

THE KING'S SCHOOL

2008 Higher School Certificate Trial Examination

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks – 84

- Attempt Questions 1-7
- All questions are of equal value

Blank Page

Total marks – 84 Attempt Questions 1-7 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet. Marks
(a) Find the remainder when the polynomial
$$P(x) = x^5 - 2x^3 + 11$$
 is divided by $x + 1$ 2
(b) The interval *AB* has end points *A*(-1, 8) and *B* $\left(\frac{10}{3}, \frac{28}{3}\right)$
Find the point *P*(*x*, *y*) which divides *AB* externally in the ratio 3:2. 2
(c) Evaluate $\int_{0}^{\frac{1}{4}} \frac{12}{\sqrt{1-4x^2}} dx$ 3

(d) Find in simplest form the derivative of $\frac{x}{1+x^2} + \tan^{-1}x$ 3

(e) By writing 2x as (x + y) + (x - y), or otherwise, simplify $\frac{2x}{x^2 - y^2} - \frac{1}{x - y}$ 2

End of Question 1

Marks

(a) (i) Find the remainder when
$$3x^4 + 2x^2 + 2x - 1$$
 is divided by $x^2 + 1$ 2

(ii) Hence find
$$\int \frac{3x^4 + 2x^2 + 2x - 1}{x^2 + 1} dx$$
 1

- (b) Use the substitution u = 1 x to evaluate $\int_0^1 360x(1 x)^4 dx$ 3
- (c) A particle moves on the x axis with velocity v given by $v = (x + 1)^2$. Initially the particle is at the origin. Find the initial acceleration. 3

(d) Solve the inequality
$$\frac{3x-1}{2x+3} > 1$$
 3

End of Question 2

(a) Solve $12\sin^{-1} x = \cos^{-1} x$, giving your answer correct to two decimal places.

(b)

TA is a tangent at A to the circle. TPC is a secant to the circle and B is chosen on the circle so that arc PA = arc PB. Let $\angle PAB = \alpha$

- (i) Explain why ∠PBA = α
 (ii) Prove that AP bisects ∠TAB
- (c) A particle is moving in simple harmonic motion on the x axis according to the equation of motion $x = -12 \cos nt$, where $t \ge 0$ is time and n > 0. The period of the motion is T.

(i) P	Prove that the particle first reaches the position $x = 6$ when the time is	$\frac{1}{3}$ 3	3
-------	---	-----------------	---

(ii) Find the velocity of the particle when $t = \frac{T}{3}$

(iii) Write down the time that will elapse after $t = \frac{T}{3}$ for the particle to be next at rest.

End of Question 3

1 2

2

1

- A particle is falling vertically so that at any time t s its velocity v m/s is given by (a) $\frac{dv}{dt} = 10 - 0.2v.$ Initially v = 20.
 - Verify by differentiation that $v = 50 + Ae^{-0.2t}$ for some constant A. (i) 2
 - (ii) Find A.
 - (iii) Find the time taken, correct to one decimal place, for the velocity to reach 40 m/s. 2
 - (iv) Find the distance travelled during the first 5 seconds.

h

The diagram shows a cone with base radius r, height h and slant height s.

A conical pile is being formed at a constant rate of $2m^3/min$.

The pile at any time t is such that $h = \frac{4}{3}r$.

- Show that $s = \frac{5r}{3}$ 1 (i)
- Find the rate of increase of the curved surface area at the instant the radius is 5m. (ii)

$$[V = \frac{1}{3}\pi r^2 h$$
, Curved Surface Area = πrs] 4

End of Question 4

1

2

3

- (a) Find the coefficient of x^9 in the binomial expansion of $\left(2x + \frac{3}{x^2}\right)^{30}$ [LEAVE YOUR ANSWER IN UNSIMPLIFIED FORM] 4
- (b) (i) Sketch $y = \sin x$ and $y = \cos x$ on the same axes for $0 \le x \le \frac{\pi}{2}$, clearly showing their point of intersection.
 - (ii) The region enclosed between $y = \sin x$ and $y = \cos x$ and the vertical lines x = 0 and $x = \frac{\pi}{2}$ is revolved about the x axis.

Find the volume of the solid generated.

(c) Prove by induction for integers $n \ge 1$ that $4.1 + 8.3 + 12.3^2 + \ldots + 4n.3^{n-1} = (2n-1)3^n + 1$ **3**

End of Question 5

(a) Let
$$f(t) = t^3 - 12t - 2$$
.

Since f(-1) = 9 and f(0) = -2 there is a root of f(t) = 0 between t = -1 and t = 0.

[DO NOT EXPLAIN THE REASON]

Use Newton's Method once with a trial root of t = -0.2 to give a two decimal approximation to the root between t = -1 and t = 0.

The diagram shows the parabola $x^2 = 8y$ and the point P(4, 28) interior to the parabola. Let $T(4t, 2t^2)$ be any point on the parabola.

(i)	Prove that the equation of the normal at T is $x + ty = 4t + 2t^3$	2
(ii)	The normal at T passes through P (4, 28). Show that $t^3 - 12t - 2 = 0$	1
(iii)	Deduce that if there are three normals which can pass through $P(4, 28)$ then the sum of the x coordinates of the points $T(4t, 2t^2)$ is zero.	2
(iv)	Find the sum of the y coordinates of the points $T(4t, 2t^2)$ in (iii).	2
(v)	Prove that there are three normals which pass through $P(4, 28)$.	2

End of Question 6

- (a) Let $f(x) = e^x e^{-x}$
 - (i) Show that the function is an odd function .
 (ii) Show that f(x) increases as x increases for all values of x.
 - (iii) Sketch y = f(x) and $y = f^{-1}(x)$ on the same diagram and include the line y = x. 2
 - (iv) Show that $e^{\ln x} = x$ 1

(v) It can be shown that
$$f^{-1}(x) = \ln\left(\frac{x + \sqrt{x^2 + 4}}{2}\right)$$

[DO NOT SHOW THIS]

Show that
$$\int_0^2 f^{-1}(x) \, dx = 2\ln(1+\sqrt{2}) + 2 - 2\sqrt{2}$$
 3

In the diagram AD = 1, $\angle BAC = \alpha$, $\angle BAD = \beta$ and $\angle EDC = 2 \alpha$, $\angle CED = \angle CBA = 90^{\circ}$

- (i) Find \angle ACD. 1
- (ii) Prove that $BC = sin(2\alpha \beta)$.

End of Examination

Blank Page

Blank Page

Standard Integrals

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln \left(x + \sqrt{x^{2} - a^{2}}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln \left(x + \sqrt{x^{2} + a^{2}}\right)$$

Note: $\ln x = \log_e x$, x > 0

THE KING'S SCHOOL

2008 Higher School Certificate Trial Examination

Mathematics Extension 1

Question	Algebra and Number		Geometry	2	Functions		Trigonometry	2	Differential Calculus		Integral Calculus		Total
1	(e)	2			(a), (b)	4			(d)	3	(C)	3	12
2	(d)	3			(a)(i)	2			(C)	3	(a)(ii), (b)	4	12
3			(b)	3	(a)	3	(c)	6					12
4					(a)(ii)(iii)	3	(a)(i)	2	(b)	5	(a)(iv)	2	12
5	(a), (c)	7					(b)(i)	2			(b)(ii)	3	12
6					(a), (b)	12							12
7			(b)(i)	1	(a)	8	(b)(ii)	3					12
Total		12		4		32		13		11		12	84

TKS EXTENSION 1 SOLUTIONS TRIAL 2008

Question 1

(a)
$$R = P(-1) = -1 + 2 + 11 = 12$$

(c)
$$I = \frac{12}{2} \left[\sin^{-1} 2x \right]^{\frac{1}{4}} = 6 \left(\frac{\pi}{6} - 0 \right) = \pi$$

$$(d) \frac{1+x^{2} - x(2x)}{(1+x^{2})^{2}} + \frac{1}{1+x^{2}}$$
$$= \frac{1-x^{2}}{(1+x^{2})^{2}} + \frac{1+x^{2}}{(1+x^{2})^{2}} = \frac{2}{(1+x^{2})^{2}}$$

$$(e) \frac{x+y+x-y}{(x-y)(x+y)} - \frac{1}{2-y} = \frac{1}{x-y} + \frac{1}{x+y} - \frac{1}{x-y} = \frac{1}{x+y}$$

$$\underbrace{\text{or}}_{(k-y)(x+y)} = \frac{x+y}{(x-y)(x+y)} = \frac{1}{(x-y)(x+y)}$$

$$= \frac{x-y}{(x-y)(x+y)} = \frac{1}{x+y}$$

Question 2

(a) (i)
$$x^{2} + 1$$
) $3x^{4} + 2x^{2} + 2x - 1$
 $\frac{3x^{2}}{-x^{2}} = \frac{-1}{0}$... remainder = $2x$

(ii)
$$I = \int 3x^2 - 1 + \frac{2x}{x^2 + 1} dx = x^3 - x + \ln(x^2 + 1)$$

$$\begin{pmatrix} 4 \end{pmatrix} \quad u = 1 - x \quad ; \quad x = 0, u = 1 \\ \frac{du}{dx} = -1 \quad x = 1, u = 0 \\ \vdots \quad I = -\int_{1}^{0} 360 \ (1 - u) \ u^{4} \ du \\ = 360 \int_{1}^{1} u^{4} - u^{5} \ du = 360 \left[\frac{u^{5}}{5} - \frac{u^{6}}{6} \right]_{0}^{1} \\ = 360 \ \left(\frac{1}{5} - \frac{1}{6} \right) = 360. \ 1 = 12$$

(c)
$$\frac{1}{2}v^{2} = \frac{1}{2}(x+i)^{4}$$

 $\therefore \ddot{x} = d(\frac{1}{2}v^{2}) = 2(x+i)^{3}$
 \overline{dx}
 $\therefore inchial accolant x = 0 is 2$
(d) (LOTS OF ALTEENATIVES) MOST CONNON
 $2x+3 \neq 0$ if $x \neq -\frac{3}{2}$
Put $\frac{3x-1}{2x+3} = 1 \implies 3x-1 = 2x+3$
 $x = 4$

Question 3

(a)
$$\therefore 12 \sin^{-1} x = \frac{\pi}{2} - \sin^{-1} x$$

 $13 \sin^{-1} x = \frac{\pi}{2} \Rightarrow \sin^{-1} x = \frac{\pi}{26}$
 $dr = x = \sin \frac{\pi}{26} = 0.12, 2 d. p.$

(b) (i) LPBA = LPAB = L, angles at circum ference standing on same size are, PA = PB

(c) (i)
$$T = \frac{2\pi}{n} \implies n = \frac{2\pi}{T}$$

 $\therefore 6 = -12 \text{ cos } \frac{2\pi}{T} t \implies \text{ cos } \frac{2\pi}{T} t = -\frac{1}{2}$
 $\therefore \frac{2\pi}{T} t = \frac{2\pi}{3} \quad \text{for front } t$
 $\implies t = \frac{T}{3}$
(ii) $v = -12 (-n \sin nt) = \frac{24\pi}{T} \sin \frac{2\pi}{3}$
 $= \frac{24\pi}{T} \cdot \frac{5}{3} = \frac{12\sqrt{3}\pi}{T}$

(iii) since peried = T the time that will elyse
=
$$\frac{T}{2} - \frac{T}{3} = \frac{T}{6}$$

Question 4 (a) (i) of v = 50 + A e - 0.2t then $\frac{dv}{dt} = -0.2Ae^{-0.2t} = -0.2(v-50)$ = 10-0.20 (ii) t=0, v=20 ⇒ 20=50+A, A=-30 ("i) ... 40 = 50 - 30 e -0.2t $e^{-0.2t} = \frac{1}{3}$ or e^{0.2t} = 3 (iv) $x = \int_{-\infty}^{\infty} 50 - 30 e^{-0.2t} dt$ $= (50 \pm +150 \pm -0.26)^{5}$ = 250 +150 e⁻¹ - 150 = 100 + 150 e -1 m [= 155 m, nearest metre] $(4) (i) \quad s = h + r^{t} = \frac{16r^{t}}{9} + r^{t} = \frac{25r^{t}}{9} \implies s = \frac{5r}{3}$ (ii) $A = \Pi r s = \Pi r \cdot \frac{sr}{3} = \frac{s}{3} \Pi r^{2} \quad \therefore \quad \frac{dA}{3} = \frac{10}{3} \Pi r$ $V = \frac{1}{3} \pi r h = \frac{1}{3} \pi r^{2} \cdot \frac{4}{3} r = \frac{4}{9} \pi r^{3} - \frac{1}{2} \frac{dV}{dr} = \frac{4}{3} \pi r^{2}$ $\frac{dA}{dt} = \frac{dA}{dr} \cdot \frac{dr}{dt} = \frac{dA}{dr} \cdot \frac{dV}{dV} \cdot \frac{dV}{dt} \quad where \quad \frac{dV}{dt} = 2$ $= \frac{10}{3} \, \overline{Tr} \cdot \frac{3}{4\overline{Tr}} \cdot 2 = \frac{5}{\overline{r}} = /n^2 / n \, \text{in when } r = 5$

$$(a) \quad \mathcal{M}_{k+1} = \binom{30}{k} \binom{2}{2} \binom{3^{-k}}{\binom{3}{x^{2}}^{k}}$$

$$= \binom{30}{k} 2^{3^{-k}} 3^{k} \frac{x^{3^{-k}}}{x^{2^{k}}}$$

$$= \binom{30}{k} 2^{3^{-k}} 3^{k} \frac{x^{3^{-k}}}{x^{2^{k}}}$$

$$= \binom{30}{k} 2^{3^{-k}} 3^{k} x^{3^{0}-3k}$$
For we first of x^{q} we'd have $2^{0}-3k=q$

$$\implies k=7$$

$$\therefore we fft of x^{q} is \binom{30}{7} 2^{2^{3}} 3^{7}$$

(f) (i) sink = cosk =) fank = 1 =) x = I for ock < I

(ii) From sketch,
$$V = 2\pi \int_{0}^{\pi} \cos^{2} x - \sin^{2} x \, dx$$

$$= 2\pi \int_{0}^{\pi} \cos 2x \, dx$$

$$= 2\pi \int_{2}^{\pi} \int_{0}^{\pi} \sin^{2} x \int_{0}^{\pi} \frac{1}{2} \int_{0}^{\pi} \frac{1}{$$

= TT (1-0) = TT

(c) For
$$n=1^{n}$$
, $LS = 4 \times 1 = 4$
 $RS = 1 \times 3 + 1 = 4$
 $Assume 4.1 + 8.3 + ... + 4n. 3^{n-1} = (2n-1) 3^{n} + 1$ for any
integer $n \ge 1$
 $Aen 4.1 + 8.3 + ... + 4n. 3^{n-1} + 4(n+1) 3^{n}$
 $= (2n-1) 3^{n} + 1 + (4n+4) 3^{n}$, asing the assumption
 $= 3^{n} (2n-1 + 4n+4) + 1$
 $= 3^{n} (6n + 3) + 1$
 $= 3^{n+1} (2n+1) + 1 = RS$ for $n+1$
 \therefore if correct for n , it's correct for $n+1$
But it is correct for $n=1$
 \therefore by induction, $4.1 + ... + 4n. 3^{n-1} = (2n-1) 3^{n} + 1$ for $n \ge$

Question b
(a)
$$\int_{1}^{1}(t) = 3t^{2} - 12$$

 $\therefore t_{1} = -0.2 - \frac{(0.2)^{2} - 12(-0.2) - 2}{3(-0.2)^{2} - 12} = -0.17, 2d.p.$
(4) (i) $g = \frac{x^{2}}{8} \quad \therefore \frac{dy}{dx} = \frac{2x}{8} = \frac{x}{4} = t \text{ at } T((t, 2t^{4}))$
 $\therefore \text{ normal is } g - 2t^{2} = -\frac{1}{4}(2-4t)$
 $ar k_{y} - 2t^{2} = -2 + 4t$
 $14r + ty = 4t + 2t^{2}$
(ii) Since $P(4, 2t)$ is an $16r \text{ normal}$
 $4r + 28t = 44t + 2t^{2}$
(iii) Sum of x conductive $= 4((k_{1} + t_{1} + t_{2} + t_{3}), 5m_{3}),$
 $where $k_{1} + t_{2} + t_{3} = 0, 5un$ of note of sympton in (ii)
 $= 2((k_{1}^{2} + k_{2}^{2} + t_{3}^{2}))$
 $= 2((k_{1}^{2} + k_{2}^{2} + t_{3}^{2}))$
 $= 2((k_{1}^{2} + k_{2}^{2} + t_{3}^{2}) = 2((k_{1} + t_{2} + t_{3} + t_{3} + t_{3})))$
 $= 2((0^{2} - 2(-12))) = 48$
(r) Need to show $t^{2} - 12t - 2 = 0$ les 3 real roots
From (a) we have
 $y = \frac{1}{4t_{3}} - 1 + \frac{1}{4t_{3}} +$$

(

Question 7

(a) (i)
$$f(x) = e^{-x} - e^{x} = -(e^{x} - e^{-x}) = -f(x)$$

 $\therefore f(x) \text{ is an odd function}$
(ii) $f'(x) = e^{x} + e^{-x} > 0 \quad \forall x$
 $\therefore f(x) \text{ is an increasing function } \forall x$
(iii) $f(o) = 0, f(1) = e - e^{-1} = 2 \cdot 35, f'(o) = 2$
 1^{9}
 $f(x)$
 $f'(x)$
 $f'(x)$
 $f'(x)$
 $f'(x)$
 $f'(x)$
 $f'(x)$
 $f'(x)$

(iv) Suppose e = N An Inx = loge N => N=x ie. result

$$(v) f^{-1}(2) = ln \left(\frac{2+\sqrt{r}}{2}\right) = ln \left(1+\sqrt{2}\right)$$

$$= ln \left(1+\sqrt{2}\right) - \int_{0}^{ln} \frac{l+r_{1}}{r_{1}} dx = 2ln \left(1+\sqrt{r}\right) - \int_{0}^{ln} \frac{l+r_{1}}{r_{2}} dx = 2ln \left(1+\sqrt{r}\right) - \int_{0}^{ln} \frac{l+r_{2}}{r_{2}} dx = 2ln \left(1+\sqrt{r}\right) - \left(\frac{r_{2}}{r_{2}} + e^{-x}\right)_{0}^{ln} \frac{l+r_{2}}{r_{1}} = 2ln \left(1+\sqrt{r}\right) - \left(\frac{r_{2}}{r_{2}} + e^{-x}\right)_{0}^{ln} \frac{l+r_{2}}{r_{2}} - \left(1+r_{1}\right) = 2ln \left(1+\sqrt{r}\right) - \left(1+\sqrt{r}\right) + \frac{1}{r_{1}+r_{2}} - \left(1+r_{1}\right) = 2ln \left(1+\sqrt{r}\right) - \left(1+\sqrt{r}\right) + \frac{1}{r_{2}} - \left(1+r_{1}\right) = 2ln \left(1+\sqrt{r}\right) - \left(1+\sqrt{r}\right) + \frac{1}{r_{2}} - \left(1+r_{2}\right) = 2ln \left(1+\sqrt{r}\right) + 2r_{2} - 2\sqrt{r}$$

(b) (i)
Froduce ED to neet AC at F
Au LCFE = d (= LCAB)

$$\therefore [ACD = d, ext L + lm in AFDC]$$

[No reasons weeded angulare]
[many Autochyatives]
(ii) In ΔCAB , $sin A = BC$ is. $BC = AC sin A$
 $A = BC = C$ is. $BC = AC sin A$
 $A = BC = Sin (2d-B)$
 $\Rightarrow AC = Sin (2d-B)$
 $sin d$

 $BC = Sin(2d-\beta)$, $Sin L = Sin(2d-\beta)$ sin d