

THE KING'S SCHOOL

2006 Higher School Certificate Trial Examination

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided
- All necessary working should be shown in every question

Total marks – 84

- Attempt Questions 1-7
- All questions are of equal value
- Start a new booklet for each Question
- Put your Student Number and the Question Number on the front of each booklet

Total marks – 84 Attempt Questions 1-7 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet.

- (a) Differentiate $y = \log_e (\cos x)$ expressing your answer in simplest form.
- (b) Evaluate:

(i)
$$\int_{2}^{3} \frac{2x}{\sqrt{x^{2}-4}} dx$$
 using the substitution $u = x^{2} - 4$. 3

(ii)
$$\int_{\pi}^{\frac{4\pi}{3}} \sin x \cos x \, dx$$
 3

(c) Solve the following inequality for x, graphing the solution on a number line

$$\frac{1}{x+2} < 3$$

Marks

2

(d) Determine the acute angle between the straight lines whose equations are

$$x - y + 1 = 0$$
 and $2y = x + 1$ 2

End of Question 1

(i) Sketch the graph of this function clearly showing the domain and range.

Find the angle, θ , that the tangent to the curve $y = 2\cos^{-1} \frac{x}{3}$ at x = 0 makes with the (ii) positive direction of the x-axis. 3

- (b) Find the volume of the solid of revolution formed when the curve $y = \sin x$ is rotated around the xaxis between the lines x = 0 and $x = \frac{\pi}{4}$. 3
- Find all values of θ for which $2\sin\theta \sqrt{2} = 0$. (c)
- Find the point P which divides the interval joint A(-3, 5) and B(7,10) externally in the ratio 2:7. 2 (d)

End of Question 2

2

A spherical balloon is expanding so that its volume $V \text{ mm}^3$ increases at a constant rate of 72 mm³ per second. (a)

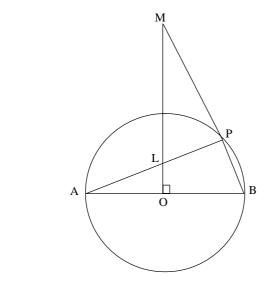
	What is the rate of increase of its surface area $A \text{ mm}^2$, when the radius is 12 mm?	4
(b)	Factorise $x^3 - 3x^2 - 10x + 24$, given that $x = 2$ is a zero, and hence solve $x^3 + 24 > 3x^2 + 10x$.	4
(c)	Solve $3\sin x + 2\cos x = 2$, for $0 \le x \le 360^\circ$, to the nearest minute.	4

End of Question 3

- (a) Find the term independent of x in the expansion of $\left(x + \frac{1}{x^2}\right)^9$. 3
- (b) Consider the expansion of $(1 + 2x)^n$.

(b)

- (i) Write down an expression for the coefficient of the term in x^4 . 2
- (ii) The ratio of the coefficient of the term in x^4 to that of the term in x^6 is 5 : 8. Find n.3



O is the centre of the circle, MPB is a straight line and OLM is perpendicular to AOB as shown. Prove that:

(i)	A, O, P, M are concyclic, and	2
(ii)	$\angle OPA = \angle OMB.$	2

End of Question 4

- (a) TA and TB are two tangents drawn to a circle from an external point T. A and B are the point of contact of the tangent with the circle.
 - (i) Draw a neat diagram clearly showing this information.
 - (ii) Prove that TA = TB.
- (b) Prove by Mathematical Induction that $7^n 1$ is divisible by 6 for all positive integers of n.4
- (c) The elevation of hill at a place A due east of it is 39° , at a place B due south of A, the elevation is 27° .

If the distance from A to B is 500m, find the height of the hill, to the nearest metre. 4

(d) Show that $\frac{d}{dx}(\log_e 2x) = \frac{d}{dx}(\log_e x)$. Does this mean that $\log_e 2x = \log_e x$?

Give reasons for your answers.

End of Question 5

Marks

(a) (i) Consider the parabola $y = x^2$.

Find the equation of the tangent to the parabola at the point $P(t, t^2)$. 2

- (ii) Show that the line passing through the focus of the parabola and perpendicular to the tangent at *P* had equation $x = \frac{t}{2}(1 4y)$. 2
- (iii) Find the locus of Q(X, Y), the point of intersection of the tangent and the line through the focus perpendicular to the tangent. 2
- (b) A particle *A* is projected horizontally at 50 *m/s* from the top of a tower 100m high. At the same instant, another particle *B* is projected from the bottom of the tower, in the same vertical plane at 100 m/s with elevation 60° .

Prove that the particles will collide and find where they do so. (Use $g = 10ms^{-2}$.) 6

End of Question 6

Question 7 appears on next page

3

2

1

(a) Solve for
$$0^{\circ} \le \theta \le 360^{\circ}$$
, $\sin x = 3\cos (x + 65^{\circ})$.

(b) Prove that the area of a
$$\triangle ABC$$
 is $\frac{a^2 \sin B \sin C}{2 \sin A}$.

(c) Given that $y = \frac{x^2 + \lambda}{x + 2}$ and x is real, find:

(i) the set of value(s) of λ for which y can take all but one real value.

(ii) If when
$$\lambda = 5$$
, by sketching $y = \frac{x^2 + 5}{x + 2}$, find the range of the function. 3

(d) Find the values of *m* for which the line y = mx touches the curve $y = \frac{2x^2 + 1}{2(x + 2)}$. **3**

End of Examination

Standard Integrals

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln \left(x + \sqrt{x^{2} - a^{2}}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln \left(x + \sqrt{x^{2} + a^{2}}\right)$$

Note: $\ln x = \log_e x$, x > 0

TKS MATX1 2006 THSC $y = \log_{e}(\cos x)$ $y' = -\sin x$ 2+2 23 $x \neq -2$ C 10 C.P. $\chi = -2$ 1 = 3(x+2)= - tan x x=-1 2x dx -13 $u = x^2 - 4$ $\frac{du}{dx} = 2x$ b) (1) 1 < 3 true test x = 0 x>-12/2 x 4 - 2 of $\mathcal{W} = 2, \mathcal{U} = 0$ x=3 u=55 22 du (d) l; m, = 1 I = der tan o = 1-5 1+1×5 -12/m/n 7 255 1 1 (ïi) 18°26' rin x cosx de :. 0 = pin 2x da 41 = [-4 cos2x - 4 cos 3 + 4 cos 211 6 $= -\frac{1}{4} \cos \frac{211}{3} + \frac{1}{4} + \frac{1}{44} + \frac{1}{44$

20 y= 05 x D: -1 ≤ x ≤ 1 1e 2nm 8-52=0 $R: 0 \le y \le 11$ (1) $y = 2 \cos^{-1} \frac{2}{3}$ $Min 0 = \frac{52}{2}$ = 1 211 0 = MT + (-1)" TT × B(7,10) (d) (ii) $y = 2 \cos^{-1} \frac{x}{3}$ $y' = 2 \frac{-1}{x} - \frac{1}{3}$ $\int \frac{1 - \frac{x^2}{9}}{\sqrt{1 - \frac{x^2}{9}}}$ $= \frac{-2}{\sqrt{9 - x^2}}$ A(-3,5) at x = 0 $y' = -\frac{2}{3}$ $\frac{1}{2} - \tan \theta = -\frac{2}{3}$ $\theta = -\frac{2}{3}$ $\chi = -\frac{14-21}{7-2}$ $y = -\frac{20+3}{7-2}$ = - 35 (b) $V = TT \int_0^{T_{\text{transf}}} x \, dx$ = 3 = -7 $= \prod_{n} \int_{0}^{1} (1 - \cos 2x) dx$ P (-7,3) $= \frac{\pi}{2} \left[x - \frac{1}{2} \operatorname{Ain} 2x \right]^{\frac{1}{4}}$ $= \frac{1}{2} \left[\frac{1}{4} - \frac{1}{2} n m \frac{1}{2} - (0) \right]$ = 耳×(葉-生) $= \frac{11}{(11-2)} u^3$

0.30 $\frac{dV}{dt} = 72$ (c) 3 sin = + 2002 = 2 3min x + 2 conx V = 5 T + 3 = Rnin(x+a) = R[minx.cosol+ dos x.nimu $dt = \frac{dt}{dV} \times \frac{dV}{dV}$ $R = \sqrt{3^2 + 4^2} = \sqrt{13}$ 40 x = 3 $= \frac{1}{4\pi \times 12^2} \times 72$ $\angle = 33^{\circ}41'$ $\frac{1}{13} \min (x+33^{\circ}41') = 2$ $\min (2(+33^{\circ}41') = \frac{2}{113}$ = \$1 A _ 4 T 12 : x + 33°41 = 33°41 146°18' dA = 8TTT $rac{1}{2}$ $rac{$ dA dA dr = 811× 12° × 1 811 $3\left(\frac{2t}{1+t^{2}}\right) + 2\left(\frac{1-t^{2}}{1+t^{2}}\right) = 2$ = 12 mm / sec. $6t+2-2t^{2}=2+2t^{2}$ $x - 2 \int x^{3} - 3x^{2} - 10x + 26$ $2t^2 - 3t = 0$ t(2t-3)=0 $\frac{x^3 - 2x^2}{-x^2 - 10x}$ 6=043 $-\chi^2 + 2\chi$ $-1/2\chi + 24$ ton = 0 or = x = 0°, 180° & 56°19' -12x+24 x = 0°,360° of 112°38' $x^{3} - 32^{2} - 10x + 24 = (x - 2)(x - 4)(2(+3))$ $2^{3}+24 > 3x^{2}+10x$ $3(3-3x^2-10x+24>0)$ -3 -3 -3 x -32722 or x74

$$\begin{array}{l} & (1) \\ & (2) \\$$

(C(1) 2 A 0 M = 90° (boto) 2 A PB = 90° (angle in Nemicicle 2 A PM = 90° (nt. line) . A, O, M, P as 2 A OM = 2 A PM (anglesin Arme seg on circle)

(ii) 2 OAP = 2 OMP (angles in some seg) 2 OAP = 20PA (base angles of viso A)

Q 5@(ii) In o'S OA TO OBT OA = OB (tabie of circle) OT is commo LOAT = COBT = 90° (tong + radius make 90°) - D's congruent (RHS) TA = TB(corresponding sides of congruent triangles) 7-1 is divisible lyb b) when n = 1 assumetrue for n=R i.e. 7^k-1 _ M where Mistre integer · 7 = 6 M+1 prove trove for n = k+1 7 1 + 1 - 1 - M, (a + ve integer) LHS = 7×7 -1 $= 7 \times (6 + 1) - 1$ = 42m+7-1 = 7m+1 (a positive integer) ... if true for n=k, it is true for n=k+1 sure it is true for n=1, it is true for n= 2 and no on for any positive integer

250 6 A (log_2x) d) 390 500 2x B tan 39°= loge X) AC tan 390 $\frac{\tan 27^\circ = \frac{h}{BC}}{BC - \frac{h}{\tan 27^\circ}}$ log 2x d $\frac{Bc^2}{1^2} = 500^2 + Ac^2$ diffe No -6 = 5002 <u>h</u>² 500 1-2270tan 39° = 327.8-.. 328m (to nearest metre)

an anti-

Q 6 @(') - 900 m/s (00-2x ot x=t A: t=0, x=0, y=100, x=50, y=0 $B: t=0 \ x=0 \ y=0 \ x=100 \ y=50$ $y=100 \ x=50.5$ egn of tang at Pis $y_{2} = 2t(x-t)$ A: x=0 ÿ=-10 $y = 2tx - t^2$ (c) $\dot{\mathbf{x}} = \mathbf{c}_{\mathbf{r}}$ y = -10t+ c3 (ii) 5(0,4) / p(t,t2) $\dot{x} = 50$ C2 = 0 $y = -5t^2 + c_{\varphi}$ 2c= 50t+c2 C2 20 C6=100 y = - st + 100. Msq = - 27 x=50f B: x=0 y = -10 $x = c_1$ y = -10t+c3 -2ty+2t = x 9=50 C3 = 50 13 $x = \frac{1}{2}(1 - 4y) - (1)$ je = 50 y = -10t + 5013 (iii) $rolving (1) \varphi(2)$ $v t_x t (1-ky)$ y = - 5t + 5053t + c4 $x = 50t+c_2$ C2 = 0 $C_{L} = 0$ $y = \chi t_x t (1 - 4y) - t^2$ y=-5t + 5053t x = 50t $y = t^2 - 4t^2y - t^2$ collide x & y must be equal to at the same time $\frac{y(1+4t')=0}{y=0}$ $y = -5t^{2} + 100 = -5t^{2} + 50J_{3}t$ $t = \frac{2}{J_{3}} \text{ Nec}$ $x = \frac{t}{2}$ $a(\frac{t}{2}, 0)$ $if t = \frac{2}{13}$ $x = 50x^2 = \frac{100}{13}$ $y = -5x(\frac{2}{5})^{2} + 100$: locus of Q is the x axis. = 933 : partiles collide after 3 recs at (100 933)

Q7@ $Min x = 3 cos(x+65)^{\circ}$ $Min x = 3 cos x \cdot cos 65^{\circ} - 3 nin x \cdot pin 65^{\circ}$ $Min x (1+3 nin 65^{\circ}) = 3 cos x \cdot cos 65^{\circ}$ $tan x = 3 cos 65^{\circ}$ $(xox \neq 0, x \neq 90)^{\circ}$ $1+3 nin 65^{\circ}$ $x = 18^{\circ}50^{\prime}$ (98°50' A = ± absinc 6) - a sinA $b = \frac{q \sin B}{\sin A}$: apa = Laxakin B 2 nin A a2 rin B 2 rin A (1)-4

4a"

(i) $y = \frac{x^2 + 5}{x + 2} (x \neq -2)$ $mx = \frac{2x^2 + 1}{2x + 4}$ y ≠0 as x2+5≠0 $x = 0, y = \frac{5}{2}$ $2mx^{2}+4mx = 2x^{2}+1$ $y' = \frac{(x+2)2x - (x^2+5)}{(x+2)^2}$ $x^{2}(2m-2) + 4mx - 1 = 0$ equal toots 16m²-4(2m-2)x-1=0 $= \frac{2x^{2}+4x-x^{2}-5}{(x+2)^{2}}$ 16m2 +8m-8=0 2m2+m-1=0 $\frac{\chi^{2}+4\chi-5}{(\chi+2)^{2}}$ (2m-1)(m+1)=0 $: m = \frac{1}{2} d - l$ for max of min y'=0 $x^2+4x-5=0$ (x+s)(x-1) = 0x = -5 or 1x = -5 LHSx = -6 y >0 RHSX = -4 y' <0 rel max at (-5, -10) z=1 LHS x=0 y'20 RHS x = 2 g'>0 .: rel min at (1, 2) 18 22 (1,2) » -5-10

: y > 2 or y =-10.