The King's School

Higher School Certificate

Trial Examination

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 70

Section I

10 marks

- Attempt Questions 1-10
- Answer on the Multiple Choice Answer Sheet provided.
- Allow about 15 minutes for this Section.

Section II

60 marks

- Attempt Questions 11-14
- Answer in the examination booklets provided, unless otherwise instructed.
- Start a new booklet for each question.
- Allow about 1 hour 45 minutes for this Section.

Disclaimer

This is a Trial HSC Examination only. Whilst it reflects and mirrors both the format and topics of the HSC Examination designed by the NSW Board of Studies for the respective sections, there is no guarantee that the content of this exam exactly replicates the actual HSC Examination.

Student Number

Student Number

Section I

Questions 1-10 (1mark for each question)
Read each question and choose an answer A, B, C or D.
Record your answer on the Answer Sheet provided.
Allow about 15 minutes for this section.
$1 \sin 2 \alpha \cos 2 \alpha=$
A) $\frac{1}{2} \sin 4 \alpha$
B) $4 \sin \alpha \cos \alpha$
C) $\frac{1}{2} \sin 2 \alpha$
D) $2 \sin 2 \alpha$

2 The point R divides the interval joining $\mathrm{P}(-3,6)$ and $\mathrm{Q}(6,-6)$ externally in the ratio 2:1.

Which of these are coordinates of R ?
A) $(3,-2)$
B) $(15,-18)$
C) $(0,2)$
D) $(-12,18)$

3 The polynomial $2 x^{3}+x-4=0$ has roots α, β, and γ.
What is the value of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$?
A) $-\frac{1}{4}$
B) $\frac{1}{2}$
C) $-\frac{1}{2}$
D) $\frac{1}{4}$

4 Which of the following are solutions of $\frac{x}{x+1} \geq 0$?
A) $x \geq 0$
B) $-1 \leq \mathrm{x} \leq 0$
C) $\mathrm{x}<-1$
D) $\mathrm{x}<-1, \mathrm{x} \geq 0$

5 Which of the following could be the equation of the polynomial $\mathrm{P}(\mathrm{x})$?

A) $\quad \mathrm{P}(\mathrm{x})=(\mathrm{x}-1)(\mathrm{x}+2)$
B) $\quad P(x)=(x+1)^{2}(x-2)^{3}$
C) $\quad P(x)=(x-1)^{2}(x+2)^{3}$
D) $\quad P(x)=(x+1)(x-2)^{3}$

6 What is the equation of the function shown in the graph below?

A) $y=\frac{\pi}{4} \cos ^{-1} 3 x$
B) $y=\frac{4}{\pi} \cos ^{-1} \frac{x}{3}$
C) $y=\frac{\pi}{4} \cos ^{-1} \frac{x}{3}$
D) $y=\frac{4}{\pi} \cos ^{-1} 3 x$

7 A particle is moving in a simple harmonic motion with displacement x . Its acceleration \dddot{x} is given by $\ddot{x}=-4 x+3$.

What are the centre and the period of the motion?
A) $\mathrm{x}=3, \mathrm{~T}=\frac{\pi}{2}$
B) $\mathrm{x}=-3, \mathrm{~T}=\pi$
C) $\mathrm{x}=\frac{3}{4}, \mathrm{~T}=\pi$
D) $\mathrm{x}=\frac{3}{4}, \mathrm{~T}=\frac{\pi}{2}$

8 What is the derivative of $\mathrm{y}=\tan ^{-1} \frac{1}{\mathrm{x}^{2}}$?
A) $\frac{2}{x+x^{4}}$
B) $\frac{2 x}{1+x^{4}}$
C) $-\frac{2 x}{1+x^{4}}$
D) $-\frac{2}{x+x^{3}}$

9 The points A, B and C lie on the circle with centre O . OA is parallel to CB . AC intersects OB at D and $\angle \mathrm{ODC}=\alpha$.

What is the size of $\angle \mathrm{OAD}$ in terms of α ?

A) $\frac{\alpha}{2}$
B) $\frac{\alpha}{3}$
C) $\frac{2 \alpha}{3}$
D) 3α

10 The trigonometric expression $\sqrt{3} \cos \theta+\sin \theta$ may be written in the form $R \cos (\theta-\alpha)$. The values of R and α could be?
(A) $\quad R=4 \quad$ and $\quad \alpha=\frac{\pi}{3}$
(B) $\quad R=4 \quad$ and $\quad \alpha=\frac{\pi}{6}$
(C) $\quad R=2 \quad$ and $\quad \alpha=\frac{\pi}{3}$
(D) $\quad R=2$ and $\quad \alpha=\frac{\pi}{6}$

End of Section I

Section II

Question 11-14 (15 marks each)

Allow about 1 hour 45 minutes for this section

Question 11

a) Differentiate $e^{2 x} \cos x$ with respect to x.
b) Find $\int \frac{d x}{\sqrt{1-(2 x)^{2}}}$
c) Solve $\frac{x^{2}}{x^{2}-1}<1$.
d) Use the substitution $u=1+\ln x$ to evaluate

$$
\int_{1}^{e} \frac{d x}{x(1+\ln x)^{3}} .
$$

e) i) Find the coefficient of x^{5} in the binomial expansion of

$$
\left(\frac{1}{x^{3}}+2 x^{2}\right)^{15}
$$

ii) What is the greatest value of n for which $\left(\frac{1}{x^{3}}+2 x^{n}\right)^{15}$ has a non-zero term in x^{5}.
f) In how many ways can 10 people be divided into two groups of 5 each?
a) Consider the function $f(x)=\frac{-x}{x^{2}+4}$
i) Show that this function is odd. 1
ii) Find the equation of the horizontal asymptote. 1
iii) Find the coordinates of its stationary points and determine their nature. 2
iv) Sketch the graph of this function. 2
b) Let $g(x)=x-\ln (2-x)$
i) Find the domain of $\mathrm{g}(\mathrm{x})$. 1
ii) Show that $\mathrm{g}(\mathrm{x})$ is monotonic increasing. 2
iii) Find the point of intersection of $y=g(x)$ and $y=x$. 1
iv) On the same set of axes, sketch the graphs of $\mathrm{y}=\mathrm{g}(\mathrm{x})$ and $\mathrm{y}=\mathrm{g}^{-1}(\mathrm{x})$.
c) i) Given that $f(x)=(x-a)^{2} g(x)$ where $f(x)$ and $g(x)$ are polynomials, show that $(x-a)$ is a factor of $f^{\prime}(x)$.
ii) Hence, or otherwise, find the values of p and q if $x^{3}-p x^{2}+q=0$ has a double root at $x=2$.
a) Two circles C_{1} and C_{2} centred at P and Q with equal radii r intersect at A and B respectively. $A C$ is a diameter in circle C_{1} and AD is a diameter in C_{2}.

i) Show that $\triangle \mathrm{ABC}$ is congruent to $\triangle \mathrm{ABD}$.
ii) Show that $\mathrm{PB} \| \mathrm{AD}$.
iii) Show that PQDB is a parallelogram.
b) Use mathematical induction to prove that

$$
\sum_{r=1}^{\mathrm{n}} \ln \left(\frac{\mathrm{r}}{\mathrm{r}+2}\right)=\ln \left(\frac{2}{(\mathrm{n}+1)(\mathrm{n}+2)}\right) \text { for } \mathrm{n} \geq 1
$$

c) The velocity $\mathrm{v} \mathrm{ms}^{-1}$ of a particle moving along the x axis is given by $\mathrm{v}=2 \mathrm{x}^{1.5} \mathrm{e}^{-0.5 \mathrm{x}}$
i) Find the fastest speed attained by the particle.
ii) After the particle reaches its maximum speed, you may consider $\mathrm{x}=7$ as the first approximation of the position at which its speed drops to $1 \mathrm{~ms}^{-1}$.

By using one application of Newton's method find a better approximation of x for which the speed drops to $1 \mathrm{~ms}^{-1}$.
d) $\mathrm{A}\left(0, \mathrm{pt}^{2}\right)$ and $\mathrm{B}(2 \mathrm{pt}+\mathrm{p}, \mathrm{y})$ with $\mathrm{p}>0$ are two points on the number plane.

The point C is chosen such that BC is parallel to x axis, $\angle A C B=135^{\circ}$ and $B C=p$ units.

i) Show that the coordinates of C are ($\left.2 \mathrm{pt}, \mathrm{pt}^{2}+2 \mathrm{pt}\right)$.
ii) Show that the locus of C is a parabola and find the equation of its directrix.

Question 14

MARKS
a) Two particles are moving in a simple harmonic motion along the x axis.

The displacements of the two particles at a time t are given by $x=a \cos 2 t+3 a$ and $x=a \sin 2 t$.

Find the closest distance between these two particles and the time at which it first occurs.
b) A helicopter H takes off vertically from C .

Paula and Bob are watching the helicopter. Bob is due east of the helicopter H . He is at B the top of a building AB of height a metres.

Paula is on the ground, at a point $\mathrm{P}, 2$ a metres away from A . The bearing of the building AB from her position at point P is 330°.

At the instant that Bob sees the helicopter at an angle of elevation of θ, its distance from him is 3a metres.

i) Show that the distance from Paula to the helicopter at this time, can be expressed as $\mathrm{s}=\mathrm{a} \sqrt{14+6 \sqrt{2} \sin \left(\theta-\frac{\pi}{4}\right)}$
ii) It is known that at the time when θ is increasing at a rate of 0.2 radians per minute the angle of elevation θ is $\frac{\pi}{5}$ radians.
At what rate is s changing at this time, give your answer correct to two decimal places.
c) Joe is playing indoor soccer. He is to take a free kick from the origin.

The opposing team has positioned some of its players 3 m from the ball.
These players are 1.8 m tall, but can jump an extra 1.2 m to defend their goal. The ceiling of the stadium is 8 m above the floor.
Joe will kick the ball with a velocity of $13 \mathrm{~ms}^{-1}$ at an angle of θ to the horizontal.

Use the axes as shown, and assume there is no air resistance and the position of Joe's ball t seconds after being kicked is given by the equations:
$x=13 t \cos \theta$ and $y=13 t \sin \theta-5 t^{2} \quad$ (Do NOT prove this)

i) Show that the maximum height reached by the ball can be expressed as $\mathrm{h}=\frac{169 \sin ^{2} \theta}{20}$.
ii) Show that the cartesian equation for the trajectory of the ball is $y=x \tan \theta-\frac{5 x^{2}}{169}\left(1+\tan ^{2} \theta\right)$.
iii) Show that for the ball to pass over the defenders and below the ceiling the angle θ must be between $50^{\circ} 41^{\prime}$ and $76^{\circ} 39^{\prime}$.
iv) The goal is 2.1 m high and 12 m from the origin.

For what possible values of θ will the ball pass above the defensive players, below the ceiling, and enter the goal directly ?

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq 1 ; \quad x \neq 0, \quad \text { if } n<0 \\
& \int \frac{1}{x} \mathrm{dx} \quad=\ln \mathrm{x}, \mathrm{x}>0 \\
& \int \mathrm{e}^{\mathrm{ax}} \mathrm{dx} \quad=\frac{1}{\mathrm{a}} \mathrm{e}^{\mathrm{ax}}, \quad \mathrm{a} \neq 0 \\
& \int \sin \mathrm{ax} \mathrm{dx} \quad=-\frac{1}{\mathrm{a}} \cos \mathrm{ax}, \quad \mathrm{a} \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sec ^{2} \operatorname{axdx} \quad=\frac{1}{\mathrm{a}} \tan \mathrm{ax}, \quad \mathrm{a} \neq 0 \\
& \int \sec a x \tan a x d x \quad=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{\mathrm{x}^{2}+\mathrm{a}^{2}}} \mathrm{dx} \quad=\ln \left(\mathrm{x}+\sqrt{\mathrm{x}^{2}+\mathrm{a}^{2}}\right)
\end{aligned}
$$

NOTE: $\ln \mathrm{x}=\log _{\mathrm{e}} \mathrm{x}, \mathrm{x}>0$

Student Number

Multiple Choice Answer Sheet

Section I
 Total marks (10)
 Attempt Questions 1-10
 Allow about 15 minutes for this section

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

The King's School

Mathematics Extension 1

1 A

$$
\begin{aligned}
& \sin 4 \alpha=2 \sin 2 \alpha \cos 2 \alpha \\
& \therefore \sin 2 \alpha \cos 2 \alpha=\frac{1}{2} \sin 4 \alpha
\end{aligned}
$$

2 B

$$
x=\frac{1 \times-3-2 \times 6}{1-2}=15
$$

$$
y=\frac{1 \times 6-2 \times-6}{1-2}=-18
$$

Hence, R (15, -18)

3 D

$$
\begin{aligned}
\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma} & =\frac{\beta \gamma+\alpha \gamma+\alpha \beta}{\alpha \beta \gamma} \\
& =\frac{1}{2} \div \frac{4}{2} \\
& =\frac{1}{4}
\end{aligned}
$$

4 D

	-1			0
x	-	-	0	+
$\mathrm{x}+1$	-	+		+
$\frac{x}{x+1}$	+	-	0	+

From the table we can see that $\frac{x}{x+1} \geq 0$
when $\mathrm{x}<-1, \mathrm{x} \geq 0$
Alternative method:

$$
\begin{aligned}
\frac{x}{x+1} & \geq 0 \\
(x+1)^{2} \times \frac{x}{x+1} & \geq 0 \times(x+1)^{2} \text { where } \mathrm{X} \neq-1
\end{aligned}
$$

$$
(x+1) x \geq 0
$$

From the graph, $\mathrm{x} \geq 0, \mathrm{x} \leq-1$
but as $\mathrm{x} \neq-1$
Hence, $\mathrm{x}<-1, \mathrm{x} \geq 0$
5 B
This graph has a double root at -1 , hence $(x+1)^{2}$ is a factor. This graph has a triple root at 2 , hence $(x-2)^{3}$ is a factor.
The only equation which could be the correct equation is $\mathrm{P}(\mathrm{x})=(\mathrm{x}+1)^{2}(\mathrm{x}-2)^{3}$

6 B
In A and D the domain is $-1 \leq 3 \mathrm{x} \leq 1$ that is $\frac{-1}{3} \leq \mathrm{x} \leq \frac{1}{3}$ which does not match the given graph.
The range in B of the equation
$y=\frac{4}{\pi} \cos ^{-1 \frac{x}{3}}$ is $0 \leq y \leq 4$
Hence, B is the solution.

7 C
The acceleration $\ddot{x}=-4 x+3$

$$
=-4\left(x-\frac{3}{4}\right)
$$

The acceleration at the centre is 0 .
that is $x-\frac{3}{4}=0$ so the centre is at $x=\frac{3}{4}$
Also, $\mathrm{n}^{2}=4$ that is $\mathrm{n}=2$ as $\mathrm{n}>0$.
Therefore, the period $=\frac{2 \pi}{2}=\pi$.
Hence, C is the solution.

8 C

$$
\begin{aligned}
& \mathrm{y}=\tan ^{-1} \frac{1}{x^{2}} \\
& \frac{d y}{d x}=\frac{1}{1+u^{2}} \times u^{\prime} \text { where } \mathrm{u}=\frac{1}{x^{2}} \\
& \begin{aligned}
& \frac{d y}{d x}\left.=\frac{1}{1+\left(\frac{1}{x^{2}}\right)}\right)^{2} \\
& \text { So } \frac{d y}{x^{3}}=-\frac{2}{x^{3}\left(1+\frac{1}{x^{4}}\right)} \\
& \\
& \quad=-\frac{2}{x^{3}+\frac{1}{x}}=-\frac{2 \mathrm{x}}{1+\mathrm{x}^{4}}
\end{aligned}
\end{aligned}
$$

9 B

Hence $\angle \mathrm{ACB}=\mathrm{x}$ (alternate angles, OA is parallel to CB)
$\angle \mathrm{AOB}=2 \mathrm{x}$ (angle at centre is twice the angle at the circumference subtended by the same arc AB)
$\alpha=x+2 x$ (exterior angle of triangle OAD equals the sum of the two opposite
interior angles)
So $\alpha=3 \mathrm{x}$ Hence, $\mathrm{x}=\frac{\alpha}{3}$
10 D
$R \cos \alpha=\sqrt{3}$ and
$R \sin \alpha=1 \rightarrow R^{2}=4$
$\therefore R=2$
$\tan \alpha=\frac{1}{\sqrt{3}}$
$\alpha=-\frac{\pi}{6}$

Question	Suggested Marking Criteria	Marks
Question 11		
a) $y=e^{2 x} \cos x$ Using product rule where $\begin{aligned} \mathrm{u} & =\mathrm{e}^{2 \mathrm{x}} \quad \text { and } \quad \mathrm{v}=\cos x \\ \mathrm{u}^{\prime} & =2 \mathrm{e}^{2 \mathrm{x}} \quad \text { and } \quad \mathrm{v}^{\prime}=-\sin x \\ \frac{\mathrm{dy}}{\mathrm{dx}} & =2 \mathrm{e}^{2 \mathrm{x}} \cos \mathrm{x}-\mathrm{e}^{2 \mathrm{x}} \sin \mathrm{x} \\ & =\mathrm{e}^{2 \mathrm{x}}(2 \cos \mathrm{x}-\sin x) \end{aligned}$	Indicate use of Product Rule. State the correct solution $\frac{d y}{d x}=\mathrm{e} 2 \mathrm{x}(2 \cos \mathrm{x}-\sin \mathrm{x})$	1 1
$\text { b) } \begin{aligned} & \int \frac{\mathrm{dx}}{\sqrt{1-(2 \mathrm{x})^{2}}}=\int \frac{\mathrm{dx}}{\sqrt{1-4 \mathrm{x}^{2}}}=\int \frac{\mathrm{dx}}{\sqrt{4\left(\frac{1}{4}-\mathrm{x}^{2}\right)}} \\ & =\frac{1}{2} \int \frac{\mathrm{dx}}{\sqrt{\frac{1}{4}-\mathrm{x}^{2}}}=\frac{1}{2} \sin ^{-1} 2 \mathrm{x}+\mathrm{c} \end{aligned}$	Indicate use of sine inverse.	1
	Choose a correct substitution or equivalent	1
	State the correct solution. $\frac{1}{2} \sin ^{-1} 2 x+C$	1

Question	Suggested Marking Criteria	Marks
c) $\frac{x^{2}}{x^{2}-1}<1$ so $\frac{x^{2}}{x^{2}-1}-1<0$ that is $\frac{1}{x^{2}-1}<0$ From the table: $-1<\mathrm{x}<1$ Alternative Method: $\begin{gathered} \left(x^{2}-1\right)^{2} \times \frac{x^{2}}{x^{2}-1}<1 \times\left(x^{2}-1\right)^{2} \text { where } x \neq \pm 1 \\ \left(x^{2}-1\right) x^{2}<x^{4}-2 x^{2}+1 \\ x^{4}-x^{2}<x^{4}-2 x^{2}+1 \\ x^{2}-1<0 \end{gathered}$	Begin a correct method.	1
	Create a correct expression without denominators.	1
	State the correct solution. $-1<\mathrm{x}<1$	1

equal groups is ${ }^{10} \mathrm{C}_{5} \times{ }^{5} \mathrm{C}_{5} \div 2!=126$

| Question | Suggested Marking Criteria | Marks |
| :--- | :--- | :--- | :--- |
| iv) | Sketch a curve, correctly
 showing their stationary
 points. | |
| | | |

Question	Suggested Marking Criteria	Marks
iv) Since $g(x)$ is a monotonic increasing function then to sketch the graph of $g(x)$ we must first find $\mathrm{g}^{\prime \prime}(\mathrm{x})$ to determine the concavity of this curve. $\mathrm{g}^{\prime \prime}(\mathrm{x})=\frac{1}{(2-x)^{2}}>0 \text { for all } \mathrm{x}<2$ Hence, the curve is strictly increasing and is concave up for all $\mathrm{x}<2$.	Sketch $\mathrm{y}=\mathrm{g}(\mathrm{x})$ Sketch $\mathrm{y}=\mathrm{g}-1(\mathrm{x})$	1
(c) (i) $f(x)=(x-a)^{2} g(x)$ $f^{\prime}(x)=2(x-1) g(x)+g^{\prime}(x)(x-a)^{2}$ $\therefore f^{\prime}(x)=(x-1)\left[2 g(x)+g^{\prime}(x)(x-1)\right]$ $\therefore(x-a)$ is a factor of $f(x)$	Correct answer	1
(ii) $8-4 p+q=0$	Finding equations to solve simultaneously	1
$\therefore \quad q=4$ $p=3$	Correct answer	1

| Question | Suggested Marking Criteria | Marks |
| :--- | :--- | :--- | :--- |
| Question $\mathbf{1 3}$ | | |

Question	Suggested Marking Criteria	Marks
ii) We need to find $v=1$ that is we need to solve $2 \mathrm{x}^{1.5} \mathrm{e}^{-0.5 \mathrm{x}}=1$ which is $2 \mathrm{x}^{1.5} \mathrm{e}^{-0.5 \mathrm{x}}-1=0$ Let $g(x)=2 x^{1.5} e^{-0.5 x}-1$ as $x=7$ is the first approximation of the root then $\mathrm{X}_{1}=7-\frac{g(7)}{g^{r}(7)}$ Using the product rule let $\mathrm{u}=2 \mathrm{x}^{1.5}$ and $\mathrm{v}=\mathrm{e}^{-0.5 \mathrm{x}}$ $\mathrm{u}^{\prime}=3 \mathrm{x}^{0.5} \text { and } \mathrm{v}^{\prime}=-0.5 \mathrm{e}^{-0.5 \mathrm{x}}$ So $g^{\prime}(x)=3 x^{0.5} e^{-0.5 x}-x^{1.5} e^{-0.5 x}$ $\begin{aligned} & =\mathrm{x}^{0.5} \mathrm{e}^{-0.5 \mathrm{x}}(3-\mathrm{x}) \\ \therefore \mathrm{x}_{1}= & 7-\frac{2 \times 7^{1.5} \times e^{-3.5}-1}{7^{0.5} \times e^{-3.5}(3-7)} \\ & =7+0.37088 \ldots \end{aligned}$ So $\mathrm{x}_{1}=7.37088 \ldots$ Note: when $\mathrm{x}=7, \mathrm{v}=1.1185 \ldots$ and when $\mathrm{x}=7.37088 \ldots \mathrm{v}=1.00401 .$. This shows that $\mathrm{x}=7.37088 \ldots$ is a better approximation.	Correctly substitute into the equation for Newton's Method. Calculate the correct value for the second approximation. $x=7.37088$	1
d) i) The x coordinate of C is x of B less by p. $\mathrm{x} \text { of } \mathrm{C}=2 \mathrm{pt}+\mathrm{p}-\mathrm{p}$ $=2 \mathrm{pt}$ Now producing the horizontal line BC to meet the y axis at a right angle at D. We are given $\angle \mathrm{BCA}=135^{\circ}$ then $\angle \mathrm{ACD}=45^{\circ}$ (angle of a straight line BD) $\therefore \angle \mathrm{DAC}=45^{\circ}$ (angle sum of $\triangle \mathrm{ADC}$) So $\triangle \mathrm{ACD}$ is right angled and isosceles. $\therefore \mathrm{AD}=\mathrm{DC}=2 \mathrm{pt}$ Hence, the y coordinate of C is the y coordinate of A plus 2pt. y of $\mathrm{C}=\mathrm{pt}^{2}+2 \mathrm{pt}$ Hence, the coordinate of are $\mathrm{C}\left(2 \mathrm{pt}, \mathrm{pt}^{2}+2 \mathrm{pt}\right)$.	Show the x value at C is 2 pt . Show the y value at C is $\mathrm{pt}^{2}+$ 2pt.	11

Question	Suggested Marking Criteria	Marks

Question 14

a) The distance between the particles can be expressed as D = a cos $2 \mathrm{t}+3 \mathrm{a}-\mathrm{a} \sin 2 \mathrm{t}$. a $\cos 2 t$ - a $\sin 2 t$ can be expressed in the form
$r \cos (2 t+\alpha)$ where $r=\sqrt{a^{2}+a^{2}}=a \sqrt{2}$
and $\tan \alpha=\frac{\mathrm{a}}{\mathrm{a}}=1$ that is $\alpha=\frac{\pi}{4}$ as α is an acute angle.
Therefore $\mathrm{D}=\mathrm{a} \sqrt{2} \cos \left(2 \mathrm{t}+\frac{\pi}{4}\right)+3 \mathrm{a}$
As the minimum of a $\sqrt{2} \cos \left(2 t+\frac{\pi}{4}\right)$
is $-\mathrm{a} \sqrt{2}$ then the minimum distance between the particles is
$\mathrm{D}=-\mathrm{a} \sqrt{2}+3 \mathrm{a}=\mathrm{a}(3-\sqrt{2})$ and this occurs for first time when
$\mathrm{t}=-\frac{\pi}{8}+\frac{\pi}{2}=\frac{3 \pi}{8}$
Alternative method:

$$
\begin{aligned}
& \mathrm{D}=\mathrm{a} \cos 2 \mathrm{t}+3 \mathrm{a}-\mathrm{a} \sin 2 \mathrm{t} \\
& \frac{d D}{d t}=-2 a \sin 2 t-2 a \cos 2 t
\end{aligned}
$$

To find the minimum distance between the particles
we let $\frac{d D}{d t}=0$ that is

$$
\begin{aligned}
& -2 a \sin 2 t-2 a \cos 2 t=0 \\
& \sin 2 t+\cos 2 t=0 \\
& \tan 2 t=-1=\tan \left(-\frac{\pi}{4}\right) \\
& 2 t=-\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{7 \pi}{4} \ldots \\
& t=\frac{3 \pi}{8}, \frac{7 \pi}{8} \ldots . a \sin t>0
\end{aligned}
$$

Use $2^{\text {nd }}$ derivative to determine max or min.
$\frac{d^{2} D}{d t^{2}}=-4 a \cos 2 t+4 a \sin 2 t$

t	$\frac{3 \pi}{8}$	$\frac{7 \pi}{8}$
$\frac{d^{2} D}{d t^{2}}$	positive	Negative

From the table the minimum distance occur for the first time when $t=\frac{3 \pi}{8}$
$D=a \times \frac{-1}{\sqrt{2}}+3 a-a \times \frac{1}{\sqrt{2}}=a(3-\sqrt{2})$
Hence, the minimum distance between the points is $(3-\sqrt{2})$ a.

| Question | Suggested Marking Criteria | Marks |
| :--- | :--- | :--- | :--- |
| b) i) | | |

Question	Suggested Marking Criteria	Marks
ii) $\quad \frac{d s}{d t}=\frac{d s}{d \theta} \times \frac{d \theta}{d t}$ $\begin{gathered} \mathrm{s}=\mathrm{a} \sqrt{14+6 \sqrt{2} \sin \left(\theta-\frac{\pi}{4}\right)} \\ \mathrm{s}=\mathrm{a}\left(14+6 \sqrt{2} \sin \left(\theta-\frac{\pi}{4}\right)\right)^{\frac{1}{2}} \\ \frac{d s}{d \theta}=\frac{a}{2} \times 6 \sqrt{2} \cos \left(\theta-\frac{\pi}{4}\right)\left(14+6 \sqrt{2} \sin \left(\theta-\frac{\pi}{4}\right)\right)^{\frac{-1}{2}} \end{gathered}$ Therefore $\frac{d s}{d \theta}=\frac{3 \sqrt{2} \mathrm{a} \cos \left(\theta-\frac{\pi}{4}\right)}{\sqrt{14+6 \sqrt{2} \sin \left(\theta-\frac{\pi}{4}\right)}}$ but $\frac{d \theta}{d t}=0.2$ So $\frac{d s}{d t}=\frac{3 \sqrt{2} \mathrm{a} \cos \left(\theta-\frac{\pi}{4}\right)}{\sqrt{14+6 \sqrt{2} \sin \left(\theta-\frac{\pi}{4}\right)}} \times 0.2 \quad($ rate for any $\theta)$ As $\theta=\frac{\pi}{5}$ then $\begin{aligned} & \frac{d s}{d t}=\frac{3 \sqrt{2} \mathrm{a} \cos \left(\frac{\pi}{5}-\frac{\pi}{4}\right)}{\sqrt{14+6 \sqrt{2} \sin \left(\frac{\pi}{5}-\frac{\pi}{4}\right)}} \times 0.2 \\ & \frac{d s}{d t}=\frac{3 \sqrt{2} \mathrm{a} \cos \left(-\frac{\pi}{20}\right)}{\sqrt{14+6 \sqrt{2} \sin \left(-\frac{\pi}{20}\right)}} \times 0.2 \\ & \frac{d s}{d t}=1.1771265 \ldots \times 0.2 . \times \mathrm{a} \end{aligned}$ $\frac{d s}{d t} \approx 0.24 \mathrm{a}$ units per minute.	Find $\frac{d s}{d \theta} . \quad \frac{d s}{d \theta}=$ $\frac{3 \sqrt{2} a \cos \left(\theta-\frac{\pi}{4}\right)}{\sqrt{14+6 \sqrt{2} \sin \left(\theta-\frac{\pi}{4}\right)}}$ Calculate the correct expression for $\frac{d s}{d t}$. $\begin{gathered} \frac{d s}{d t}= \\ \frac{3 \sqrt{2} \mathrm{a} \cos \left(\theta-\frac{\pi}{4}\right)}{\sqrt{14+6 \sqrt{2} \sin \left(\theta-\frac{\pi}{4}\right)}} \times 0.2 \end{gathered}$	1
c) i) $\mathrm{y}=\underset{13}{ } 3 \sin \theta-5 \mathrm{t}^{2}$ So $\dot{y}=13 \sin \theta-10 t$ To find the time taken by the ball to reach the maximum height we let $\dot{\mathrm{y}}=0$, we get: $\begin{aligned} 13 \sin \theta-10 \mathrm{t} & =0 \\ 13 \sin \theta & =10 \mathrm{t} \\ \mathrm{t} & =\frac{13}{10} \sin \theta \end{aligned}$ Now, the maximum height is $\begin{aligned} y_{\max } & =13 \times \frac{13}{10} \sin \theta \times \sin \theta-5 \times \frac{169}{100} \sin ^{2} \theta \\ & =\frac{169}{10} \sin ^{2} \theta-\frac{169}{20} \sin ^{2} \theta \\ & =\frac{169}{20} \sin ^{2} \theta \end{aligned}$	Show that the maximum height can be expressed as $h=$ $\frac{169 \sin ^{2} \theta}{20}$	1

Question	Suggested Marking Criteria	Marks
ii) $x=13 t \cos \theta$ so $t=\frac{x}{13 \cos \theta}$ As $\mathrm{y}=13 \operatorname{tsin} \theta-5 \mathrm{t}^{2}$ then $\mathrm{y}=\frac{13 \sin \theta x}{13 \cos \theta}-5 \times \frac{x^{2}}{169 \cos ^{2} \theta}$ $y=x \tan \theta-\frac{5 x^{2}}{169} \sec ^{2} \theta$ Hence $\mathrm{y}=\mathrm{x} \tan \theta-\frac{5 x^{2}}{169}\left(1+\tan ^{2} \theta\right)$	Show that the cartesian equation is $y=x \tan \theta-\frac{5 x^{2}}{169}\left(1+\tan ^{2} \theta\right) .$	

Question	Suggested Marking Criteria	Marks
iii) For the ball to pass under the ceiling, if the maximum height $y_{\text {max }}<8$ that is $\begin{aligned} & \frac{169}{20} \sin ^{2} \theta<8 \\ & \sin ^{2} \theta<\frac{160}{169} \\ & \frac{-4 \sqrt{10}}{13}<\sin \theta<\frac{4 \sqrt{10}}{13} \end{aligned}$ But θ is an acute angle so $\sin \theta>0$ that is $0<\sin \theta<\frac{4 \sqrt{10}}{13}$ Now as $\sin \theta$ is an increasing function for θ between 0° and 90° then $0^{\circ}<\theta<76^{\circ} 39^{\prime}$ (A) The ball must not be stopped by the defenders. This occur if when $x=3, y>3$ that is $3 \tan \theta-\frac{45}{169}\left(1+\tan ^{2} \theta\right)>3$	Calculate the solution for the maximum height to be less than 8 m . $0^{\circ}<\theta<76^{\circ} 39^{\prime}$	
$\begin{aligned} & 507 \tan ^{2} \theta-45-45 \tan ^{2} \theta-507>0 \\ & 45 \tan ^{2} \theta-507 \tan \theta+552<0 \end{aligned}$ First we solve $45 \tan ^{2} \theta-507 \tan \theta+552=0, \text { we get: }$ $\begin{aligned} \tan \theta & =\frac{507 \pm \sqrt{(-507)^{2}-4 \times 45 \times 552}}{90} \\ & =1.22110 \ldots, 10.04556 . . \end{aligned}$ As $\mathrm{y}=45 \tan ^{2} \theta-507 \tan \theta+552$ is a parabola below the $\tan \theta$ axis when $\tan \theta$ is between $1.22110 \ldots$ and $10.04556 \ldots$ So, the solution of $45 \tan ^{2} \theta-507 \tan \theta+552<0 \text { is }$ $1.22110 \ldots<\tan \theta<10.04556 \ldots$ As $\tan \theta$ is an increasing function for θ between 0° and 90° then $50^{\circ} 41^{\prime}<\theta<84^{\circ} 19^{\prime}$ (B) Now, for the ball to pass over the defenders, but under the ceiling, it must satisfy both conditions (A) and (B) Hence $50^{\circ} 41^{\prime}<\theta<76^{\circ} 39^{\prime}$ (1)	Calculate the solution for the ball to stay above the defenders. $50^{\circ} 41^{\prime}<\theta<76^{\circ} 39^{\prime}$	

Question	Suggested Marking Criteria	Marks
iv) For the ball to enter the goal When $\mathrm{x}=12, \mathrm{y}<2.1$ that is $12 \tan \theta-\frac{720}{169}\left(1+\tan ^{2} \theta\right)<2.1$ $12 \tan \theta-\frac{720}{169}\left(1+\tan ^{2} \theta\right)<2.1$ $2028 \tan \theta-720-720 \tan ^{2} \theta-354.9<0$ $720 \tan ^{2} \theta-2028 \tan \theta+1074.9>0$ First ,we solve: $720 \tan ^{2} \theta-2028 \tan \theta+1074.9=0$ we get: $\begin{aligned} & \tan \theta=\frac{2028 \pm \sqrt{(-2028)^{2}-4 \times 720 \times 1074.9}}{1440} \\ & \quad=0.707986 \ldots \text { or } 2.10868 \ldots \\ & \text { As } y=720 \tan ^{2} \theta-2028 \tan \theta+1074.9 \\ & \text { is a parabola above the } \tan \theta \text { axis when } \\ & \tan \theta<0.707986 \ldots, \tan \theta>2.10868 \ldots \end{aligned}$ As $\tan \theta$ is an increasing function for θ	Calculate the solution for the ball to enter the goal. $\theta<35^{\circ} 18^{\prime} \text { or } \theta>64^{\circ} 38$ and/or $22^{\circ} 37^{\prime}<\theta<67^{\circ} 23^{\prime}$	1
Now, For the ball to enter the goal directly, it must be above ground at $\mathrm{x}=12$ that is When $\mathrm{x}=12, \mathrm{y}>0$ $\begin{aligned} & \text { so } 12 \tan \theta-\frac{720}{169}\left(1+\tan ^{2} \theta\right)>0 \\ & 2028 \tan \theta-720-720 \tan ^{2} \theta>0 \\ & 720 \tan ^{2} \theta-2028 \tan \theta+720<0 \end{aligned}$ First, we solve: $720 \tan ^{2} \theta-2028 \tan \theta+720=0$ we get: $\begin{aligned} \tan \theta & =\frac{2028 \pm \sqrt{(-2028)^{2}-4 \times 720 \times 720}}{1440} \\ & =\frac{5}{12} \text { or } \frac{12}{5} \end{aligned}$ As $y=720 \tan ^{2} \theta-2028 \tan \theta+720$ is a parabola below the $\tan \theta$ axis when $\frac{5}{12}<\tan \theta<\frac{12}{5}$ As $\tan \theta$ is an increasing function for θ between 0° and 90° then $\begin{equation*} 22^{\circ} 37^{\prime}<\theta<67^{\circ} 23^{\prime} \tag{3} \end{equation*}$	State the correct final range of angles for θ. $64^{\circ} 38^{\prime}<\theta<67^{\circ} 23^{\prime}$	1

Question	Suggested Marking Criteria	Marks
(continued) Hence all of three conditions must hold simultaneously for a goal to be scored. It can be seen on the above diagram that the largest range of values for which all of the conditions hold is $64^{\circ} 38^{\prime}<\theta<67^{\circ} 23^{\prime}$.		

