The King’s School

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided
- All necessary working should be shown in every question

Total marks - 84

- Attempt Questions 1-7
- \quad All questions are of equal value
- Start a new booklet for each Question
- Put your Student Number and the Question Number on the front of each booklet

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet.
(a) Differentiate $y=\log _{e}(\cos x)$ expressing your answer in simplest form.
(b) Evaluate:
(i) $\quad \int_{2}^{3} \frac{2 x}{\sqrt{x^{2}-4}} d x$ using the substitution $u=x^{2}-4$.
(c) Solve the following inequaltiy for x, graphing the solution on a number line

$$
\frac{1}{x+2}<3
$$

(d) Determine the acute angle between the straight lines whose equations are

$$
x-y+1=0 \text { and } 2 y=x+1
$$

End of Question 1

(a) Consider the function $y=2 \cos ^{-1} \frac{x}{3}$.
(i) Sketch the graph of this function clearly showing the domain and range.
(ii) Find the angle, θ, that the tangent to the curve $y=2 \cos ^{-1} \frac{x}{3}$ at $x=0$ makes with the positive direction of the x-axis. 3
(b) Find the volume of the solid of revolution formed when the curve $y=\sin x$ is rotated around the x axis between the lines $x=0$ and $x=\frac{\pi}{4}$.
(c) Find all values of θ for which $2 \sin \theta-\sqrt{2}=0$. 2
(d) Find the point P which divides the interval joint $A(-3,5)$ and $B(7,10)$ externally in the ratio $2: 7.2$

End of Question 2

(a) A spherical balloon is expanding so that its volume $V \mathrm{~mm}^{3}$ increases at a constant rate of 72 mm^{3} per second.

What is the rate of increase of its surface area $A \mathrm{~mm}^{2}$, when the radius is 12 mm ?
(b) Factorise $x^{3}-3 x^{2}-10 x+24$, given that $x=2$ is a zero, and hence solve $x^{3}+24>3 x^{2}+10 x$. 4
(c) Solve $3 \sin x+2 \cos x=2$, for $0 \leq x \leq 360^{\circ}$, to the nearest minute. 4

End of Question 3

(a) Find the term independent of x in the expansion of $\left(x+\frac{1}{x^{2}}\right)^{9}$.
(b) Consider the expansion of $(1+2 x)^{n}$.
(i) Write down an expression for the coefficient of the term in x^{4}.
(ii) The ratio of the coefficient of the term in x^{4} to that of the term in x^{6} is 5:8. Find $n .3$
(b)

O is the centre of the circle, MPB is a straight line and OLM is perpendicular to AOB as shown. Prove that:
(i) A, O, P, M are concyclic, and 2
(ii) $\angle \mathrm{OPA}=\angle \mathrm{OMB}$.

End of Question 4

Question 5 (12 marks) Use a SEPARATE writing booklet.
(a) $\quad T A$ and $T B$ are two tangents drawn to a circle from an external point T. A and B are the point of contact of the tangent with the circle.
(i) Draw a neat diagram clearly showing this information.
(ii) Prove that $T A=T B$.
(b) Prove by Mathematical Induction that $7^{n}-1$ is divisible by 6 for all positive integers of $n .4$
(c) The elevation of hill at a place A due east of it is 39°, at a place B due south of A, the elevation is 27°.

If the distance from A to B is 500 m , find the height of the hill, to the nearest metre.
(d) Show that $\frac{d}{d x}\left(\log _{e} 2 x\right)=\frac{d}{d x}\left(\log _{e} x\right)$.

Does this mean that $\log _{e} 2 x=\log _{e} x$?
Give reasons for your answers.

End of Question 5

Question 6 (12 marks) Use a SEPARATE writing booklet.
(a) (i) Consider the parabola $y=x^{2}$.

Find the equation of the tangent to the parabola at the point $P\left(t, t^{2}\right)$.
(ii) Show that the line passing through the focus of the parabola and perpendicular to the tangent at P had equation $x=\frac{t}{2}(1-4 y)$.
(iii) Find the locus of $Q(X, Y)$, the point of intersection of the tangent and the line through the focus perpendicular to the tangent.
(b) A particle A is projected horizontally at $50 \mathrm{~m} / \mathrm{s}$ from the top of a tower 100 m high. At the same instant, another particle B is projected from the bottom of the tower, in the same vertical plane at $100 \mathrm{~m} / \mathrm{s}$ with elevation 60°.

Prove that the particles will collide and find where they do so. (Use $g=10 \mathrm{~ms}^{-2}$.)

End of Question 6

Question 7 appears on next page
(a) Solve for $0^{\circ} \leq \theta \leq 360^{\circ}, \sin x=3 \cos \left(x+65^{\circ}\right)$.
(b) Prove that the area of a $\triangle A B C$ is $\frac{a^{2} \sin B \sin C}{2 \sin A}$.
(c) Given that $y=\frac{x^{2}+\lambda}{x+2} \quad$ and x is real, find:
(i) the set of value(s) of λ for which y can take all but one real value.
(ii) If when $\lambda=5$, by sketching $y=\frac{x^{2}+5}{x+2}$, find the range of the function.
(d) Find the values of m for which the line $y=m x$ touches the curve $y=\frac{2 x^{2}+1}{2(x+2)}$.

Standard Integrals

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{\mathrm{n}+1}, \quad \mathrm{n} \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\quad \frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\quad \frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\quad \frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\quad \sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\quad \ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Note: $\ln x=\log _{e} x, \quad x>0$

TKS THSC MATXI 2006
1c $y=\log _{e}(\cos x)$
(c)

$$
y^{\prime}=-\frac{\sin x}{\cos x}
$$

$$
=-\tan x
$$

$$
\begin{aligned}
& \frac{1}{x+2}<3 \quad x \neq-2 \\
& \text { C.P. } x=-2 \\
& 1=3(x+2) \\
& x=-1 \frac{2}{3}
\end{aligned}
$$

(b) (i) $\int_{2}^{3} \frac{2 x d x}{\sqrt{x^{2}-4}}$

$$
\begin{aligned}
& u=x^{2}-4 \\
& \frac{d u}{d x}=2 x \\
& x=2, u=0 \\
& x=3, u=5
\end{aligned}
$$

test $x=0 \quad \frac{1}{2}<3$ true

$$
\begin{aligned}
& x=2, u=0 \\
I & =\int_{0}^{5} \frac{2 x}{\sqrt{u}} \times \frac{d u}{2 x} \quad x=3, u=5 \\
& =\int_{0}^{5} u^{-\frac{1}{2}} \cdot d u \\
& =\left[2 u^{\frac{1}{2}}\right]_{0}^{5} \\
& =\frac{2 \sqrt{5}}{4 \pi} .
\end{aligned}
$$

(d)

$$
\begin{aligned}
& l_{1}: m_{1}=1 \\
& l_{2}: m_{2}=\frac{1}{2} \\
& \begin{aligned}
\tan \theta & =\left|\frac{1-\frac{1}{2}}{1+1 \times \frac{1}{2}}\right| \\
& =\left|\frac{\frac{1}{2}}{\frac{3}{2}}\right| \\
& =\frac{1}{3}
\end{aligned}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \int_{\pi}^{\frac{4 \pi}{3}} \sin x \cos x d x \\
= & \int_{\pi}^{\frac{4 \pi}{3}} \frac{1}{2} \sin 2 x d x \\
= & {\left[-\frac{1}{4} \cos 2 x\right]_{\pi}^{\frac{4 \pi}{3}} } \\
= & -\frac{1}{4} \cos \frac{8 \pi}{3}+\frac{1}{4} \cos 2 \pi \\
= & -\frac{1}{4} \cos \frac{2 \pi}{3}+\frac{1}{4} \\
= & \frac{1}{8}+\frac{1}{4} \\
= & \frac{3}{8} .
\end{aligned}
$$

2(6) $y=\cos ^{-1} x \quad D:-1 \leq x \leq 1$

$$
R: 0 \leqslant y \leqslant \pi
$$

(i) $y=2 \cos ^{-1} \frac{x}{3}$

(ii)

$$
\begin{aligned}
y & =2 \cos ^{-1} \frac{x}{3} \\
y^{\prime} & =2 x \frac{-1}{\sqrt{1-\frac{x^{2}}{9}}} \times \frac{1}{3} \\
& =\frac{-2}{\sqrt{9-x^{2}}}
\end{aligned}
$$

at $x=0 \quad y^{\prime}=-\frac{2}{3}$

$$
\begin{aligned}
& \therefore \tan \theta=-\frac{2}{3} \\
& \theta=146^{\circ} 10^{1}
\end{aligned}
$$

(b)

$$
\begin{aligned}
V & =\pi \int_{0}^{\frac{\pi}{4}} \sin ^{2} x \cdot d x \\
& =\frac{\pi}{2} \int_{0}^{\frac{\pi}{4}}(1-\cos 2 x) d x \\
& =\frac{\pi}{2}\left[x-\frac{1}{2} \sin 2 x\right]_{0}^{\frac{\pi}{4}} \\
& =\frac{\pi}{2}\left[\frac{\pi}{4}-\frac{1}{2} \sin \frac{\pi}{2}-(0)\right] \\
& =\frac{\pi}{2} \times\left(\frac{\pi}{4}-\frac{1}{2}\right) \\
& =\frac{\pi(\pi-2)}{8} u^{3}
\end{aligned}
$$

(c)

$$
\begin{aligned}
2 \sin \theta & -\sqrt{2}=0 \\
\sin \theta & =\frac{\sqrt{2}}{2} \\
& =\frac{1}{\sqrt{2}} \\
\theta & =n \pi+(-1)^{n} \frac{\pi}{4}
\end{aligned}
$$

(d)

$$
\begin{aligned}
x & =\frac{-14-21}{7-2} & y & =\frac{-20+35}{7-2} \\
& =-\frac{35}{5} & & =\frac{15}{5} \\
& =-7 & & =3
\end{aligned}
$$

$$
P(-7,3)
$$

Q3@

$$
\frac{d V}{d t}=72
$$

(c)

$$
V=\frac{4}{3} \pi r^{3}
$$

$$
\frac{d V}{d t}=4 \pi r^{2}
$$

$$
\frac{d t}{d t}=\frac{d t}{d V} \times \frac{d V}{d t}
$$

$$
=\frac{L}{4 \pi \times 12^{2}} \times 72
$$

$$
\begin{aligned}
& 3 \sin x+2 \cos x=2 \\
& 3 \min x+2 \cos x \\
& \equiv R \sin (x+\alpha) \\
& \equiv R[\sin x \cdot \cos \alpha+\operatorname{sos} x \min x] \\
& R=\sqrt{3^{2}+4^{2}}=\sqrt{13} \\
& \cos \alpha=\frac{3}{\sqrt{13}} \\
& \alpha=33^{\circ} 41^{\prime}
\end{aligned}
$$

$$
=\frac{1}{8 \pi}
$$

$$
\therefore \sqrt{13} \sin \left(x+33^{\circ} 41^{\prime}\right)=2
$$

$$
A=4 \pi r^{2}
$$

$$
\sin \left(x+33^{\circ} 41^{\prime}\right)=\frac{2}{\sqrt{13}}
$$

$$
\frac{d A}{d r}=8 \pi r
$$

$$
\therefore x+33^{\circ} 41^{\prime}=33^{\circ} 41^{\prime} 146^{\circ} 18^{\prime}
$$

$$
\text { or } 39^{\circ} 3^{\circ} 41^{\prime}
$$

$$
\frac{d A}{d t}=\frac{d A}{d r} \times \frac{d r}{d t}
$$

$$
\therefore x=0^{\circ}, 112^{\circ} 38^{\prime} 01360^{\circ}
$$

$$
=8 \pi \times 12^{0} \times \frac{1}{8 \pi}
$$

$$
=12 \mathrm{~mm}^{2} / \mathrm{ser} .
$$

$$
3\left(\frac{2 t}{1+t^{2}}\right)+2\left(\frac{1-t^{2}}{1+t^{2}}\right)=2
$$

$$
6 t+2-2 t^{2}=2+2 t^{2}
$$

$$
2 t^{2}-3 t=0
$$

$$
t(2 t-3)=0
$$

$$
t=0 \text { or } \frac{3}{2}
$$

$\tan \frac{x}{2}=$ oor $\frac{3}{2}$

$$
\frac{x}{2}=0^{\circ}, 180^{\circ} \text { or } 56^{\circ} 19^{\prime}
$$

$$
x=0^{\circ}, 360^{\circ} \text { or } 112^{\circ} 38^{\prime}
$$

$$
\left.\begin{array}{c}
\frac{x^{2}-x-12}{x^{3}-3 x^{2}-10 x+24} \\
\frac{x^{3}-2 x^{2}}{-x^{2}-10 x} \\
\frac{-x^{2}+2 x}{-12 x+24} \\
\frac{-12 x+24}{}
\end{array}\right] \begin{gathered}
x^{3}-3 x^{2}-10 x+24=(x-2)(x-4)(x+3) \\
x^{3}+24>3 x^{2}+10 x \\
x^{3}-3 x^{2}-10 x+24>0
\end{gathered}
$$

$$
-3<x<2 \text { or } x>4
$$

(b)

Q4) @

$$
\begin{aligned}
\text { General Tarm } & ={ }^{9} C_{+} x^{\gamma} \cdot\left(\frac{1}{x^{2}}\right)^{9-1} \\
& ={ }^{9} C_{r}+\frac{x^{+}}{x^{18-2 t}} \\
& ={ }^{9} C_{+} \cdot x^{3 r-18} \\
\therefore 3 r-18 & =0 \\
r & =6
\end{aligned}
$$

Tern is $9 C_{6}=84$.

$$
\begin{aligned}
& \text { (c) (i) } \angle A O M=90^{\circ} \text { (elato) } \\
& \angle A P B=90^{\circ} \text { (angle in } \\
& \text { remicirle } \\
& \angle A P M=90^{\circ} \text { (nt.line) } \\
& \therefore \quad A, O, M, P \text { as } \\
& \angle A O M=\angle A P M
\end{aligned}
$$

(angles in same seg on civele)
(b)
(i) $(2 x+1)^{n}$
generd tarm $={ }^{n} C_{1}(2 x)^{+} \cdot 1^{n-x}$

$$
={ }^{n}\left(+(2 x)^{+}\right.
$$

Term in $x^{4} \quad x=4$

$$
\therefore \text { coff }={ }^{n} C_{4} \cdot 2^{4}
$$

(ii) Term in $x^{6} \quad r=6$
(ii)
$\angle O A P=\angle \triangle M P$
(angles in name neg)

$$
\angle O A P=\angle O P A
$$

(hane angles of cios A)

$$
\therefore \angle O P A=\angle O M B
$$

$$
\begin{aligned}
& \text { weff }=x_{C_{4}} \cdot 2^{6} \\
& \therefore \frac{n C_{4} \cdot 2^{4}}{n c_{6} \cdot 2^{6}}=\frac{5}{8} \\
& \frac{\frac{n!}{4!(x-4)!}}{\frac{n!}{6!(x-6)!} \cdot 2^{2}}=\frac{5}{8} \\
& \frac{n!}{4!(x-4)!} \times \frac{6!(x-6)!}{x!}=4 \times \frac{5}{8} \\
& \frac{6 \times 5}{(x-4)(x-5)}=\frac{5}{2} \\
& 12=x^{2}-9 x+20 \\
& x^{2}-9 x+8=0 \\
& (x-1)(x-8)=0 \\
& x \neq 1 \therefore x=8
\end{aligned}
$$

In $A^{\prime} S O A T q O B T$
$O A=O B$ (radii of ciele)
$O T$ is common

$$
\angle O A T=\angle O B T=90^{\circ}
$$

(tong r tadiis Mahe 90°)
\therefore I's congrvont (RHS)

$$
\therefore \quad T A=T B
$$

(corresponding sides
of congrient triongles)
(b) when $x=1 \quad 7^{\prime}-1$ is divisible by 6
assume true for $x=h$
i.e. $\frac{7^{k}-1}{6}=m$ where M is tve integer

$$
\therefore \quad 7^{k}=6 m+1
$$

phove tore for $x=k+1$
ie. $\frac{7^{k+1}-1}{6}=m_{1}(a+v e$ integes $)$

$$
\begin{aligned}
\text { LHS } & =\frac{7 \times 7^{l}-1}{6} \\
& =\frac{7 \times(6 m+1)-1}{6} \\
& =\frac{42 m+7-1}{6} \\
& =7 m+1 \text { (a positure nitegen) }
\end{aligned}
$$

\therefore if true for $x=k, t$ is true for $x=k+1$ sume it is true for $x=1$, it is truefor $x=2$ and no on for ange hositive integer

Q5(c)

$$
\tan 39^{\circ}=\frac{h}{A c}
$$

$$
A C=\frac{h}{\tan 39^{\circ}}
$$

$$
\text { (d) } \begin{aligned}
& \frac{d}{d x}\left(\log _{e} 2 x\right) \\
= & \frac{2}{2 x} \\
= & \frac{1}{x} \\
& \frac{d}{d x}\left(\log _{e} x\right) \\
= & \frac{1}{x}
\end{aligned}
$$

$\tan 27^{\circ}=\frac{h}{B C}$

$$
\begin{array}{lr}
\tan 27^{\circ}=\frac{\overline{B C}}{} & \therefore \frac{d}{d x}\left(\log 2^{2 x}\right)=\frac{d}{d x}\left(\log e^{x}\right) \\
B C=\frac{h}{\tan 27^{\circ}} & \text { No- as they differ loy } \\
B C^{2}=500^{2}+A C^{2} & \text { a constand } \\
\frac{h^{2}}{\tan ^{2} 27^{\circ}}=500^{2}+\frac{h^{2}}{\tan ^{2} 39^{\circ}} & \\
\begin{array}{l}
h^{2}\left(\frac{1}{\tan ^{2} 27^{\circ}}-\frac{1}{\tan ^{2} 39^{\circ}}\right)=500^{2} \\
h=\frac{500}{\sqrt{\frac{1}{\tan ^{2} 27^{\circ}}-\frac{1}{\tan ^{2} 39^{\circ}}}} \\
=327.8-\cdots \\
=328 m(\operatorname{ton} \text { nerest metre) }
\end{array} \\
=32
\end{array}
$$

Q6@(1)

$$
\text { (i) } \begin{aligned}
y & =x^{2} \\
\frac{d y}{d x} & =2 x \\
\text { ot } x & =t \\
\frac{d y}{d x} & =2 t
\end{aligned}
$$

eqin of tang at P is

$$
y-t^{y_{2}}=2 t(x-t)
$$

(ii)

$m_{S Q}=-\frac{1}{2 t}$
eqin of $S Q$ is

$$
\begin{align*}
& y-\frac{1}{4}=-\frac{1}{2 t}(x-0) \\
& -2 t y+\frac{1}{2} t=x \\
& x=\frac{t}{2}(1-4 y)-C \tag{1}
\end{align*}
$$

(iii)
(iii) Roloring (1) (2)

$$
\begin{gathered}
\text { Rowing (1) } \\
y=x t_{x} \frac{t}{2}(1-4 y)-t^{2} \\
y=t^{2}-4 t^{2} y-t^{2} \\
y\left(1+4 t^{2}\right)=0 \\
y=0 \\
x=\frac{t}{2}
\end{gathered}
$$

$$
Q\left(\frac{t}{2}, 0\right)
$$

\therefore locus of Q is
the x asis.
(b)

$A: t=0, x=0, y=100, \dot{x}=50, \dot{y}=0$
$B: t=0, x=0, y=0, \dot{x}=10000560^{\circ}=50$

$$
\dot{y}=100 \sin 60^{\circ}=50 \sqrt{3}
$$

$A: \ddot{x}$

$$
\dot{x}=c_{1}
$$

$$
\ddot{y}=-10
$$

$$
\dot{x}=50
$$

$$
\dot{y}=-10 t+c_{3}
$$

$$
c_{3}=0
$$

$$
x=50 t+c_{2}
$$

$$
y=-5 t^{2}+c \varepsilon
$$

$$
c_{2}=0 \quad c_{4}=100
$$

$$
x=50 t \quad y=-5 t^{2}+100 \text {. }
$$

B:

$$
\begin{array}{ll}
\ddot{x}=0 & \ddot{y}=-10 \\
\dot{x}=c_{1} & \dot{y}=-10 t+c_{3} \\
c_{1}=50 & c_{3}=50 \sqrt{3} \\
\dot{x}=50 & \dot{y}=-10 t+50 \sqrt{3} \\
x=50 t+c_{2} & y=-5 t^{2}+50 \sqrt{3} t+c_{3} \\
c_{2}=0 & c_{4}=0 \\
x=50 t & y=-5 t^{2}+50 \sqrt{3} t
\end{array}
$$

to collide $x+y$ must be egul at the same time.

$$
\begin{aligned}
y=-5 t^{2}+100 & =-5 t^{2}+50 \sqrt{3} t \\
t & =\frac{2}{\sqrt{3}} \mathrm{nec} \\
f t=\frac{2}{\sqrt{3}}, \quad x & =50 \times \frac{2}{\sqrt{3}}=\frac{100}{\sqrt{3}} \\
y & =-5 \times\left(\frac{2}{\sqrt{3}}\right)^{2}+100 \\
& =93 \frac{1}{3}
\end{aligned}
$$

\therefore Rantriles collide after $\frac{2}{\sqrt{3}}$ nees at $\left(\frac{100}{\sqrt{3}}, 93 \frac{1}{3}\right)$

$$
\begin{aligned}
& \text { Q7(1) } \begin{aligned}
& \sin x=3 \cos \left(x+65^{\circ}\right) \\
& \sin x=3 \cos x \cdot \cos 65^{\circ}-3 \sin x \cdot \sin 65^{\circ} \\
& \sin x\left(1+3 \sin 65^{\circ}\right)=3 \cos x \cdot \cos 65^{\circ} \\
& \tan x=\frac{3 \cos 65^{\circ}}{1+3 \sin 65^{\circ} \quad\left(\cos x \neq 0, x \neq 90^{\circ}\right)} \\
& \therefore x=18^{\circ} 50^{\prime}, 198^{\circ} 50^{\prime}
\end{aligned}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\frac{b}{\sin B} & =\frac{a}{\sin A} \\
b & =\frac{a \sin B}{\sin A} \\
\therefore \text { asea } & =\frac{1}{2} a \times \frac{a \sin B}{\sin A} \\
& =\frac{a^{2} \sin B}{2 \sin A}
\end{aligned}
$$

(c) (1) $\quad \lambda=-4$
(a) (ii)

$$
\text { i) } \begin{aligned}
y & =\frac{x^{2}+5}{x+2}(x \neq-2) \\
y & \neq 0 \text { as } x^{2}+5 \neq 0 \\
x & =0, y=\frac{5}{2} \\
y^{\prime} & =\frac{(x+2) 2 x-\left(x^{2}+5\right) \cdot 1}{(x+2)^{2}} \\
& =\frac{2 x^{2}+4 x-x^{2}-5}{(x+2)^{2}} \\
& =\frac{x^{2}+4 x-5}{(x+2)^{2}}
\end{aligned}
$$

for \max or min $y^{\prime}=0$

$$
\begin{aligned}
& m x=\frac{2 x^{2}+1}{2 x+4} \\
& 2 m x^{2}+4 m x=2 x^{2}+1 \\
& x^{2}(2 m-2)+4 m x-1=0 \\
& \text { equal toots } \\
& 16 m^{2}-4(2 m-2) x-1=0 \\
& 16 m^{2}+8 m-8=0 \\
& 2 m^{2}+m-1=0 \\
& (2 m-1)(m+1)=0 \\
& \therefore m=\frac{1}{2} 0-1 .
\end{aligned}
$$

$$
\begin{gathered}
x^{2}+4 x-5=0 \\
(x+5)(x-1)=0 \\
x=-5 \text { or } 1
\end{gathered}
$$

$$
\begin{aligned}
x=-5 \quad \angle H S x & =-6 y^{\prime}>0 \\
\text { RUS } x & =-4 y^{\prime}<0
\end{aligned}
$$

$$
\begin{aligned}
& \text { RUS }=-4 y^{\prime}<0 \\
& \text { \& max ot }(-5,-10
\end{aligned}
$$

\therefore tel max at $(-5,-10)$

$$
\begin{aligned}
x=1 \quad \text { IHS } x=0 & y^{\prime}<0 \\
\text { RUS } x=2 & y^{\prime}>0
\end{aligned}
$$

$$
\begin{aligned}
& \text { RUS } x=2 \quad y^{\prime}>0 \\
& \text { rel min at }(1,2
\end{aligned}
$$

\therefore tel min at $(1,2)$

$$
\therefore \quad y \geqslant 2 \text { or } y \leqslant-10 \text {. }
$$

