The King’s School

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 84

- Attempt Questions 1-7
- All questions are of equal value

Blank Page

Total marks - 84
Attempt Questions 1-7
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet.
(a) Find the remainder when the polynomial $P(x)=x^{5}-2 x^{3}+11$ is divided by $x+1$
(b) The interval $A B$ has end points $A(-1,8)$ and $B\left(\frac{10}{3}, \frac{28}{3}\right)$

Find the point $P(x, y)$ which divides $A B$ externally in the ratio 3:2.
(c) Evaluate $\int_{0}^{\frac{1}{4}} \frac{12}{\sqrt{1-4 x^{2}}} d x$
(d) Find in simplest form the derivative of $\frac{x}{1+x^{2}}+\tan ^{-1} x$
(e) By writing $2 x$ as $(x+y)+(x-y)$, or otherwise, simplify $\frac{2 x}{x^{2}-y^{2}}-\frac{1}{x-y}$

End of Question 1

(a) (i) Find the remainder when $3 x^{4}+2 x^{2}+2 x-1$ is divided by $x^{2}+1$
(ii) Hence find $\int \frac{3 x^{4}+2 x^{2}+2 x-1}{x^{2}+1} d x$
(b) Use the substitution $u=1-x$ to evaluate $\int_{0}^{1} 360 x(1-x)^{4} d x$
(c) A particle moves on the x axis with velocity v given by $v=(x+1)^{2}$. Initially the particle is at the origin. Find the initial acceleration.
(d) Solve the inequality $\frac{3 x-1}{2 x+3}>1$

End of Question 2

(a) Solve $12 \sin ^{-1} x=\cos ^{-1} x$, giving your answer correct to two decimal places.
(b)

TA is a tangent at A to the circle. TPC is a secant to the circle and B is chosen on the circle so that arc $\mathrm{PA}=\operatorname{arc} \mathrm{PB}$. Let $\angle \mathrm{PAB}=\alpha$
(i) Explain why $\angle \mathrm{PBA}=\alpha$
(ii) Prove that AP bisects $\angle \mathrm{TAB}$
(c) A particle is moving in simple harmonic motion on the x axis according to the equation of motion $x=-12 \cos n t$, where $t \geq 0$ is time and $n>0$. The period of the motion is T.
(i) Prove that the particle first reaches the position $x=6$ when the time is $\frac{T}{3}$
(ii) Find the velocity of the particle when $t=\frac{T}{3}$
(iii) Write down the time that will elapse after $t=\frac{T}{3}$ for the particle to be next at rest.

End of Question 3

(a) A particle is falling vertically so that at any time $t s$ its velocity $v \mathrm{~m} / \mathrm{s}$ is given by $\frac{d v}{d t}=10-0.2 v$. Initially $v=20$.
(i) Verify by differentiation that $v=50+A e^{-0.2 t}$ for some constant A.
(ii) Find A.
(iii) Find the time taken, correct to one decimal place, for the velocity to reach $40 \mathrm{~m} / \mathrm{s}$.
(iv) Find the distance travelled during the first 5 seconds.
(b)

The diagram shows a cone with base radius r, height h and slant height s.
A conical pile is being formed at a constant rate of $2 \mathrm{~m}^{3} / \mathrm{min}$.
The pile at any time t is such that $h=\frac{4}{3} r$.
(i) Show that $s=\frac{5 r}{3}$
(ii) Find the rate of increase of the curved surface area at the instant the radius is 5 m .

$$
\left[V=\frac{1}{3} \pi r^{2} h \text {, Curved Surface Area }=\pi r s\right]
$$

End of Question 4

Question 5 (12 marks) Use a SEPARATE writing booklet.
(a) Find the coefficient of x^{9} in the binomial expansion of $\left(2 x+\frac{3}{x^{2}}\right)^{30}$
[LEAVE YOUR ANSWER IN UNSIMPLIFIED FORM]
(b) (i) Sketch $y=\sin x$ and $y=\cos x$ on the same axes for $0 \leq x \leq \frac{\pi}{2}$, clearly showing their point of intersection.
(ii) The region enclosed between $y=\sin x$ and $y=\cos x$ and the vertical lines $x=0$ and $x=\frac{\pi}{2}$ is revolved about the x axis.

Find the volume of the solid generated.
(c) Prove by induction for integers $n \geq 1$ that
$4.1+8.3+12.3^{2}+\ldots+4 n .3^{n-1}=(2 n-1) 3^{n}+1$

End of Question 5

(a) Let $f(t)=t^{3}-12 t-2$.

Since $f(-1)=9$ and $f(0)=-2$ there is a root of $f(t)=0$ between $t=-1$ and $t=0$.
[DO NOT EXPLAIN THE REASON]
Use Newton's Method once with a trial root of $t=-0.2$ to give a two decimal approximation to the root between $t=-1$ and $\mathrm{t}=0$.
(b)

The diagram shows the parabola $x^{2}=8 y$ and the point $P(4,28)$ interior to the parabola. Let $T\left(4 t, 2 t^{2}\right)$ be any point on the parabola.
(i) Prove that the equation of the normal at T is $x+t y=4 t+2 t^{3}$
(ii) The normal at T passes through $P(4,28)$. Show that $t^{3}-12 t-2=0$
(iii) Deduce that if there are three normals which can pass through $P(4,28)$ then the sum of the x coordinates of the points $T\left(4 t, 2 t^{2}\right)$ is zero.
(iv) Find the sum of the y coordinates of the points $T\left(4 t, 2 t^{2}\right)$ in (iii).
(v) Prove that there are three normals which pass through $P(4,28)$.

End of Question 6

Question 7 (12 marks) Use a SEPARATE writing booklet.
Marks
(a) Let $f(x)=e^{x}-e^{-x}$
(i) Show that the function is an odd function.
(ii) Show that $f(x)$ increases as x increases for all values of x.
(iii) Sketch $y=f(x)$ and $y=f^{-1}(x)$ on the same diagram and include the line $y=x .2$
(iv) Show that $e^{\ln x}=x$
(v) It can be shown that $f^{-1}(x)=\ln \left(\frac{x+\sqrt{x^{2}+4}}{2}\right)$
[DO NOT SHOW THIS]

$$
\text { Show that } \int_{0}^{2} f^{-1}(x) d x=2 \ln (1+\sqrt{2})+2-2 \sqrt{2}
$$

(b)

In the diagram
$\mathrm{AD}=1, \angle \mathrm{BAC}=\alpha, \angle \mathrm{BAD}=\beta$ and $\angle \mathrm{EDC}=2 \alpha$, $\angle \mathrm{CED}=\angle \mathrm{CBA}=90^{\circ}$
(i) Find $\angle \mathrm{ACD}$.
(ii) Prove that $\mathrm{BC}=\sin (2 \alpha-\beta)$.

End of Examination

Blank Page

Blank Page

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\quad \frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=\quad-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\quad \frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\quad \frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\quad \sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

$$
\text { Note: } \ln x=\log _{e} x, \quad x>0
$$

The King’s School

Mathematics Extension 1

$\begin{aligned} & \text { ᄃ } \\ & \frac{0}{W} \\ & 0 \\ & \hline \end{aligned}$			Z\#0$\$$		000$\underline{0}$$\underline{12}$		$\begin{aligned} & \text { Z } \\ & \text { © } \\ & \text { O} \\ & \text { O} \\ & \text { O} \end{aligned}$						\%
1	(e)	2			(a), (b)	4			(d)	3	(c)	3	12
2	(d)	3			(a)(i)	2			(c)	3	(a)(ii), (b)	4	12
3			(b)	3	(a)	3		6					12
4					(a)(ii)(iii)	3	(a)(i)	2	(b)	5	(a)(iv)	2	12
5	(a), (c)	7					(b)(i)	2			(b)(ii)	3	12
6					(a), (b)	12							12
7			(b)(i)	1	(a)	8	(b)(ii)	3					12
Total		12		4		32		13		11		12	84

TKS EXTENSION I SOLUTIONS TRIAL 2008
Question 1
(a) $R=P(-1)=-1+2+11=12$
(b)

$$
\therefore x=\frac{3 \cdot \frac{10}{3}-2(-1)}{3-2}=10+2=12
$$

$$
y=28-16=12
$$

ie. $\quad P=(12,12)$
(c) $I=\frac{12}{2}\left[\sin ^{-1} 2 x\right]_{0}^{\frac{1}{4}}=6\left(\frac{\pi}{6}-0\right)=\pi$
(d)

$$
\begin{aligned}
& \frac{1+x^{2}-x(2 x)}{\left(1+x^{2}\right)^{2}}+\frac{1}{1+x^{2}} \\
& =\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}+\frac{1+x^{2}}{\left(1+x^{2}\right)^{2}}=\frac{2}{\left(1+x^{2}\right)^{2}}
\end{aligned}
$$

(e)

$$
\frac{x+y+x-y}{(x-y)(x+y)}-\frac{1}{x-y}=\frac{1}{x-y}+\frac{1}{x+y}-\frac{1}{x-y}=\frac{1}{x+y}
$$

or $\frac{2 x}{(x-y)(x+y)}-\frac{x+y}{(x-y)(x+y)}$

$$
=\frac{x-y}{(x-y)(x+y)}=\frac{1}{x+y}
$$

Question 2
(a) (i) $x ^ { 2 } + 1 \longdiv { 3 x ^ { 2 } - 1 }$
\therefore remainder $=2 x$
(ii) $I=\int 3 x^{2}-1+\frac{2 x}{x^{2}+1} d x=x^{3}-x+\ln \left(x^{2}+1\right)$
(b)

$$
\begin{aligned}
& \begin{aligned}
& u=1-x ; \quad \begin{array}{l}
x=0, u=1 \\
\frac{d u}{d x}
\end{array}=-1 \\
& \therefore I=1, u=0
\end{aligned} \\
& \left.\begin{array}{rl}
\therefore I & =-\int_{1}^{0} 360(1-u) u^{4} d u \\
& =360 \int_{0}^{1} u^{4}-u^{5} d u
\end{array}\right)=360\left[\frac{u^{5}}{5}-\frac{u^{6}}{6}\right]_{0}^{1} \\
& \\
&
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \frac{1}{2} v^{2}=\frac{1}{2}(x+1)^{4} \\
& \therefore \ddot{x}=\frac{d\left(\frac{1}{2} v^{2}\right)}{d x}=2(x+1)^{3}
\end{aligned}
$$

\therefore inctial acceln at $x=0$ is 2
(d) (LOTS of alleenatives) most conmon.... -

$$
2 x+3 \neq 0 \quad \text { r. } \quad x \neq-\frac{3}{2}
$$

Put $\begin{aligned} \frac{3 x-1}{2 x+3}=1 \Rightarrow 3 x-1 & =2 x+3 \\ x & =4\end{aligned}$

Try $x=0 \Rightarrow-\frac{1}{3}>1 \quad x$

$$
\therefore x<-\frac{3}{2} \text { or } x>4
$$

Question 3
(a)

$$
\begin{aligned}
& \therefore 12 \sin ^{-1} x=\frac{\pi}{2}-\sin ^{-1} x \\
& 13 \sin ^{-1} x=\frac{\pi}{2} \Rightarrow \sin ^{-1} x=\frac{\pi}{26} \\
& \text { or } x=\sin \frac{\pi}{26}=0.12,2 \text { d.p. }
\end{aligned}
$$

(b) (i) $\angle P B A=\angle P A B=\alpha$, angles at circun farrance stading on same sige are, $P A=P B$
(ii) $\angle T A P=\angle P B A=\alpha$, altemate segneat then

But $\angle P A B=\alpha$, data
$\therefore A P$ bisects $\angle T A B$
(c) (i)

$$
\begin{aligned}
& T=\frac{2 \pi}{n} \Rightarrow n=\frac{2 \pi}{T} \\
& \therefore 6=-12 \cos \frac{2 \pi}{T} t \Rightarrow \cos \frac{2 \pi}{T} t=-\frac{1}{2} \\
& \therefore \frac{2 \pi}{T} t=\frac{2 \pi}{3} \text { for frost } t \\
& \Rightarrow t=\frac{T}{3}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
v=-12(-n \sin n t) & =\frac{24 \pi}{T} \sin \frac{2 \pi}{3} \\
& =\frac{24 \pi}{T} \cdot \frac{\sqrt{3}}{2}=\frac{12 \sqrt{3} \pi}{T}
\end{aligned}
$$

(iii) since paried $=T$ the tine that will elyse

$$
=\frac{\pi}{2}-\frac{\pi}{3}=\frac{\pi}{6}
$$

Question 4
(a)
(i)

$$
\text { If } \begin{aligned}
v= & 50+A e^{-0.2 t} \text { then } \\
\frac{d v}{d t}=-0.2 A e^{-0.2 t} & =-0.2(v-50) \\
& =10-0.2 v
\end{aligned}
$$

(ii) $t=0, v=20 \Rightarrow 20=50+A, \quad A=-30$
(iii)

$$
\begin{aligned}
& \therefore \quad 40=50-30 e^{-0.2 t} \\
& e^{-0.2 t}=\frac{1}{3} \\
& \text { or } e^{0.2 t}=3 \\
& \therefore 0.2 t=\ln 3 \Rightarrow t=5.5 \mathrm{~s}, 1 \mathrm{~d} \cdot \mathrm{p} .
\end{aligned}
$$

(iv)

$$
\begin{aligned}
x & =\int_{0}^{5} 50-30 e^{-0.2 t} d t \\
& =\left[50 t+150 e^{-0.2 t}\right]_{0}^{5} \\
& =250+150 e^{-1}-150 \\
& =100+150 e^{-1} \mathrm{~m} \\
& {[=155 \mathrm{~m}, \text { nearat metre }] }
\end{aligned}
$$

(b) (i)

$$
s^{2}=h^{2}+r^{2}=\frac{16 r^{2}}{9}+r^{2}=\frac{25 r^{2}}{9} \Rightarrow s=\frac{5 r}{3}
$$

(ii)

$$
\begin{aligned}
V= & \frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi r^{2} \cdot \frac{4}{3} r=\frac{4}{9} \pi r^{3} \quad \therefore \frac{d V}{d r}=\frac{4}{3} \pi r^{2} \\
\therefore \frac{d A}{d t} & =\frac{d A}{d r} \cdot \frac{d r}{d t}=\frac{d A}{d r} \cdot \frac{d r}{d V} \cdot \frac{d V}{d t} \quad \text { whee } \frac{d V}{d t}=2 \\
& =\frac{10}{3} \pi r \cdot \frac{3}{4 \pi r^{2}} \cdot 2=\frac{5}{r}=1 \mathrm{~m}^{2} / \min \text { when } r=5
\end{aligned}
$$

Question 5
(a)

$$
\begin{aligned}
\mu_{k+1} & =\binom{30}{k}(2 x)^{30-k}\left(\frac{3}{x^{2}}\right)^{k} \\
& =\binom{30}{k} 2^{30-k} 3^{k} \frac{x^{30-k}}{x^{2 k}} \\
& =\binom{30}{k} 2^{30-k} 3^{k} x^{30-3 k}
\end{aligned}
$$

For cuefficient of x^{9} we'd have $30-3 k=9$

$$
\Rightarrow k=7
$$

$$
\therefore \text { coefft of } x^{9} \text { is }\binom{30}{7} 2^{23} 3^{7}
$$

(b) (i) $\sin x=\cos x \Rightarrow \tan x=1 \Rightarrow x=\frac{\pi}{4}$ for $0<x<\frac{\pi}{2}$

(ii) From sketcl, $V=2 \pi \int_{0}^{\frac{\pi}{4}} \cos ^{2} x-\sin ^{2} x d x$

$$
\begin{aligned}
& =2 \pi \int_{0}^{\pi / 4} \cos 2 x d x \\
& =2 \pi \frac{1}{2}[\sin 2 x]_{0}^{\pi / 4} \\
& =\pi(1-0)=\pi
\end{aligned}
$$

(c)

For $n=1$,

$$
\begin{aligned}
& L S=4 \times 1=4 \\
& R S=1 x^{3}+1=4
\end{aligned}
$$

\therefore Assume $4.1+8.3+\ldots+4 n \cdot 3^{n-1}=(2 n-1) 3^{n}+1$ for any integer $n \geqslant 1$

Ten $4.1+8.3+\cdots+4 n \cdot 3^{1-1}+4(n+1) 3^{n}$

$$
\begin{aligned}
& =(2 n-1) 3^{n}+1+(4 n+4) 3^{n} \text {, nosing the assumption } \\
& =3^{n}(2 n-1+4 n+4)+1 \\
& =3^{n}(6 n+3)+1 \\
& =3^{n+1}(2 n+1)+1=\text { RS for } n+1
\end{aligned}
$$

\therefore if correct for n, it's correct for $n+1$
But it is correct for $n=1$
\therefore by induction, $4 \cdot 1+\cdots+4 n \cdot 3^{n-1}=(2 n-1) 3^{n}+1$ for $n \geqslant 1$

Question 6
(a)

$$
\begin{aligned}
& f^{\prime}(t)=3 t^{2}-12 \\
& \therefore t_{1}=-0.2-\frac{(-0.2)^{3}-12(-0.2)-2}{3(-0.2)^{2}-12}=-0.17,2 \text { d.p. }
\end{aligned}
$$

(b) (i)

$$
y=\frac{x^{2}}{8} \quad \therefore \frac{d y}{d x}=\frac{2 x}{8}=\frac{x}{4}=t \text { at } T\left(4 t, 2 t^{2}\right)
$$

$$
\begin{aligned}
\therefore \text { normal is } y-2 t^{2} & =-\frac{1}{t}(x-4 t) \\
\text { or } t y-2 t^{3} & =-x+4 t \\
\text { le } x+t y & =4 t+2 t^{3}
\end{aligned}
$$

(ii) Since $P(4,28)$ is on sloe normal

$$
\begin{aligned}
& 4+28 t=4 t+2 t^{3} \\
& \text { ie. } t^{3}-12 t-2=0
\end{aligned}
$$

(iii) Sum of x ordinates $=4\left(t_{1}+t_{2}+t_{3}\right)$, say,
where $t_{1}+t_{2}+t_{3}=0$, sum of roots of equation in (ii)

$$
\Rightarrow \sin \text { of } x \text { coordinates }=0
$$

(iv)

$$
\begin{aligned}
\text { Sum } & =2\left(t_{1}^{2}+t_{2}^{2}+t_{3}^{2}\right) \\
& =2\left(\left(t_{1}+t_{2}+t_{3}\right)^{2}-2\left(t_{1} t_{2}+t_{2} t_{3}+t_{3} t_{1}\right)\right) \\
& =2\left(0^{2}-2(-12)\right)=48
\end{aligned}
$$

(v) Need to show $t^{3}-12 t-2=0$ has 3 real roots

From (a) we have

$\Rightarrow 3$ real roots t_{1}, k_{2}, t_{3} se. 3 normals.

Question 7
(a)
(i) $f(-x)=e^{-x}-e^{x}=-\left(e^{x}-e^{-x}\right)=-f(x)$
$\therefore f(x)$ is an odd function
(ii) $f^{\prime}(x)=e^{x}+e^{-x}>0 \quad \forall x$
$\therefore f(x)$ is an increasing function $\forall x$
(iii)
$f(0)=0, f(1)=e-e^{-1} \approx 2.35, \quad f^{\prime}(0)=2$

(iv) Suppose $e^{\ln x}=N$

Then $\ln x=\log _{e} N \Rightarrow N=x$ ie. result
(v) $f^{-1}(2)=\ln \left(\frac{2+\sqrt{8}}{2}\right)=\ln (1+\sqrt{2})$

$$
\begin{aligned}
& \therefore \int_{0}^{2} f^{-1}(x) d x=2 \ln (1+\sqrt{2})-\int_{0}^{\ln (1+\sqrt{2})} e^{x}-e^{-x} d x \\
& \quad=2 \ln (1+\sqrt{2})-\left[e^{x}+e^{-x}\right]_{0}^{\ln (1+\sqrt{2})} \\
& =2 \ln (1+\sqrt{2})-\left(1+\sqrt{2}+\frac{1}{1+\sqrt{2}}-(1+1)\right) \\
& =2 \ln (1+\sqrt{2})-(1+\sqrt{2}+\sqrt{2}-1-2) \\
& =2 \ln (1+\sqrt{2})+2-2 \sqrt{2}
\end{aligned}
$$

(b)

Produce ED to meet $A C$ at F

$$
\begin{aligned}
& \text { Tam } \angle C F E=\alpha \quad(\equiv \angle C A B) \\
& \therefore \angle A C D=\alpha \text {, ext } \angle+h_{m} \text { in } \\
& \triangle F D C
\end{aligned}
$$

[No reasons needed anywhere] [many alternatives](ii) In $\triangle C A B, \sin \alpha=\frac{B C}{A C}$ ie. $B C=A C \sin \alpha$

$$
\begin{gathered}
A^{\text {In } \triangle A C D}, \frac{A C}{\sin (\pi-(2 \alpha-\beta))}=\frac{1}{\sin \alpha} \\
\Rightarrow A C=\frac{\sin (2 \alpha-\beta)}{\sin \alpha} \\
\therefore B C=\frac{\sin (2 \alpha-\beta)}{\sin \alpha} \cdot \sin \alpha=\sin (2 \alpha-\beta)
\end{gathered}
$$

