

THE KING'S SCHOOL

2009 Higher School Certificate Trial Examination

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks – 84

- Attempt Questions 1-7
- All questions are of equal value

Blank Page

Total marks – 84 Attempt Questions 1-7 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet.

(a) Use the table of standard integrals to find
$$\int \frac{1}{\sqrt{x^2 - 12}} dx$$
 1

Marks

(b) Find the acute angle between the lines with gradients 9 and $\frac{4}{5}$. 2

(c) (i) Show that
$$\frac{1}{1 + e^{-x}} = \frac{e^x}{1 + e^x}$$
 1

(ii) Hence, or otherwise, evaluate
$$\int_0^1 \frac{1}{1 + e^{-x}} dx$$
 2

(d) Find the remainder
$$R(x)$$
 when $P(x) = x^3 + x^2 + x$ is divided by $x^2 - 12$ 2

(e) (i) Find the domain of the function
$$y = \ln(2x - 1) - \ln(x + 1)$$
 2

(ii) Hence, or otherwise, solve the inequality
$$\frac{2x-1}{x+1} > 0$$
 2

End of Question 1

(a) (i) Use the substitution $x = \sin\theta$ to show that

$$J = \int_{0}^{\frac{1}{2}} \frac{x^{2}}{\sqrt{1 - x^{2}}} dx = \int_{0}^{\frac{\pi}{6}} \sin^{2}\theta d\theta$$
 3

- (ii) Hence, or otherwise, evaluate J.
- (b) The cubic equation $9x^3 + Ax + 2 = 0$, where A is real, has two roots whose sum is 1 and a third root α .
 - (i) Find the value of A.2(ii) Find the product of the two roots whose sum is 1.1(i) Write $\sin 2\theta$ in terms of $t = \tan \theta$ 1
 - (ii) Prove that $\csc 2\theta + \cot 2\theta \equiv \cot \theta$ 2

End of Question 2

(c)

(a) Find
$$\int \frac{dx}{9+4x^2}$$
 2

(b) The root of $f(x) = 0.4x - e^{-x^2} = 0$ is near x = 1

Use Newton's Method once to find a 2 decimal place approximation to this root. 3

(c) A particle moves on the x axis so that at any time t its velocity is v.

Prove that the acceleration
$$\frac{dv}{dt} = \frac{d\left(\frac{1}{2}v^2\right)}{dx}$$
 2

(d) A particle is oscillating about x = 0 in simple harmonic motion.

Its acceleration $\ddot{x} = -n^2 x$, n > 0, and initially it is at rest at x = A > 0.

- (i) By using integration, prove that $v^2 = n^2 (A^2 x^2)$, where v is its velocity. 2
- (ii) When x = 6, v = -2 and when x = 3, v = -4.

Find the amplitude and period of the motion.

End of Question 3

Marks

3

ATP is a tangent to the circle TBD. DTQ is a tangent to the circle TAC.

TB produced meets the circle TAC at R.

(i)	Explain why $\angle PTD = \angle TBD$.	1
(ii)	Explain why $\angle PTD = \angle QTA$.	1
(iii)	Deduce that $TB = TC$.	2
(iv)	Prove that $\triangle ABR$ isosceles.	2

Question 4 continues on next page

2

(b)

A plane P is flying due East at a constant height of 8 km and a constant speed of 6km/min.

The plane is being tracked from a point A on the ground which was initially 10 km due West of the plane P.

Let Q be the position of the plane after t minutes and let the angle of elevation from A be θ at this time.

(i) Show that
$$\tan \theta = \frac{4}{5 + 3t}$$
 2

(ii) Deduce that
$$\frac{d\theta}{dt} = \frac{-12}{\sec^2 \theta (5 + 3t)^2}$$
 2

(iii) Find the rate at which the angle of elevation from A is decreasing after 1 minute. Give your answer in degrees/minute.

End of Question 4

(a) (i) Show that
$$\frac{\binom{20}{k-1}}{\binom{20}{k}} = \frac{k}{21-k}$$
 1

(ii) In the binomial expansion of $\left(x^2 + \frac{b}{x}\right)^{25}$ the coefficients of x^7 and x^4 are equal.

Find the value of b.

Question 5 continues on the next page

3

The tangents at P (2p, p^2) and Q (2q, q^2) on the parabola $x^2 = 4y$ meet at right angles at T.

The equation of the tangent at P is $y = px - p^2$. The equation of the chord PQ is $y = \frac{p+q}{2}x - pq$.

[DO NOT PROVE THESE]

(i)	Write down the gradient of the tangent at P.	1
(ii)	Hence show that $pq = -1$.	1
(iii)	Prove that the tangents at P and Q meet at T $(p + q, -1)$.	2
(iv)	Show that PQ is a focal chord.	1
(v)	A line is drawn from T to meet the chord PQ at right angles at R. Prove that the equation of TR is $y = \frac{-2}{p+q}x + 1$.	2
(vi)	Find the coordinates of R.	1

End of Question 5

(a)

.

2

2

A projectile is fired from a point A, 120 m above horizontal ground, with a speed of v m/s and elevation 45° . It lands on the horizontal ground at B making an angle of $\tan^{-1} 2$ with the horizontal.

The equations of motion of the projectile are:

$$\ddot{x} = 0 \quad \text{and} \quad \ddot{y} = -10$$

$$\dot{x} = \frac{v}{\sqrt{2}} \qquad \dot{y} = -10t + \frac{v}{\sqrt{2}}$$

$$x = \frac{v}{\sqrt{2}}t \qquad y = -5t^2 + \frac{v}{\sqrt{2}}t + 120$$

[DO NOT PROVE THESE]

Suppose the projectile lands at B at time t = T.

(ii) Prove that
$$10\sqrt{2} T = 3v$$
. 2

(iii) Find v.

(iv) Find the greatest height above horizontal ground that the particle reaches.

Question 6 continues on the next page

(b) Let *n* be any integer ≥ 2 and *x* be any integer $\neq 0$

Let $E(n) = (1 + x)^n - nx - 1$

- (i) Show that E(n) is divisible by x^2 by using the binomial expansion. 1
- (ii) Prove that E(n) is divisible by x^2 by using mathematical induction, $n \ge 2$ 4

End of Question 6

(a)

The sketch shows the parabola $y = f(x) = (x - 2)^2$

	(i)	Explain why for $x \ge 2$ that an inverse function, $y = f^{-1}(x)$, exists.								
	(ii)	State the domain and range of this inverse function. At what point will $y = f(x)$ meet $y = f^{-1}(x)$?								
	(iii)									
	(iv)	v) If $k < 2$, find, in simplest form, $f^{-1}(f(k))$								
(b)	Let	$f(x) = 2\cos^{-1}x$, $-1 \le x \le 1$								
	and	$g(x) = \sin^{-1}(2x^2 - 1)$, $-1 \le x \le 0$								
	(i)	Sketch the graph of $y = f(x)$	1							
	(ii)	Show that $g'(x) = f'(x)$, $-1 < x < 0$	3							
	(iii)	Hence, or otherwise, express $g(x)$ in terms of $f(x)$.	2							
	(iv)	Sketch the graph of $y = g(x)$.								

End of Examination Paper

Standard Integrals

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

Note: $\ln x = \log_e x$, x > 0

THE KING'S SCHOOL

2009 Higher School Certificate Trial Examination

Mathematics Extension 1

Question	Algebra and Number		Algebra and Number Geometry Functions		Trigonometry		Differential		ntegral Calculus		Total		
1	(c)(i), (d), (e) 7	7					(b)	2			(a), (c)(ii)	3	12
2	(b) 3	}					(C)	3			(a)	6	12
3					(d)(ii)	3			(b), (c)	5	(a), (d)(i)	4	12
4			(a)	6	(b)(iii)	2	(b)(i)	2	(b)(ii)	2			12
5	(a) 4	l			(b)	8							12
6	(b) 5	5			(a)	7							12
7					(a), (b)(i), (iii), (iv) 9			(b)(ii)	3			12
Total	19)		6		29		7		10		13	84

Question 1 (a) $ln(x + \sqrt{x^2 - 12})$ (+ c) (l) $fan d = \frac{9 - \frac{4}{5}}{1 + 9 \cdot \frac{4}{5}} = \frac{45 - 4}{5 + 36} = 1$ ·. ~ = # $(c) (i) <u> 1 = e^{x} = e^{x} = e^{x} + 1$ </u> (ii) $I = \int \frac{e^{x}}{e^{x}+1} dx = \left[\ln(e^{x}+1) \right]_{0}^{1}$ $= \ln (e + i) - \ln 2$ $(d) x^{2} - 12) x^{3} + z^{2} + x$ $\frac{-12x}{13x} - \frac{12}{12} \Rightarrow Q(x) = x+1$ 4 R(x) = 13x + 12(i) 2x-1>0 and x+1>0 (e) ce. x> 1 and x>-1 . domain is 2> 1 (ii) From (i), $y = ln\left(\frac{2n-l}{r+1}\right)$ $\Rightarrow \frac{dx-1}{x+1} > 0 \quad \forall x > \frac{1}{2} \quad or \quad x < -1$

(a) (i) $k = \sin \theta$ $k = 0, \theta = 0$ $\frac{dx}{dp} = \cos\theta \qquad \begin{array}{c} x = 1, \ \phi = \frac{\pi}{6} \\ \frac{dx}{6} \end{array}$ $J = \int_{0}^{T} \frac{\sin^{2}\theta}{\sqrt{1-\sin^{2}\theta}} d\theta$ $= \int_{0}^{\frac{1}{2}} \frac{\sin \theta \cos \theta}{\sqrt{1-\frac{1}{2}}} d\theta = \int_{0}^{\frac{1}{2}} \sin^{2} \theta d\theta$ (ii) $J = \frac{1}{2} \int_{0}^{\frac{\pi}{6}} 1 - \cos 2\theta \, d\theta$ $= \frac{1}{2} \left(0 - \frac{\sin 2\theta}{2} \right)^{\frac{1}{6}}$ $=\frac{1}{2}\left(\frac{\pi}{6}-\frac{\sqrt{3}}{4}-(0)\right)$ will do $= \frac{2\pi - 3\sqrt{3}}{\sqrt{3}}$ (b) (i) Sum of roots = 1+ 1 =0 ... 1=-1 $\therefore -9 - A + 2 = 0 \implies A = -7$ (ii) $ABJ = -\frac{2}{q} \implies BJ = -\frac{2}{q}$ (c) (i) $\frac{2t}{1+t^2}$ (ii) Put t = tand $\frac{1}{12} \frac{1}{12} \frac$ $= \frac{2}{1+1} = \frac{1}{4\pi}$

 $= \cot \Theta$

Question 3 (a) $\int \frac{dn}{3^2 + (2n)^2} = \frac{1}{3} \tan^{-1}(\frac{2n}{3}) \cdot \frac{1}{2}$ (+ c) $= \frac{1}{6} \tan^{-1}(\frac{2n}{3})$ (4) $\int (n) = 0.4 + 2ne^{-n^2}$

$$x_1 = 1 - 0.4 - e^{-1} = 0.97$$
, 2 d.p.
 $0.4 + 2e^{-1} = 0.97$, 2 d.p.

(c)
$$\frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt} = \frac{v}{dx} \cdot \frac{dv}{dx}$$

= $\frac{d(tv')}{dv} \cdot \frac{dv}{dx} = \frac{d(tv')}{dx}$

$$(d) (i) \quad d\left(\frac{l}{2}v^{\nu}\right) = -n^{\nu}x$$

$$\therefore \quad \frac{l}{2}v^{\nu} = -n^{\nu}\frac{x^{\nu}}{2} + c$$

$$: \quad 0 = -n^{\nu}\frac{A^{\nu}}{2} + c, \quad C = n^{\nu}\frac{A^{\nu}}{2}$$

$$\therefore \quad v^{\nu} = -n^{\nu}x^{\nu} + n^{\nu}A^{\nu} = n^{\nu}\left(A^{2}-x^{\nu}\right)$$

$$(ii) \quad \therefore \quad 4 = n^{\nu}\left(A^{2}-36\right)$$
and
$$16 = n^{\nu}\left(A^{2}-9\right)$$

$$\therefore \quad \frac{A^{2}-9}{A^{2}-36} = 4 \implies A^{2}-9 = 4A^{2}-144$$

$$3A^{\nu} = 135$$

$$A^{\lambda} = 45$$

$$\therefore \quad anp \quad A = \sqrt{45} = 3\sqrt{5}$$

$$n^{\lambda} = \frac{4}{45-36} = \frac{4}{9} \implies n = \frac{2}{3}$$

$$\therefore \quad period \quad T = \frac{2\pi}{2}, \quad 3 = 3\pi$$

(ii)
$$\frac{d}{dt} = \frac{d}{d\theta} = \frac{d}{d\theta} = \frac{d}{dt} = \frac{d}{dt} + \frac{(5+3t)^{-1}}{dt}$$

$$\therefore \quad sec^{\circ}O \quad dO = -4 (5+3t)^{-1} \cdot 3$$

$$i\stackrel{d}{dt} = \frac{-12}{3 e c^{*} \Theta (5 + 3k)^{2}}$$
(iii) $t = 1$, $t = 0 = \frac{44}{8} = 1$, $i = \frac{-12}{0} rad/nin$
 $i = -\frac{3}{20} \times \frac{180}{7} e^{t/min} = -\frac{27}{7} e^{t/min}$

Question 5

(a) (i)
$$\binom{20}{k-1} = \frac{20! (20-k)! k!}{(21-k)! (k-1)! 20!} = \frac{k}{21-k}$$

(ii)
$$\mathcal{M}_{k+1} = \binom{20}{k} (2^{2})^{20-k} \left(\frac{b}{k}\right)^{k}$$
$$= \binom{20}{k} \chi^{40-3k} \frac{b}{k}$$
$$\int_{u}^{u} \frac{40-3k}{40-3k} = 7 \implies k = 11$$
$$40-3k = 7 \implies k = 12$$
$$\therefore \binom{20}{11} \frac{b''}{b''} = \binom{20}{12} \frac{b'^{2}}{2}$$
$$\implies b = \frac{\binom{20}{12}}{\binom{10}{12}} = \frac{12}{21-12} \quad \text{from } (i)$$
$$= \frac{4}{3}$$

(b) (i)
$$p$$

(ii) gradient of langent at Q is q
... $pq = -1$ since $LPTQ = 90^{\circ}$
(iii) at T , $px - p^{*} = qx - q^{2}$
... $(p-2)x = p^{2} - q^{*} = (p-2)(p+q)$
... $x = p+q$
 $g = p(p+q) - p^{*} = pq = -1$
... $T = (p+q, -1)$

(11) From data and (11), chord PQ is $y = \frac{p+q}{2} \times + 1$ $\Rightarrow (0,1)$ is on this chord But the focus is (0,1) ... result. (V) grid chord PQ is $\frac{p+q}{2}$ \therefore gradiant of $TR = -\frac{2}{p+q}$ $\therefore TR$ is $y = -\frac{2}{p+q} \times + 1$ since (p+q,-1) is on it and satisfies this equation (vi) Comparing chord PQ and TR, clearly R = (0,1), the focus.

$$(\textbf{u} \cdot \textbf{v} + \textbf{u} \cdot \textbf{h}) = -10T + \frac{v}{J_{2}}$$

$$(ii) \qquad \textbf{B} + \frac{v}{V_{2}} + \frac{v}{J_{2}} + \frac{v}{$$

 $i : max \quad y = -5 \cdot \frac{16}{2} + \frac{40}{52} \cdot \frac{4}{52} + \frac{120}{52} = \frac{160}{52}$

$$\begin{aligned} & (4) \quad (i) \quad E(n) = \left(1 + \binom{n}{2}x + \binom{n}{2}x^{2} + \dots + x^{n}\right) - 1 - nx \\ & = \binom{n}{2}x^{n} + \binom{n}{3}x^{n} + \dots + x^{n-n} \quad \text{since } \binom{n}{2} = n \\ & = x^{n} \left(\binom{n}{2} + \binom{n}{3}x^{n} + \dots + x^{n-n}\right) \\ & \text{ is divisible by } x^{n} \qquad \left(\text{since } \binom{n}{2} + \dots + x^{n+n}\right) \\ & \text{ is divisible by } x^{n} \qquad \left(\text{since } \binom{n}{2} + \dots + x^{n+n}\right) \\ & \text{ (ii) } E(2) = \left(1 + x\right)^{n} - 1 - 2x \\ & = 1 + 2x + x^{n} - 1 - 2x \\ & = x^{n} \quad \text{ (if } x^{n}) = x^{n} \\ & \text{ Assume } \left(1 + x\right)^{n} - 1 - nx \\ & = x^{n} \quad \text{ (if } x^{n}) = \frac{n}{2} \\ \text{ for } x^{n} = \left(1 + x\right)^{n+1} - 1 - \binom{n+1}{2}x \\ & = \left(1 + x\right) \left(1 + x\right)^{n} - 1 - \binom{n+1}{2}x \\ & = \left(1 + x\right) \left(1 + x\right)^{n} - 1 - \binom{n+1}{2}x \\ & = \left(1 + x\right) \left[x^{n} \quad \text{ (if } x^{n}) + 1 + nx \\ & = x^{n} \quad \text{ (if } x^{n}) + 1 + nx \\ & = 2\left(1 + x\right)x^{n} + 1 + nx \\ & = x^{n} \quad (2\left(1 + x\right) + n) \\ & \text{ is div by } x^{n} \quad (\text{ (since } 2(1 + n) + nx) \\ & \text{ for } x^{n} \\ & \text{ for } x^{n} \\ & x^{n} \quad \text{ for } x^{n} \\ & x^{n} \\ & x^{n} \quad \text{ for } x^{n} \\ & x^{n} \\ & x^{n} \quad x^{n} \\ &$$

$$\frac{(luestion 7)}{(a) (i) : f(x) is increasing for x > 2}$$

$$\binom{(ii)}{(ii)} f(x) : x > 2, g > 0$$

$$\therefore f'(x) : x > 0, g > 2$$

$$\binom{(ii)}{(iii)} They must heet at g = x$$

$$\therefore (x - 2)^{2} = x$$

$$x' - 5x + 4 = 0$$

$$(x - i) (x - 4) = 0$$

$$x = i, 4$$

$$\binom{(ii)}{(x)} = \frac{1}{2} + \frac{1}{2}$$

(l) (i)

(i)
$$g'(x) = \frac{1}{\sqrt{1 - (2x^2 - 1)^2}}$$
. $44x$

$$= \frac{4x}{\sqrt{1 - (4x^2 - 4x^2 + 1)}} = \frac{4x}{\sqrt{4x^2 - 4x^2}}$$

$$= \frac{4x}{2\sqrt{x^2}\sqrt{1 - x^2}}$$

$$= \frac{2x}{(-x)\sqrt{1 - x^2}} \quad since \quad -1 < x < 0$$

$$= -\lambda \qquad = f'(x)$$
(iii) $from(ii)$, $\sin^{-1}(2x^2 - 1) = 2\cos^{-1}x + C$, c a constant

$$\int ut x = 0, \quad -\frac{\pi}{2} = \pi + c, \quad c = -\frac{3\pi}{2}$$

$$\int ut x = 0, \quad -\frac{\pi}{2} = \pi + c, \quad c = -\frac{3\pi}{2}$$

$$\int ut x = 0, \quad -\frac{\pi}{2} = \pi + c, \quad c = -\frac{3\pi}{2}$$

$$\int ut x = 0, \quad -\frac{\pi}{2} = \pi + c, \quad c = -\frac{3\pi}{2}$$

MATHEMATICS EXTENSION | MARKING SCHEME 2009

$$Q_{n} | (a) | gnore + c$$

$$(L) \quad Allow \quad 1 \quad for \quad tan \ L = 9 - \frac{y}{5}$$

$$(c) \quad Allow \quad 1 \quad for \quad \left[ln \ (e^{x} + l) \right]_{0}^{l}$$

$$Allow \quad 2 \quad for \quad decimal \quad approxn \quad \left[\cdot 6d - - - \right]$$

$$(d) \quad Allow \quad 2 \quad for \quad x^{k} - ln \quad \int \frac{x + l}{x^{2} + x^{2}} + x$$

$$-\frac{l2n}{l^{3n} + l^{2}} = R(x)$$

$$\frac{(D_{n} 2)}{d\theta} = (a) \quad (i) \quad Allow \quad I \quad for \quad \frac{du}{d\theta} = cor\theta \quad 4 \quad limits$$

$$\frac{Allow}{I} \quad for \quad J = \int_{0}^{T} \frac{5in^{-0} cor\theta}{Vcor^{-0}} d\theta$$

$$\frac{(ii)}{Allow} \quad I \quad for \quad J = \frac{1}{2} \int_{0}^{T} \frac{5in^{-0} cor\theta}{I - cor2\theta} d\theta$$

$$i \quad for \quad J = \frac{1}{2} \left[\theta - \frac{sin^{-1}\theta}{2} \right]_{0}^{T/6}$$

(b) (i) Allow 1 for 1+d=0

(c) (ii) Allow 1 for
$$\frac{1+t^2}{2t} + \frac{1-t^2}{2t}$$

(Alternatives exist, of course)

Qui 3 (a) Allow 1 for $\frac{1}{3} \tan^{-1}\left(\frac{2\pi}{3}\right)$

IGNORE +C

(b) Allow 1 for
$$f'(n) = \cdot 4 + 2\pi e^{-\chi^{-1}}$$

Allow 1 for $\chi_{1} = 1 - \frac{0 \cdot 4 - e^{-1}}{0 \cdot 4 + 2e^{-1}}$ or equivalent
 $\frac{4}{10} = \frac{3}{10} = \frac{1}{10} = \frac{1}{10} + \frac{1}{10} = \frac{1}{10} = \frac{1}{10} + \frac{1}{10} + \frac{1}{10} = \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} = \frac{1}{10} + \frac{1}{1$

$$(A) (i) \quad \text{Atlaw} \quad i \quad \text{for} \quad \frac{1}{2} u^{\frac{1}{2}} = -n \sum_{2}^{n+1} + c \quad \text{or aquindex} \\ \quad (i: \quad \frac{1}{2} u^{\frac{1}{2}} = \left[-n \sum_{2}^{n} \right]_{A}^{2} \\ (ii) \quad \text{No marks} \quad \text{for} \quad 4 = n^{\frac{1}{2}} (A^{\frac{1}{2}-36}) \quad \text{and} \quad 16 = n^{\frac{1}{2}} (A^{\frac{1}{2}}-q) \\ \hline \equiv \\ \text{Atlaw} \quad 1 \quad \text{for} \quad A^{\frac{1}{2}-q} = 4 \quad \text{or} \quad \text{equindex} \\ \text{Atlaw} \quad 2 \quad \text{for} \quad A = \sqrt{45} \quad \text{and} \quad n = \frac{2}{3} \\ \hline \\ \text{Qm} \quad 4 \quad (b) \quad (i) \quad \text{Atlow} \quad 1 \quad \text{for} \quad \frac{d^{\frac{1}{2}} db}{db} \quad \frac{db}{dt} = \frac{d(\frac{v}{1-3})}{indicatus} \quad \text{or} \quad clear} \\ (ii) \quad \text{Atlaw} \quad 2 \quad \text{for} \quad \frac{d^{\frac{1}{2}} db}{db} \quad \frac{db}{dt} = \frac{d(\frac{v}{1-3})}{indicatus} \quad \text{or} \quad clear} \\ (iii) \quad \text{Atlaw} \quad 2 \quad \text{for} \quad -\frac{27}{17} e^{1/mi} \quad \text{or} \quad \text{securid approxules for an e} \\ (iii) \quad \text{Atlaw} \quad 2 \quad \text{for} \quad -\frac{27}{17} e^{1/mi} \quad \text{or} \quad \text{securid approxules for a forme} \\ (iii) \quad \text{Atlaw} \quad 1 \quad \text{for} \quad u_{k+1} = \binom{10}{k} (u^{\frac{1}{2}})^{20-k} (\frac{b}{k})^{k} \\ \text{Atlaw} \quad 1 \quad \text{for} \quad 40-3k=7 \quad \text{and} \quad 40-3k=4 \\ (L) \quad (v, \quad \text{Atlaw} \quad 1 \quad \text{for} \quad vecasion \quad clay \quad \text{grid} \quad TR = -\frac{2}{prg} \\ (iii) \quad \text{Atlaw} \quad 1 \quad \text{for} \quad 0 = -5 \left(\frac{3w}{10^{17}}\right)^{1} + \frac{v}{10^{17}} \frac{3w}{10^{17}} + 110 \text{ or aquindex} \\ (i^{\frac{1}{2}} \quad \text{Atlaw} \quad 1 \quad \text{for} \quad -iot + \frac{v}{5L} = 0 \\ (i^{\frac{1}{2}} \quad \text{Atlaw} \quad 1 \quad \text{for} \quad -iot + \frac{v}{5L} = 0 \\ 1 \neq NOCKE \quad UNTS \\ \end{array}$$

$$\int (11) \mathcal{A} dow \int for g'(n) = \frac{1}{\sqrt{1-(2n^2-1)^2}} \cdot 4n$$

$$\int \int for g'(n) = \frac{4n}{2\sqrt{2^2} \sqrt{1-n^2}}$$