iii) Explain why $f(x)<1$ for all values of x
(iv) Hence, or otherwise, sketch $y=f(x)$ in the number plane.
(v) Explain why the inverse function $f^{-1}(x)$ exists without any restriction on the domain of $f(x)$
(vi) Sketch $y=f^{-1}(x)$ in the number plane.
(vii) For $y=f^{-1}(x)$, express y in terms of x
(b) (i) Show that $\frac{\binom{3 n}{k}}{\binom{3 n}{k-1}}=\frac{3 n-k+1}{k}$
(ii) Find the greatest term in the expansion of $\left(1+\frac{x}{2}\right)^{3 n}, n$ a positive integer, when $x=1$

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE : } \ln x=\log _{6} x, \quad x>0
\end{aligned}
$$

TKS Manhematics Ext I trial h.s.c. Solutows 2005
Que 1
(a) $\frac{1}{2} \sin ^{-1} \frac{2 x}{3}(+c)$
(b)

$$
\therefore n: n=4: 8=1: 2
$$

(c)

$$
\begin{aligned}
f^{\prime}(x)=\frac{\sec ^{2} x}{\tan x} & =\frac{1}{\sin x \cos x} \\
& =\frac{2}{\sin 2 x}=2 \operatorname{cosec} 2 x
\end{aligned}
$$

(d)

$$
\begin{aligned}
\tan \alpha=\frac{2+\sqrt{3}-1}{1+2+\sqrt{3}} & =\frac{1+\sqrt{3}}{3+\sqrt{3}} \\
& =\frac{1+\sqrt{3}}{\sqrt{3}(1+\sqrt{3})}=\frac{1}{\sqrt{3}} \\
\Rightarrow \alpha & =\frac{\pi}{6} \text { or } 30^{\circ}
\end{aligned}
$$

(e)

$$
\begin{aligned}
& u=1+x^{2} \\
& \frac{d u}{d x}=2 x \quad \therefore I=\int_{2}^{4} 3 \sqrt{u} d u \\
&: x=1, u=2 \\
& x=\sqrt{3}, u=4
\end{aligned} \quad \begin{aligned}
& =3.2\left[u^{3 / 2}\right]_{2}^{4} \\
& =2(8-2 \sqrt{2}) \\
& =4(4-\sqrt{2})
\end{aligned}
$$

Qh 2
(a) (i)

$$
\begin{aligned}
\cos (A+B) & =\cos A \cos B-\sin A \sin B \\
\Rightarrow \cos 2 x & =\cos ^{2} x-\sin ^{2} x \\
& =1-\sin ^{2} x-\sin ^{2} x=1-2 \sin ^{2} x
\end{aligned}
$$

(ii) $\lim _{x \rightarrow 0} \frac{-2 \sin ^{2} x}{2 x^{2}}=-\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{2}=-1$
(b)

$$
\begin{aligned}
I=2 \int 1-\cos 2 x d x & =2\left(x-\frac{\sin 2 x}{2}\right)(+c) \\
& =2 x-\sin 2 x \quad(+c)
\end{aligned}
$$

(c)

$$
\begin{gathered}
\Rightarrow 3(d+3)=9 \times 4 \\
\therefore d+3=12 \\
\text { ie dicineter }=9
\end{gathered}
$$

(d) (i)

$$
\begin{aligned}
& \therefore x+1>x^{2}+1 \\
& \text { ie } x^{2}-x<0 \\
& x(x-1)<0 \\
& \Rightarrow 0<x<1
\end{aligned}
$$

(ii) $x<-1 \Rightarrow x+1<0$ and since $x^{2}+1>0$,

$$
\therefore \frac{x^{2}+1}{x+1}<0 \Rightarrow \frac{x^{2}+1}{x+1}<1
$$

(ii) From (i) + (ii), $x<-1$ or $0<x<1$

Qu 3
(a) (i) $\alpha+\beta+\gamma=0$
(i)

$$
\begin{aligned}
\alpha^{2}+\beta^{2}+\gamma^{2} & =(2+\beta+\gamma)^{2}-2\left(\alpha \beta+\beta \gamma+\gamma^{\alpha}\right) \\
& =0-2(-6)=12
\end{aligned}
$$

(b)

$$
\begin{aligned}
& t=\tan \frac{x}{2} \Rightarrow \frac{2 t}{1+t^{2}}-7 \frac{\left(1-t^{2}\right)}{1+t^{2}}-5=0 \\
& \text { ai. } \quad 2 t-7\left(1-t^{2}\right)-5\left(1+t^{2}\right)=0 \\
& \therefore 2 t^{2}+2 t-12=0 \\
& \therefore t^{2}+t-6=0 \\
&(t-2)(t+3)=0 \\
& \Rightarrow \tan \frac{x}{2}=2 \text { or }-3 \quad, 0^{\circ}<\frac{x}{2}<180^{\circ} \\
& \therefore x=127^{\circ} \text { o } 217^{\circ}
\end{aligned}
$$

(c) (i)

$$
\begin{aligned}
\frac{d v}{d t} & =\frac{d v}{d x} \cdot \frac{d x}{d t} \\
& =v \frac{d v}{d x} \\
& =\frac{d\left(\frac{1}{2} v^{2}\right)}{d v} \cdot \frac{d v}{d x}=\frac{d\left(\frac{1}{2} v^{2}\right)}{d x}
\end{aligned}
$$

(i)
(α

$$
\begin{gathered}
v=0 \Rightarrow 2 x(2-x)=0 \\
\text { if } x=0,2 \\
\therefore \text { amplitude }=1
\end{gathered}
$$

(β)

$$
\begin{aligned}
& \frac{1}{2} v^{2}= 2 x-x^{2} \\
& \therefore \ddot{x}= 2-2 x=-2(x-1) \\
& \Rightarrow n^{2}=2 \text { in usual aotation } \\
& \therefore n=\sqrt{2} \\
& \therefore \text { peried } T=\frac{2 \pi}{\sqrt{2}}=\sqrt{2} \pi
\end{aligned}
$$

Qu 4
(a)

$$
\begin{aligned}
& f^{\prime}(x)=5 \cdot \frac{1}{2}\left(1+x^{6}\right)^{-\frac{1}{2}} \cdot 6 x^{5}-7=\frac{15 x^{5}}{\sqrt{1+x^{6}}}-7 \\
& \therefore x_{1}=1-\frac{5 \sqrt{2}-7}{\frac{15}{\sqrt{2}}-7} \approx 0.98
\end{aligned}
$$

(b)

$$
\text { For } \begin{aligned}
n=1, & L S=\left(1^{2}+1\right) 1!=2 \\
& R S=1(2!)=2
\end{aligned}
$$

\therefore Assume $\left(1^{2}+1\right) 1!+\cdots+\left(n^{2}+1\right) n!=n(n+1)!$ for some integer $n \geqslant 1$
The $\left(1^{2}+1\right)!!+\cdots+\left(n^{2}+1\right) a!+\left((n+1)^{2}+1\right)(a+1)$!

$$
\begin{aligned}
& =n(n+1)!+\left(n^{2}+2 n+2\right)(n+1)!\text {, nosing the assumption } \\
& =(n+1)!\left[n+n^{2}+2 n+2\right] \\
& =(n+1)!\left(n^{2}+3 n+2\right) \\
& =(n+1)!(n+1)(n+2) \\
& =(n+1)(n+2)!=\text { RS for } n+1
\end{aligned}
$$

(c) (i) angles in the same segnant
(ii)

$$
\begin{aligned}
\angle A C B & =90^{\circ}, \angle i n \text { a semi-cinole } \\
& =\angle P Q B, \text { given }
\end{aligned}
$$

$\therefore Q B C P$ is a cyclic θ, opp. angles supplementary
(ii) Similarly to (ii), $A Q P D$ is a cydic grad

$$
\begin{aligned}
& \therefore \angle P Q D=\angle D A P, \angle S \text { in same segment } \\
& * \angle P Q C=\angle C B P, \quad \therefore
\end{aligned}
$$

$$
\text { But } \angle D A P=\angle C B P \text {, give }
$$

$\therefore \angle P Q D=\angle P Q C$ le. $P Q$ bisects $\angle D Q C$

On 5
(a)
(i)

$$
\begin{array}{ll}
\ddot{x}=0 & \ddot{y}=-10 \\
\dot{x}=30 & \dot{y}=-10 t \\
x=30 t & y=-5 t^{2}+125
\end{array}
$$

(ii) at $B, y=0$

$$
\begin{aligned}
\therefore 5 t^{2} & =125 \\
\text { or } t^{2} & =25 \quad \therefore t=5 \\
& \not+\text { so } x=30 \times 5=150
\end{aligned}
$$

le. Ss to reach B 150~ Lorijoutally
(iii) From (ii), $150=5 v \cos \theta$ ii $v \cos \theta=30$
and $0=-125+5 v \sin \theta$ lie $v \sin \theta=25$

$$
\begin{aligned}
\therefore v^{2}=30^{2}+25^{2} \Rightarrow v & =\sqrt{30^{2}+25^{2}} \\
& =5 \sqrt{61} \mathrm{~m} / \mathrm{s} \text { [or } \text { [or } 39 \ldots \ldots \text {].... }
\end{aligned}
$$

and $\tan \theta=\frac{25}{30} \Rightarrow \theta=\tan ^{-1}\left(\frac{5}{6}\right)\left[\begin{array}{cc}\approx & 39.8^{\circ} \\ 0 & 0.7\end{array}\right]$
(iv) from (iii), $x=30 t, y=-5 t^{2}+25 t$
\therefore Cartesian path is $y=-5\left(\frac{x}{30}\right)^{2}+25\left(\frac{x}{30}\right) \quad$ [will do]

$$
\text { 18 } y=-\frac{x^{2}}{180}+\frac{5 x}{6}
$$

(l) (i) Pat $x=-1$, then $(2+1-3)^{3}=8+12-30-35+A=0$

$$
\therefore A=45
$$

(ii) $P(x)=\left(2 x^{2}-x-3\right)^{3}=((x+1)(2 x-3))^{3}$
$\Rightarrow x=-1$ and $\frac{3}{2}$ are triple roots of $P(x)=0$
\therefore two roots of $\rho^{\prime \prime}(x)=0$ are $x=-1, \frac{3}{2}$

Qu 6
(a) (i) Tangat at T is $y=t x-t^{2}$
\therefore at $A, 0=t x-t^{2} \Rightarrow x=t$
le $A=(t, 0)$
gradient of $O T=\frac{t^{2}}{2 t}=\frac{t}{2}$

$$
\therefore A P \text { is } y=-\frac{2}{t}(x-t)
$$

(ii) OT is $y=\frac{t}{2} x$ or $t=\frac{2 y}{x}$
(ii) from (ii), locus of $P(x, y)$ is

$$
\begin{aligned}
& \quad y=-\frac{2 x}{2 y}\left(x-\frac{2 y}{x}\right) \\
& \text { or } y^{2}=-x^{2}+2 y \\
& \Rightarrow \quad x^{2}+y^{2}-2 y=0 \\
& \quad x^{2}+(y-1)^{2}=1,
\end{aligned}
$$

a circle centre $(0,1)$, radios $1\left[\begin{array}{c}\text { except th } \\ \text { point }(0,0)\end{array}\right]$
onteluist using $y=-\frac{2}{t}(x-t)$ ad $y=\frac{t}{2} x$
we have $\frac{t}{2} x=-\frac{2}{t}(x-t)$

$$
\begin{aligned}
\text { or } t^{2} x & =-4(x-t) \Rightarrow x=\frac{4 t}{t^{2}+4} \\
\therefore y & =\frac{t}{2} \cdot \frac{4 t}{t^{2}+4}=\frac{2 t^{2}}{t^{2}+4} \\
\therefore x^{2}+(y-1)^{2} & =\frac{16 t^{2}}{\left(t^{2}+4\right)^{2}}+\left(\frac{2 t^{2}}{t^{2}+4}-1\right)^{2} \\
& =\frac{16 t^{2}+\left(t^{2}-4\right)^{2}}{\left(t^{2}+4\right)^{2}}=\frac{t^{4}+8 t^{2}+16}{\left(t^{2}+4\right)^{2}}=\frac{\left(t^{2}+4\right)^{2}}{\left(t^{2}+4\right)^{2}}=1
\end{aligned}
$$

\Rightarrow circle, centre $(0,1)$, iodine 1
(b)

$$
\begin{aligned}
& \frac{d S}{d t}=k \\
& \therefore \frac{d V}{d t}=\frac{d V}{d r} \cdot \frac{d r}{d t} \\
&=\frac{d V}{d r} \cdot \frac{d r}{d S} \cdot \frac{d S}{d t}: \frac{d S}{d r}=8 \pi r \\
&=4 \pi r^{2} \cdot \frac{1}{8 \pi r} \cdot k \\
&=\frac{k}{2} r
\end{aligned}
$$

$<r$ since k is constant
(c)

$$
\begin{aligned}
\log _{6} 9 & =\frac{\log _{3} 9}{\log _{3} 6}=\frac{2}{\log _{3} 3+\log _{3} 2} \\
\Rightarrow A & =\frac{2}{1+\log _{3} 2} \\
& \therefore 1+\log _{3} 2=\frac{2}{A} \\
& \text { or } \log _{3} 2=\frac{2}{A}-1 \text { or } \frac{2-A}{A}
\end{aligned}
$$

Qu 7
(a)
(i)

$$
\begin{aligned}
& f(-x)=\frac{e^{-x}-e^{x}}{e^{-x}+e^{x}}=-\left(\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right) \\
&=-f(x) \\
& {[\Rightarrow \text { odd function }] }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
f(x)=\frac{e^{2 x}-1}{e^{2 x}+1} & =\frac{\left(e^{2 x}+1\right)-2}{e^{2 x}+1} \\
& =1-\frac{2}{e^{2 x}+1}
\end{aligned}
$$

(ii) $\frac{2}{e^{2 x}+1}>0 \forall x \quad \therefore f(x)<1$ from (ii)

(v) $\because f(x)$ is increasing $\forall x$
(vi)

(vii)

$$
\begin{aligned}
& f^{-1}: x=1-\frac{2}{e^{2 y}+1} \\
& \Rightarrow \frac{2}{e^{2 y}+1}=1-x \\
& \text { or } e^{2 y}+1=\frac{2}{1-x} \\
& \therefore e^{2 y}=\frac{2}{1-x}-1=\frac{1+x}{1-x} \\
& \therefore 2 y=\ln \left(\frac{1+x}{1-x}\right) \\
& \text { ie x } y=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)
\end{aligned}
$$

$$
\text { (l) (i) } \begin{aligned}
\frac{\binom{3 n}{k}}{\binom{3 n}{k-1}} & =\frac{(3 n)!(3 n-k+1)!(k-1)!}{(3 n-k)!k!(3 n)!} \\
& =\frac{3 n-k+1}{k}
\end{aligned}
$$

(ii) Now, $\frac{\mu_{k+1}}{\mu_{k}}=\frac{3 n-k+1}{k} \cdot \frac{x}{2}$ from (i)

$$
\begin{aligned}
& \therefore \text { for } x=1, \frac{\mu_{k+1}}{v_{k}} \geqslant 1 \Rightarrow 3 n-k+1 \geqslant 2 k \\
& \Rightarrow 3 k \leq 3 n+1 \\
& \text { or } k \leq n+\frac{1}{3} \\
& \Rightarrow \mu_{k+1}>u_{k} \quad \text { for } k \leq n
\end{aligned}
$$

le' greatest torn $=\binom{3 a}{n} \cdot \frac{1}{2^{n}}$ wham $x=1$

$$
\left[\mu_{n+1} \text { will do }\right]
$$

