The King's School

Mathematics Extension 1

General Instructions

- Reading time -5 minutes
- Working time -2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
|Total marks - 84
- Attempt Questions 1-7
- All questions are of equal value

Total marks - 84
Attempt Questions 1-7
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet.
(a)

The diagram shows the chord $A B$ and $C D$ intersecting externally at P.
If $A B=10 \mathrm{~cm}, B P=2 \mathrm{~cm}$ and $D P=3 \mathrm{~cm}$ find the length of the chord $C D$.
(b) $\quad P(3,5)$ divides the interval $A B$ externally in the ratio $m: n$.

If $A=(-6,-13)$ and $B=(-1,-3)$, find the ratio $m: n$.
(c) Differentiate $\frac{x}{1+e^{2 x}}$
(d) Find $\int 2 \sin ^{2} x d x$
(e) Solve $\frac{x^{2}+2}{x+2}<1$
(f) Find $\lim _{x \rightarrow 0} \frac{x^{2}}{\sin x}$
(a) Find the acute angle between the lines $y=\frac{2}{3} x+1$ and $y=-\frac{1}{5} x-1$
(b) Use the substitution $x=u^{2}, u>0$, to evaluate $\int_{1}^{4} \frac{d x}{\sqrt{x}(1+\sqrt{x})}$
(c) The cubic equation $x^{3}+a x^{2}+b x+c=0$ has roots $-\alpha, \alpha$ and $\frac{1}{\alpha}$
(i) Show that $a c=-1$
(ii) Show that $b+c^{2}=0$
(d) Find $\int_{0}^{3} \frac{d x}{\sqrt{16-x^{2}}}$. Give your answer correct to two decimal places.

End of Question 2

(a)

The diagram shows two circles touching internally at T. AT is the common tangent to the circles. The chord $P Q$ of the outer circle meets the inner circle at R and S.
(i) Explain why $\angle \mathrm{ATP}=\angle \mathrm{TQS} \quad 1$
(ii) Prove that $\angle \mathrm{PTR}=\angle \mathrm{QTS}$
(b) $f(x)=\tan ^{-1} x-x+0.3=0$ has a root near $x=1.2$

Use one application of Newton's method to find a second approximation to this root.
Give your answer correct to 2 decimal places.
(c) A particle moves on the x axis in simple harmonic motion. Its velocity v at any time $t \geq 0$ is given by $v=6 \sin 3 t$.

Initially the particle is at rest at $x=-1$
(i) At what time is the particle next at rest? 1
(ii) Hence or otherwise give the period of the motion. 1
(iii) Find an expression for the displacement x in terms t.
(iv) State when the particle is first at the position $x=1$
(a) (i) Show that $\cos \left(\frac{\pi}{4}-\frac{\pi}{12}\right)-\cos \left(\frac{\pi}{4}+\frac{\pi}{12}\right)=2 \sin \frac{\pi}{4} \sin \frac{\pi}{12}$
(ii) Hence prove that $\frac{\cos \frac{\pi}{6}-\cos \frac{\pi}{3}}{\sin \frac{\pi}{6}+\sin \frac{\pi}{3}}=\tan \frac{\pi}{12}$
(iii) Hence or otherwise show that $\tan \frac{\pi}{12}=2-\sqrt{3}$
(b) The surface area S of a sphere is increasing at a constant rate of $\mathrm{k} \mathrm{cm}^{2} / \mathrm{s}$. Prove that the volume V of the sphere is increasing at a rate proportional to the radius r at any time t.
$\left[S=4 \pi r^{2}, V=\frac{4}{3} \pi r^{3}\right]$
(c) Consider the function $f(x)=\frac{2}{\pi} \cos ^{-1}(1-x)$
(i) Find the domain of f. 2
(ii) Sketch the function.

Question 5 (12 marks) Use a SEPARATE writing booklet.
(a) Prove by mathematical induction for positive integers n that

$$
\begin{gather*}
\left(1^{3}+3.1^{5}\right)+\left(2^{3}+3.2^{5}\right)+\ldots+\left(n^{3}+3 n^{5}\right)=\frac{1}{2} n^{3}(n+1)^{3} \\
{\left[\text { You may assume }(n+2)^{3}=n^{3}+6 n^{2}+12 n+8\right]} \tag{3}
\end{gather*}
$$

(b) Let $(1+x)^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{k} x^{k}+\ldots+c_{n} x^{n}$
(i) Show that $\frac{c_{k}}{c_{k-1}}=\frac{n-k+1}{k}, 1 \leq k \leq n$
(ii) Deduce that $\frac{c_{1}}{c_{0}}+\frac{2 c_{2}}{c_{1}}+\frac{3 c_{3}}{c_{2}}+\ldots+\frac{k c_{k}}{c_{k-1}}+\ldots+\frac{n c_{n}}{c_{n-1}}=\frac{n}{2}(n+1)$
(c) Let $f(x)=x^{3}+(A+2) x^{2}+A x-1$
(i) Show that $x+1$ is a factor of $f(x)$ for all values of A
(ii) If $(x+1)^{2}$ is a factor of $f(x)$ find A
(iii) If $x^{2}-A x-1$ is a factor of $f(x)$ find A.

End of Question 5

(a) Let $f(x)=\ln \left(\tan \frac{x}{2}\right), 0<x<\pi$
(i) Show that $f^{\prime}(x)=\operatorname{cosec} x \quad 3$
(ii) Sketch the curve showing the x intercept and any asymptotes. 2
(iii) Find the inverse function $y=f^{-1}(x) \quad 2$
(b) A particle moves on the x axis with its velocity v given by $\frac{d x}{d t}=20-x$

7 Initially the particle is at $x=19$
(i) Prove that the acceleration is given by $\ddot{x}=-v \quad 2$
(ii) Hence express v as a function of t. 3

End of Question 6

(a)

A particle is projected from O with velocity V at an angle of α to the horizontal.
At time t the equations of motion are:

$$
\begin{array}{ll}
\dot{x}=V \cos \alpha & \dot{y}=-10 t+V \sin \alpha \\
x=(V \cos \alpha) t & y=-5 t^{2}+(V \sin \alpha) t
\end{array}
$$

[DO NOT PROVE THESE]
After time T the particle reaches its greatest height $\mathrm{h}=\mathrm{PQ}$ where $\angle \mathrm{POQ}=\beta$
(i) Show that $\mathrm{T}=\frac{\mathrm{V} \sin \alpha}{10}$
(ii) Deduce that $\tan \beta=\frac{1}{2} \tan \alpha$
(iii) Show that $20 \mathrm{~h}=\mathrm{V}^{2} \sin ^{2} \alpha$
(iv) Deduce that $\mathrm{V}^{2}=5 \mathrm{~h}\left(4+\cot ^{2} \beta\right)$

Question 7 continues on next page

(b)

The diagram shows a variable chord $P Q$ of the parabola $x^{2}=4 y$ passing through the point $R\left(x_{0}, y_{0}\right)$. The tangents at P and Q meet at T.

The equation of the tangent at a point $\left(x_{1}, y_{1}\right)$ on $x^{2}=4 y$ is $x_{1} x=2\left(y+y_{1}\right)$.
The equation of the chord of contact from $R\left(x_{0}, y_{0}\right)$ to $x^{2}=4 y$ is $x_{0} x=2\left(y+y_{0}\right)$.

[DO NOT PROVE THESE]

(i) Let $P=\left(2 p, p^{2}\right)$

Show that the equation of the tangent at P is $p x=y+p^{2}$
(ii) Show that the tangents at $P\left(2 p, p^{2}\right)$ and $Q\left(2 q, q^{2}\right)$ meet at $T(p+q, p q)$
(iii) Show that the equation of the chord $P Q$ is $(p+q) x=2(y+p q)$
(iv) Hence prove that the locus of T lies on the line containing the chord of contact from $R\left(x_{0}, y_{0}\right)$
T. K.S. Mathematics extension I

TRIAL PAPER 2007 SOLUTIONS

Question 1
(a) Let $C D=x$

Then $3(x+3)=12 \times 2 \Rightarrow x=5$
(b)

(c)

$$
\begin{aligned}
& \frac{\left(1+e^{2 x}\right) 1-x\left(2 e^{2 x}\right)}{\left(1+e^{2 x}\right)^{2}} \text { will do } \\
& =\frac{1+e^{2 x}-2 x e^{2 x}}{\left(1+e^{2 x}\right)^{2}}
\end{aligned}
$$

(d) $=\int 1-\cos 2 x d x=x-\frac{\sin 2 x}{2}(+c)$
(e) (Alternatives abound)

For $x+2>0$ ie. $x>-2$ we have $x^{2}+2<x+2$

$$
\begin{aligned}
\Rightarrow & x^{2}-x<0 \\
& x(x-1)<0 \quad \therefore 0<x<1
\end{aligned}
$$

$\therefore 0<x<1$ is a solution as is $x<-2$

$$
(f)=\lim _{x \rightarrow 0} x \cdot \frac{x}{\sin x}=0 \times 1=0
$$

Question 2
(a)

$$
\begin{aligned}
& M_{1}=\frac{2}{3}, M_{2}=-\frac{1}{5} \\
& \quad \therefore \tan \alpha=\frac{\frac{2}{3}+\frac{1}{5}}{1-\frac{2}{3} \cdot \frac{1}{5}}=\frac{10+3}{15-2}=1 \quad \therefore \alpha=45^{\circ}
\end{aligned}
$$

(b)

$$
\begin{array}{ll}
x=u^{2} & : \quad x=1, u=1 \\
\frac{d x}{d u}=2 u & x=4, u=2 \\
\therefore I=\int_{1}^{2} \frac{2 u d u}{u(1+u)} & =2 \int_{1}^{2} \frac{1}{1+u} d u \\
& =2[\ln (1+u)]_{1}^{2} \\
& =2(\ln 3-\ln 2)=2 \ln 1.5
\end{array}
$$

(c) (i)

$$
\begin{aligned}
\text { Sum of roots } & =\frac{1}{\alpha}=-a \\
\text { Product of roots } & =-\alpha=-c \\
\therefore a c & =\frac{1}{\alpha}(-\alpha)=-1
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& -\alpha \cdot \alpha-\alpha \cdot \frac{1}{\alpha}+\alpha \cdot \frac{1}{\alpha}=-\alpha^{2}=b \\
& \therefore \text { From (i), b}+\alpha^{2}=b+c^{2}=0
\end{aligned}
$$

(d)

$$
I=\left[\sin ^{-1} \frac{x}{4}\right]_{0}^{3}=\sin ^{-1}\left(\frac{3}{4}\right)=0.85,2 \text { d.p. }
$$

Question 3
(a) (i)alternate segment theorem in the outer circle
(ii) $\angle A T R=\angle T S R$, alt. sg. the in inner circle
$\therefore \angle P T R=\angle Q T S$ from (i) and extent angle theorem in $\triangle Q T S$.
[Sadly (for the marker), lots of alternatives]
(b)

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{1+x^{2}}-1 \\
& \therefore x_{1}=1.2-\frac{\tan ^{-1} 1.2-1.2+0.3}{\frac{1}{1+1.2^{2}}-1}=1.16,2 d . p
\end{aligned}
$$

(c) (i)

$$
\begin{aligned}
v=0 \Rightarrow & \sin 3 t=0 \\
& \therefore 3 t=\pi \\
& \text { ie } \quad t=\frac{\pi}{3}
\end{aligned}
$$

(ii) From (i), period $=2 \times \frac{\pi}{3}=\frac{2 \pi}{3}$
(iii)

$$
\begin{gathered}
\frac{d x}{d t}=6 \sin 3 t \quad \therefore x=-6 \frac{\cos 3 t}{3}+c \\
:-1=-2+c, c=1 \\
\therefore x=1-2 \cos 3 t
\end{gathered}
$$

$[\Longrightarrow$ particle oscillates about $x=1]$
(iv) From (iii), at $x=1$ when $t=\frac{1}{2} \cdot \frac{\pi}{3}=\frac{\pi}{6}$
[for font fire]

Questron 4
(a)
(i)

$$
\begin{aligned}
L S & =\cos \frac{\pi}{4} \cos \frac{\pi}{12}+\sin \frac{\pi}{4} \sin \frac{\pi}{12}-\left(\cos \frac{\pi}{4} \cos \frac{\pi}{12}-\sin \frac{\pi}{4} \sin \frac{\pi}{12}\right) \\
& =2 \sin \frac{\pi}{4} \sin \frac{\pi}{12}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\sin \frac{\pi}{6}+\sin \frac{\pi}{3} & =\sin \left(\frac{\pi}{4}-\frac{\pi}{12}\right)+\sin \left(\frac{\pi}{4}+\frac{\pi}{12}\right) \\
& =2 \sin \frac{\pi}{4} \cos \frac{\pi}{12} \\
\therefore \angle S & =\frac{2 \sin \frac{\pi}{4} \sin \frac{\pi}{12}}{2 \sin \frac{\pi}{4} \cos \frac{\pi}{12}}=\tan \frac{\pi}{12}
\end{aligned}
$$

(iii)

$$
\text { From(ii), } \begin{aligned}
\tan \frac{\pi}{12} & =\frac{\frac{\sqrt{3}}{2}-\frac{1}{2}}{\frac{1}{2}+\frac{\sqrt{3}}{2}}=\frac{\sqrt{3}-1}{\sqrt{3}+1} \\
& =\frac{(\sqrt{3}-1)^{2}}{3-1}=\frac{4-2 \sqrt{3}}{2}=2-\sqrt{3}
\end{aligned}
$$

(b) $\frac{d S}{d t}=k \quad a \quad \frac{d V}{d t}=\frac{d V}{d r} \cdot \frac{d r}{d t}=\frac{d V}{d r} \cdot \frac{d r}{d S} \cdot \frac{d S}{d t}$
where $\frac{d S}{d r}=8 \pi r$ and $\frac{d V}{d r}=4 \pi r^{2}$

$$
\therefore \frac{d r}{d t}=4 \pi r^{2} \cdot \frac{1}{8 \pi r} \cdot k=\frac{k}{2} \cdot r \propto r
$$

(c) (i) We need $|1-x| \leq 1$

$$
\Rightarrow-1 \leq x-1 \leq 1 \quad \text { ie. domaii is } 0 \leq x \leq 2
$$

(ii)

Question 5
(a) For $n=1$,

$$
\begin{aligned}
& \angle S=1^{3}+3 \times 1^{5}=4 \\
& R S=\frac{1}{2} \cdot 2^{3}=4
\end{aligned}
$$

\therefore Assume $\left(1^{3}+3.1^{5}\right)+\cdots+\left(n^{3}+3 n^{5}\right)=\frac{1}{2} n^{3}(n+1)^{3}$ for some integer $n \geqslant 1$
Than $\left(1^{3}+3 \cdot 1^{5}\right)+\cdots \cdot+\left(n^{3}+3 n^{5}\right)+\left((n+1)^{2}+3(n+1)^{5}\right)$

$$
=\frac{1}{2} n^{3}(n+1)^{3}+(n+1)^{3}+3(n+1)^{5} \text {, using the assumption }
$$

$$
=\frac{1}{2}(n+1)^{3}\left(n^{3}+2+6(n+1)^{2}\right)
$$

$$
=\frac{1}{2}(n+1)^{3}\left(n^{3}+6 n^{2}+12 n+8\right)
$$

$$
\begin{aligned}
& =\frac{1}{2}(n+1)^{3}(n+6 n \\
& =\frac{1}{2}(n+1)^{3}(n+2)^{3}=\text { RS for } n+1
\end{aligned}
$$

\therefore if cared for n it's correct for $n+1$
But, it is correct for $n=1 \therefore$ by induction its correct
(b)

$$
\frac{C_{k}}{C_{k-1}}=\frac{\binom{n}{k}}{\left(\begin{array}{l}
n-1
\end{array}\right)}=\frac{n!(n-k+1)!(k-1)!}{(n-k)!k!n!}=\frac{n-k+1}{k}
$$

(ii) From (i), $\sum_{k=1}^{n} \frac{k c_{k}}{c_{k-1}}=\sum_{k=1}^{n}(n-k+1)$
$=n+(n-1)+\cdots+2+1$, arithmetic series

$$
=\frac{n}{2}(n+1)
$$

(c)
(i) $f(-1)=-1+A+2-A-1=0$
$\therefore x+1$ is a factor of $f(x) \quad \forall A$
(ii) From (i) and $f(x)$ we must have

$$
\begin{aligned}
f(x) & =(x+1)^{2}(x-1) \\
\therefore f(1) & =1+A+2+A-1=0 \\
& \Rightarrow A=-1
\end{aligned}
$$

(iii) From (i),

$$
f(x)=(x+1)\left(x^{2}-A x-1\right) \equiv x^{3}+(A+2) x^{2}+A x-1
$$

\therefore equating coefficients of x

$$
\begin{aligned}
-1-A & =A \\
\therefore A & =-\frac{1}{2}
\end{aligned}
$$

[Alternatives abound]
e.g. Sun of rots $=-1+A=-(A+2)$
or put $x=1 \quad \ldots-2(-A)=A+2+A$
etc

Question 6
(a)
(i)

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{\tan \frac{x}{2}} \cdot \frac{1}{2} \sec ^{2} \frac{x}{2} \\
& =\frac{1+\tan ^{2} \frac{x}{2}}{2 \tan \frac{x}{2}}=\operatorname{cosec} x
\end{aligned}
$$

since $\sin x=\frac{2 t}{1+t^{2}}$ if $t=\tan \frac{x}{2}$
(ii) $y=0 \Rightarrow \tan \frac{x}{2}=1 \Rightarrow \frac{x}{2}=\frac{\pi}{4}, x=\frac{\pi}{2}$

[Note, $\operatorname{cosec} x>0$ if $0<x<\pi$]
(iii)

$$
\begin{aligned}
f^{-1}(x) \quad: \quad x & =\ln \left(\tan \frac{y}{2}\right) \\
\therefore & \tan \frac{y}{2}=e^{x} \\
& \Rightarrow \frac{y}{2}=\tan ^{-1}\left(e^{x}\right) \\
& \text { ie } y=2 \tan ^{-1}\left(e^{x}\right)
\end{aligned}
$$

(b) (i)

$$
\left.\begin{array}{rl}
\frac{1}{2} v^{2} & =\frac{1}{2}(20-x)^{2} \\
\therefore \ddot{x} & =\frac{d\left(\frac{1}{2} v^{2}\right)}{d x}
\end{array}=\frac{1}{2} \cdot 2(20-x)(-1) ~=-v ~ ? ~(20-x)=-v\right)
$$

(ii)

$$
\begin{aligned}
& \therefore \frac{d v}{d t}=-v \\
& \Rightarrow \frac{d t}{d v}=-\frac{1}{v} \quad \text { or }-\frac{d t}{d v}=\frac{1}{v} \\
& \therefore-t=\ln v+c \quad: t=0, x=19, v=1 \\
& \therefore 0=\ln 1+c, c=0 \\
& \therefore \ln v=-t \\
& \Rightarrow v=e^{-t}
\end{aligned}
$$

Question 7
(a) (i) at $P, \dot{y}=0$

$$
\therefore-10 T+V \sin \alpha=0 \text { 10 } T=\frac{V \sin \alpha}{10}
$$

(ii)

$$
\begin{aligned}
\tan \beta=\frac{P Q}{O Q} & =\frac{-5 T+V \sin \alpha}{V \cos \alpha} \\
& =\frac{-\frac{V \sin \alpha}{2}+V \sin \alpha}{v \cos \alpha} \\
& =\frac{\sin \alpha}{2 \cos \alpha}=\frac{1}{2} \tan \alpha
\end{aligned}
$$

(iii)

$$
\begin{aligned}
h & =-5\left(\frac{v \sin \alpha}{10}\right)^{2}+v \sin \alpha\left(\frac{v \sin \alpha}{10}\right) \\
& =-\frac{v^{2} \sin ^{2} \alpha}{20}+\frac{v^{2} \sin ^{2} \alpha}{10}=\frac{v^{2} \sin ^{2} \alpha}{20} \\
& \therefore 20 h=V^{2} \sin ^{2} \alpha
\end{aligned}
$$

(iv) From (iii)

$$
\text { (iii) } \begin{aligned}
& \frac{V^{2}}{5 h}=\frac{4}{\sin ^{2} \alpha}=4 \operatorname{cosec}^{2} \alpha \\
&=4\left(1+\cot ^{2} \alpha\right) \\
&=4+(2 \cot \alpha)^{2} \\
&=4+\cot ^{2} \beta, \text { foo (ii) } \\
& \therefore V^{2}=5 h\left(4+\cot ^{2} \beta\right)
\end{aligned}
$$

(b) (i) From data, tangent at $P\left(2 \rho, \rho^{\nu}\right)$ is

$$
\begin{aligned}
& 2 \rho x=2\left(y+p^{2}\right) \\
& \text { le. } p x=y+p^{2}
\end{aligned}
$$

(ii) Tangent at Q is $q^{x}=y+q^{2}$
\therefore at $T, \quad(p-q) x=p^{2}-q^{2}=(p-q)(p+q)$

$$
\begin{aligned}
& \quad \Rightarrow x=p+q \\
& \therefore y=p(p+q)-p^{2}=p q \\
& \text { ie. } \quad T=(p+q, p q)
\end{aligned}
$$

(iii) $P Q$ is the chord of contact from T
\therefore from data, $P Q$ is $(p+q) x=2(y+p z)$
(iv) $R\left(x_{0}, y_{0}\right)$ is on $P Q$
\therefore from (iii), $(p+q) x_{0}=2\left(y_{0}+p q\right)$
This last equation nears that $T(p+q, p q)$ is on the line $x_{0} k=2\left(y+y_{0}\right)$

N T lies on the line containing the chord of contact from R

