Total marks (84)

Attempt questions 1 – 7

All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 Marks) Use a SEPARATE Writing Booklet.

Marks

(a) Find
$$\frac{d}{dx} (x \tan^{-1} 2x)$$

2

(b) The parametric equations of a curve are given by
$$x = t^2$$
, $y = t^3 + t$.
Find the Cartesian equation of the curve (that is y in terms of x).

2

(c) Write down the general solution of
$$\sin x = \frac{1}{2}$$
.

2

(d) The interval
$$AB$$
 has end points A (5, 4) and B (x , y). The point P (-1 , 3) divides AB internally in the ratio 2:3. Find the coordinates of B .

2

(e) Evaluate
$$\lim_{x\to 0} \left(\frac{\sin 3x}{4x}\right)$$
.

2

2

$$\int_0^1 \frac{1}{\sqrt{4+x^2}} dx$$

Question 2 (12 Marks) Use a SEPARATE Writing Booklet.

Marks

(a) Find, correct to the nearest degree, the obtuse angle between the lines x + y - 4 = 0 and y = 2x + 1.

2

(b) Solve $\frac{2x+3}{x-4} \le 1$.

3

(c) Use the substitution u = 2 - x to evaluate $\int_0^1 x \sqrt{2 - x} dx$.

4

(d) Write down the domain and range of the function $y = \frac{\pi}{2} - \sin^{-1} \frac{x}{2}$.

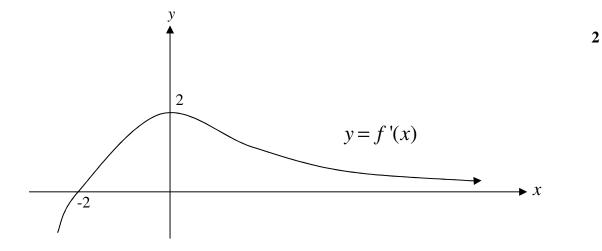
2

(ii) Hence sketch the function.

1

.

Question 3 (12 Marks) Use a SEPARATE Writing Booklet.


Marks

(a) Find the exact value of $\cos\left(\frac{7\pi}{12}\right)$ in simplest surd form, with a rational denominator.

3

2

(b)

The diagram above shows a sketch of the gradient function of the curve y=f(x).

Copy this diagram into your writing booklet.

On the same diagram, draw a possible sketch of the function y=f(x), given that f(0)=3 and $\lim_{x\to\infty} f(x)=6$.

(c) Consider the point $P(2ap, ap^2)$ on the parabola $x^2 = 4ay$.

- (i) Show that the equation of the normal to the parabola $x^2 = 4ay$ at the point *P* is given by $x + py = 2ap + ap^3$.
- (ii) Find the equation of the line which passes through the focus S(0, a) and is perpendicular to the normal.
- (iii) If the line found in part (ii) meets the normal at *N*, find the coordinates of *N*.
- (iv) Show that the locus of *N* is a parabola and find its vertex. 2

- (a) Determine the exact value of $\cos\left(2\sin^{-1}\left(\frac{12}{13}\right)\right)$.
- (b) Show that the equation $x \tan^{-1} 3x = 0$ has a root lying between x = 1 and x = 2.
 - (ii) By taking x = 1.5 as an initial approximation to the root of $x \tan^{-1} 3x = 0$, in the interval 1 < x < 2, use one application of Newton's method to find a second approximation to this root.
- (c) The velocity of a particle moving in a straight line is given by 2

$$v = 4x + 1$$
,

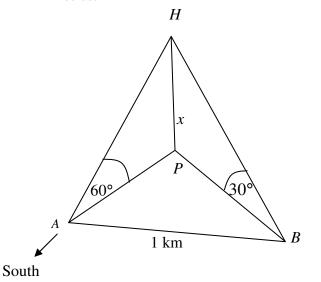
where x is the displacement (in metres) from a fixed point θ , and v is the velocity in metres per second.

Find the acceleration of the particle when it is 5 metres to the right of the origin.

(d) Newton's law of cooling states that the rate of cooling of a body is proportional to the excess of the temperature of a body above the surrounding room temperature. The temperature of a cup of chocolate drink satisfies an equation of the form $T = B + Ae^{kt}$ where T is the temperature of the drink, t is time in minutes, A and k are constants and B is the temperature of the surroundings.

The drink cools from 85°C to 70°C in three minutes in a room of temperature of 22°C.

- (i) Find the value of A.
- (ii) Find the value of k, correct to 3 decimal places.
- (iii) Find the temperature of the cup of chocolate, to the nearest degree, after a further 9 minutes have passed.


Question 5 (12 Marks) Use a SEPARATE Writing Booklet.

Marks

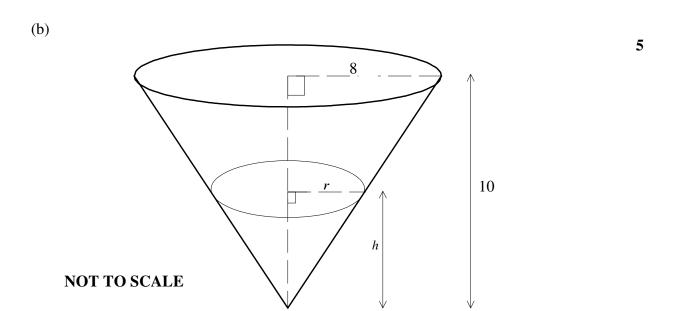
1

2

- (a) Suppose $\frac{\alpha}{r}$, α and αr are the real roots of the cubic equation $2x^3 3x^2 3x + 2 = 0$.
 - (i) Write down the value of the sum of all three roots.
 - (ii) Write down the value of the product of all three roots.
 - (iii) Deduce that r can take on two real non-zero values and find them.
- (b) Anna (A) is standing due south of Phillip (P) who is assisting an injured bush walker. A rescue helicopter (H) is hovering directly over P and lowering a stretcher. Anna measures the angle of elevation of the helicopter to be 60° from her position. Belinda (B) is 1 kilometre due east of A and measures the angle of elevation of the helicopter to be 30°. The height of the helicopter above P is x metres.

NOT TO SCALE

(i) Write expressions for both AP and BP in terms of x.


- 1
- (ii) Hence or otherwise find the height of the helicopter correct to the nearest 10 m.
- 3

(c) Use the Principle of Mathematical Induction to show that $9^{n+2} - 4^n$ is divisible by 5 for all positive integers n.

4

2

- (a) (i) State the domain and range for $f(x) = 4 \sqrt{x-1}$.
 - (ii) Find the inverse function $f^{-1}(x)$ and state the domain and range for which it exists.
 - (iii) Sketch the graph of $f(x) = 4 \sqrt{x-1}$ and its inverse function $f^{-1}(x)$ 2 on the same number plane.

A bulk container for emptying grain into rail trucks is in the shape of an inverted cone with base radius 8 metres and height 10 metres. The grain is released from the apex of the cone at a constant rate of 35 m 3 /s. The depth of grain in the container at any given time is h metres and the radius of the circle formed by the top of the grain at that same time is r metres.

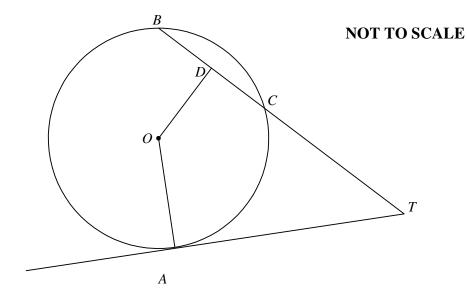
If the grain is released continuously until the container is empty, calculate the rate at which the radius (r) is decreasing when the depth (h) is 0.65 metres.

Question 7 (12 Marks) Use a SEPARATE Writing Booklet.

Marks

(a) By using the t – method (that is, let $t = \tan \frac{x}{2}$) solve the equation

4


$$\cos x + \frac{1}{\sqrt{2}}\sin x = -1,$$

for x such that $0^{\circ} \le x \le 360^{\circ}$

(b) Find the volume of the solid formed by rotating about the *x* axis, the region bounded by $y = \cos 2x$, the *x* axis, from x = 0 to $x = \frac{\pi}{2}$.

4

(c)

In the diagram above A, B and C are three points on a circle, centre O. The tangent at A meets BC produced at T. D is the midpoint of BC.

Copy this diagram into your writing booklet.

(i) Prove that *AODT* is a cyclic quadrilateral.

3

(ii) Explain why $\angle AOT = \angle ADT$.

1

End of Paper

BLANK PAGE

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

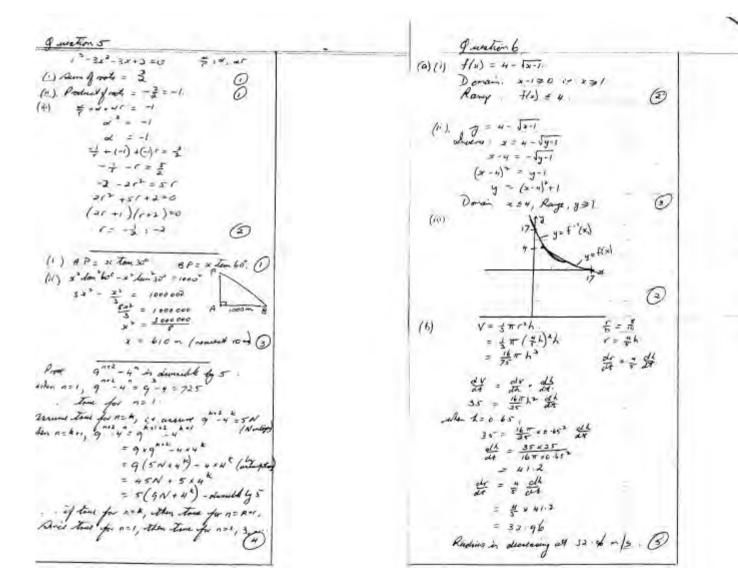
$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

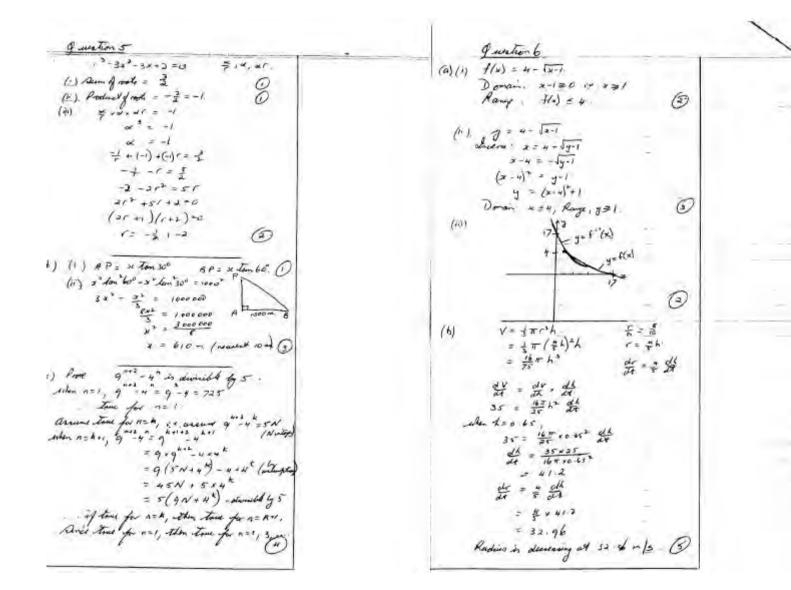
$$\int \sec ax \tan ax dx = \frac{1}{a} \cot ax, \quad a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln \left(x + \sqrt{x^{2} + a^{2}}\right), \quad x > a > 0$$


$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln \left(x + \sqrt{x^{2} + a^{2}}\right)$$


Note
$$\ln x = \log_e x$$
, $x > 0$

Question! Ext. 1 (3U)-Solutions TRIAL	(a) 2+y=4=0 y=2x+1		
= ton 2x + 2x 3	m = -1 m = 2 -	_	-
	Jan 0 = 2 - (-1)		
x=t2 , 7=t3+t	1+2*(4)		
t = + 1/2 : 7 = x 1/2 + 1/2 or y = -x 1/2 - 1/2	= -3 0 = 40° - 72°		
sen 2 = \$		-	
2 = nT + (-1)" T	= 108"		
	(b) 2×13 ≤ 1 2+1.		
A (5,*) B (2,y) 2:3 P(4,3)	(2x+3)(x-4) E (x-4)2.		
	$(x-y)[(x-y)-(2x+3)] \ge 0$		
21 +3v5 = -1 29+314 = 3 5 2x+15 = -5 29+12 = 15	(x-v)(-x-7) >0 /-1 v)		
se = -10 y = 12 · @	-7=2 < 4 (270)		
y	(c) Ja x 12-x de = J (2-4) Vu (-du) 4 = 2-x		
200 42 200 4 3x	(c)) x 42 x 2 x =) (2 x 4) 14 (tay) x = 2 = 44		
= 3	= 12 6 u - u 2) du x=0, u = 2		
***	$= \int 2u^{\frac{1}{2}}u^{\frac{1}{2}} - \frac{1}{2}u^{\frac{1}{2}} \int_{0}^{1} du = -dn$		
10 1 du - [lo(x + 10-x2)]	= (3 212 - 3 245) - (3 - 5)		
14/72	$= 3 \left(\frac{1}{3} \left(\frac{1}{3} - \frac{1}{3} \right) - \frac{141}{13} \right)$		
= ln (1+15) - ln 2 (2)	5 %		
	= 1612-14		
	(M(1) # = X - pin' X		
	- (a) (1) = = = - sin = = - 15x = 1 - 15x = 2		
	Range - I cain 1 = 3		
	F3 -ALL F3 -2	-	
_	11 - 2 - 2 cm \$ = 0		-
	12	+ + 1	-
	(1)		-
	-3 + + 3 →x		

Question 3 (0) = (0) 105° = (0) (65° +60°) = co 45° cos 600 - sin 45° sin 60 = 4 *3 -4 *5 $= \frac{1-G}{2\sqrt{2}} \times \frac{f_2}{\sqrt{2}}$ Ja - 16 3 = 20p +0p (A) (ii) 5N = px+a (ii) 5nd y=px+a -4(4) x + p/pu+a) = 20 p+0p x + p+ x + 0 p = 20 p + 4 p3 x(1+p) = ap(1-p) 21 = ap, y = p(ap) +a N: 4=0p , 4=0p+ a (3) 1) p= # .. y=0 + # + a y = 2 + a which is a postola 2 = 2 = 0 + 6 Varte 5 (0,0)

Question 4 Let 0 = 45 12 (a) cos [2 min ()] 10mi 0 = 12 1 = 4020 = 1-2 mi +0 = 1-0 + 109 - 119 (2) (b)(1) Let f(x)= x - tan 34 f(1) = 1 = ton 3 = -0-249 1(2) = 2 - lim 6= 0.594 Since I(1), f(a) down afforith region . It is continue there is a root between x = 1, x = 2 (E) 1/x)=1-19x 1/15) = 1 = 3 = 0.8588 \$/15)= 15- lim 4.5= 0 1479. Accord office = 1.5 - 0.1598 = 1.35 (2dp) (0) V = 43+1 and = \$ (200) = \$ = (4x+1)+ = 4 (+x+1) when x = 5, accel = 8 + m/or T = 22 + Ae AE 111 Alat =0, T = 85 . 85=22 + A2 A - 136 70 = 22 + 63 e (1) What = 3 T= 90 k = 3 lu (45) = -0.091 (3dp) (iii) what = 12, T= 22 + 63 e(-609121) = 43 degrees (reasent degrees)

(0.2	4 4	5 -1	
Let t = tan =			,
an a - dean I		A . 45, = -	
	1-4	5t = -1-t	*
		Fet = -2.	
		t 12	
ton	デニー た	N= 400-550	
		x = 250°.	
Tay us	100 as x 1	to ani u = restre	1-1
		=-1 -	1
		= -/	4.
- M	1	0	12
-/-05	Acres per 14	0, 250° /man	+ de
11 /	Y		
V= # 50	1. r da		
= 10	Jan 24 da		
- m	140 361+	coult	
	10	7.3	
- 5	[x+=+	4.5	
= 5	1 3 + 2 000	2x) - (0+0)]	
Volume =	The sent 3		1
	#		C
Share	8	-	
	1		
	1 1	Ke	
	104	1	
	1 1/		
	V	-	
Almerica	- 4		- 4
4) LOAT = 9	" (angle hete	um tanget . radio	· Zope
10DT - 90	of line from a	with Jarel to me boat besides the	die
	1 400	book besides the	Lord
1. 1. 1.	11.0	Same Si	
Love old . 4	yeng ADDT .	a rightentitary	1
ACT	7 0 4 492	is quad	(
Mena con	Lin Harm	though ADDT	
A AOT - A	10000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1
ZHO I and	LADT ON	angles at wrong	acted
alandery on	same chood	47	-
1 / 10	ot = LAD		0