

2012

Number: \qquad
TRIAL
Examination
Teacher: \qquad

Year 12 Extension 1
 Mathematics

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using blue or black pen only
- Board approved calculators may be used
- A table of standard integrals is provided at the back of the paper
- Show all necessary working in questions 11-14

Teachers:

Mr Bradford
Mr Harnwell
Mr Sedgman
Miss Yamaner*

Section I ~ Pages 1-3

- 10 marks
- Attempt Questions 1-10
- Allow about 15 minutes for this section

> Section II ~ Pages 4-9

- 60 marks
- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

Write your Board of Studies Student Number on the front cover of each answer booklet

This paper MUST NOT be removed from the examination room.

BLANK PAGE

Section I

10 marks

Attempt questions 1-10
Allow about $\mathbf{1 5}$ minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1 Two dice are rolled and the sum of the numbers is written down. Find the probability of rolling a total less than 6 .
(A) $\frac{1}{4}$
(B) $\frac{5}{36}$
(C) $\frac{5}{12}$
(D) $\frac{5}{18}$

2 What are the domain and range of $y=\cos ^{-1}\left(\frac{5 x}{2}\right)$?
(A) Domain: $-2.5 \leq x \leq 2.5$ and Range: $0 \leq y \leq \pi$
(B) Domain: $0 \leq x \leq \frac{5 \pi}{2} \quad$ and \quad Range $-1 \leq y \leq 1$
(C) Domain: $-\frac{5 \pi}{2} \leq x \leq \frac{5 \pi}{2}$ and Range: $0 \leq y \leq \pi$
(D) Domain: $-\frac{2}{5} \leq x \leq \frac{2}{5} \quad$ and \quad Range: $0 \leq y \leq \pi$

3 How many fourteen-letter arrangements of LONDONOLYMPICS are possible?
(A) $\frac{14!}{12!}$
(B) $\frac{14!}{4!}$
(C) $\frac{7!}{2!3!}$
(D) $\frac{14!}{2!+2!+3!}$

4 What is the acute angle between the lines $y=2 x-1$ and $x-3 y+6=0$?
(A) 18°
(B) 45°
(C) 63°
(D) 82°

5 At a dinner party, the host, hostess and their six guests sit at a round table. In how many ways can they be arranged if the host and hostess are separated?
(A) 720
(B) 1440
(C) 3600
(D) 5040

6 If $\lim _{x \rightarrow H} \frac{2 x^{3}+4 x}{x^{2}-4}=\infty$ what is a value for H ?
(A) $H=\infty$
(B) $\quad H=4$
(C) $\quad H=1$
(D) $\quad H=0$

7 If $t=\tan \frac{x}{2}$ which of the following is an expression for $\frac{d x}{d t}$?
(A) $\frac{2}{1+t^{2}}$
(B) $1+t^{2}$
(C) $\frac{1}{2}\left(1+t^{2}\right)$
(D) $\frac{1}{1+t^{2}}$
$8 \quad$ Which of the following is an expression for $\int \frac{2 x}{\sqrt{1+x^{2}}} d x$?
(A) $\log _{e}\left(1+x^{2}\right)+C$
(B) $\log _{e} \sqrt{1+x^{2}}+C$
(C) $\sqrt{1+x^{2}}+C$
(D) $2 \sqrt{1+x^{2}}+C$
$9 \quad$ Point A is moving on the curve $y=2 x^{3}$ in such a way that its x-coordinate is changing at a constant rate of 0.5 units per second. What rate is the gradient changing when $x=1$?
(A) $0.5 \mathrm{~s}^{-1}$
(B) $2 \mathrm{~s}^{-1}$
(C) $6 \mathrm{~s}^{-1}$
(D) $12 \mathrm{~s}^{-1}$

10 We can express $\sin x$ and $\cos x$ in terms of $\tan \frac{x}{2}$, for all values of x except......
(A) $\quad x=\ldots \frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4} \ldots$
(B) $x=\ldots \frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2} \ldots$
(C) $x=\ldots \pi, 3 \pi, 5 \pi \ldots$
(D) $\quad x=\ldots 2 \pi, 6 \pi, 8 \pi \ldots$

Section II

60 marks

Attempt questions 11-14
Allow about 1 hour 45 minutes for this section
Answer each question in a separate writing booklet. Extra writing booklets are available.
All necessary working should be shown in every question.

Question 11 (15 marks) Use a SEPARATE writing booklet

Marks

(a) Solve $\frac{5 x}{x-2} \geq 3$.
(b) (i) Show that the function $g(x)=x^{2}-\log _{e}(x+1)$ has a zero between 0.7 and 0.9 .
(ii) Use the method of halving the interval to find an approximation to this zero of $g(x)$, correct to one decimal place.
(c) Find the term independent of x in the expansion of $\left(4 x^{3}-\frac{1}{x}\right)^{12}$.
(d)

The diagram above shows the region bounded by the curve $y=2 \sin x$, the x-axis and the line $x=\frac{\pi}{4}$. Find the exact volume of the solid generated when the shaded region is rotated about the x-axis.
(e) Molten plastic at a temperature of $250^{\circ} \mathrm{C}$, is poured into a mould to form a car part. After 20 minutes the plastic has cooled to $150^{\circ} \mathrm{C}$. If the temperature after t minutes, is $T^{\circ} \mathrm{C}$, and the surrounding air temperature is $30^{\circ} \mathrm{C}$, then the rate of cooling is given by:

$$
\frac{d T}{d t}=-k(T-30), \text { where } k \text { is a constant. }
$$

(i) Show that $T=30+A e^{-k t}$, where A is a constant, satisfies the equation.
(ii) Show that the value of A is $220^{\circ} \mathrm{C}$.
(iii) Find the value of k to 2 decimal places.
(iv) The plastic can be taken out of the mould when the temperature drops below $80^{\circ} \mathrm{C}$. How long after the plastic has been poured will the temperature be reached? Give your answer to the nearest minute.

End of Question 11

(a) A mobile phone company has a success rate of 70% when signing up new customers who enter a particular store. If 10 new customers walk into the store:
(i) Find the probability that 9 of these people sign up. Give your answer to the nearest whole percentage.
(ii) What is the most likely number of customers to sign up?
(b) The polynomial $P(x)=x^{3}+a x+b$ has $(x-5)$ as one of its factors and has a remainder of -60 when divided by $(x+5)$. Find the values of a and b.
(c) Use the substitution $u=\tan x$ to evaluate $\int_{0}^{\frac{\pi}{3}} \tan ^{2} x \sec ^{2} x d x$.
(d) A particle moves in a straight line and its displacement x metres from the origin after t seconds is given by:

$$
x=\cos ^{2} 3 t, t>0 .
$$

(i) When is the particle first at $x=\frac{3}{4}$?
(ii) In what direction is the particle travelling when it is first at $x=\frac{3}{4}$?

Give a reason for your answer.
(iii) Express the acceleration of the particle in terms of x.
(iv) Hence, show that the particle is undergoing simple harmonic motion.
(v) State the period of the motion.
(a) A Rotary Club has 12 females and 25 male members. The club is to choose a representative team consisting of 2 women and 4 men to send to an international conference. In how many ways can this representative team be chosen? Express your answer as an ordinary numeral. 2
(b) The polynomial $P(x)=2 x^{3}-5 x^{2}+k x+40$ has roots α, β and γ.
(i) Find the value of $\alpha+\beta+\gamma$.
(ii) Find the value of $\alpha \beta \gamma$.
(iii) Two of the roots are equal in magnitude but opposite in sign.

Find the third root and hence find the value of k.
(c)

The diagram shows a circular lake, centre O, of radius 2 km with diameter $A B$. Pat can row at $3 \mathrm{~km} / \mathrm{h}$ and can walk at $4 \mathrm{~km} / \mathrm{h}$ and wishes to travel from A to B as quickly as possible. Pat considers the strategy of rowing direct from A to a point P and then walking around the edge of the lake to B. Let $\angle P A B=\theta$ radians, and let the time taken for Pat to travel from A to B by this route be T hours.
(i) Show that $T=\frac{1}{3}(4 \cos \theta+3 \theta)$.
(ii) The value of θ for which $\frac{d T}{d \theta}=0$ is of the form $\sin ^{-1} a$. Find a and hence find, to the nearest minute, the corresponding time for this value of θ.
(iii) If $\theta=0$, find, to the nearest minute, the time taken and interpret your answer.
(iv) If $\theta=\frac{\pi}{2}$, find, to the nearest minute, the time taken and interpret your answer.
(v) Hence, determine what strategy Pat should employ to minimise the time taken to travel from A to B.
(a) A total of five players are selected at random from four sporting teams. Each of the teams consists of ten players numbered 1 to 10 .
(i) What is the probability that of the five selected players, three are numbered ' 6 ' and two are numbered ' 8 '? Leave your answer as a fraction in lowest terms.
(ii) What is the probability that the five selected players contain at least four players from the same team? Leave your answer as a fraction in lowest terms.
(b) From point A, the bearings of B and C are 224° and 161° respectively. From point $T, 30 \mathrm{~km}$ due south of A, the bearings to B and C are 250° and 140° respectively.

Copy the diagram into your writing booklet.

(i) Show that the distance from B to C in kilometres is given by

$$
(B C)^{2}=900\left[\left(\frac{\sin 44^{\circ}}{\sin 26^{\circ}}\right)^{2}+\left(\frac{\sin 19^{\circ}}{\sin 21^{\circ}}\right)^{2}-\frac{2 \sin 44^{\circ} \sin 19^{\circ} \cos 110^{\circ}}{\sin 26^{\circ} \sin 21^{\circ}}\right]
$$

(ii) Hence or otherwise determine the time it will take to sail from B to C at an average speed of $10 \mathrm{~km} / \mathrm{h}$. Give your answer to the nearest minute.

Question 14 continues on page 9

(c) (i) Prove by mathematical induction that for all counting numbers n with $n \geq 3, \quad 3$

$$
\sum_{r=2}^{n-1}{ }^{r} C_{2}={ }^{n} C_{3} .
$$

(ii) Show that $\sum_{r=1}^{n}(1+x)^{r-1}=\sum_{r=1}^{n}{ }^{n} C_{r} x^{r-1}$.
(iii) Using the result from (ii) alone show once more that for $n \geq 3, \sum_{r=2}^{n-1} C_{2}={ }^{n} C_{3} . \quad \mathbf{2}$ (Do not use induction.)

End of paper

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\quad \ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\quad \frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\quad \frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\quad \frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\quad \sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Note $\ln x=\log _{e} x, \quad x>0$

2012 Year 12 Mathematics Extension 1 TRIAL SOLUTIONS

2012 Year 12 Mathematics Extension 1 TRIAL SOLUTIONS

Suggested Solution (s)
Question 13
a) ${ }^{12} C_{2} \times{ }^{25} C_{4}^{\sqrt{2}}=834900$

bi)

$$
\begin{aligned}
\alpha+\beta+\gamma & =-b / a \\
& =\frac{5}{2}
\end{aligned}
$$

ii)

$$
\begin{aligned}
\alpha_{\beta \gamma} & =-d / a \\
& =-40 \\
& =-20
\end{aligned}
$$

$$
\text { iII) } \begin{array}{r}
\alpha+(-\alpha)+\gamma=5 / 2 \\
\gamma=5 / 2 \\
\alpha(-\alpha) \gamma=-20 \\
\Rightarrow-\alpha^{2}=-8 u \operatorname{sing}(1) \\
\alpha^{2}=8-2
\end{array}
$$

Product of Recti

$$
\cdot \beta=-\alpha
$$ with γ the third root

Also $\alpha \beta+\alpha \gamma+\beta \gamma=\frac{K}{2} \& \beta=-\alpha$
$\Rightarrow-\alpha^{2}+\alpha \gamma$ in product pairs

$$
\Rightarrow-\alpha^{2}+\alpha \gamma-\alpha \gamma=k / 2
$$

or $k=-2 \alpha^{2}$
From (2) $\alpha^{2}=8$;

$$
\therefore K=-16^{\vee}
$$

Sum foots

$$
\Rightarrow \quad-\alpha^{2}=k / 2
$$

$$
\text { Ci) } \begin{aligned}
\angle A P B & =\pi / 2(\angle \text { in } a \\
-\cos \theta & =\frac{A P}{A B} \\
A P & =A B \cos \theta=4 \cos \theta \\
\text { arc length } & =r \theta \\
\text { arc PB B } & =O B \times 20 \\
& =2 \times 20 \\
& =40
\end{aligned}
$$

Time from A to $B=$ Time fur $A B+$ Time for $P B$ $=\frac{A P}{3}+\frac{P B}{4} \checkmark$

$$
=\frac{4 \cos \theta}{3}+\theta
$$

$$
=r_{3}(4 \cos 6+36)
$$

(11)

$$
\begin{aligned}
d T / d \theta= & 1 / 3 \\
& (-4 \sin 6+3) \\
& 1 / 3(-4 \sin 6+3)=0 \\
& \sin \theta=3 \\
& \text { So } a=\frac{3}{4}
\end{aligned}
$$

$T=\frac{1}{3}\left(4 \cos \left(\sin ^{-1} \frac{3}{4}\right)+3 \times\left(\sin ^{-1}\right)\right)$ as 8 is acute.
$=1$ how 44 minutes
(III)

$$
\begin{aligned}
T & =\frac{1}{3}(4 \omega s 0+3 \times 0) \\
& =1 \text { hour } 20 \text { minutes }
\end{aligned}
$$

it would take this ling to row directly to B
iv)

$$
\begin{aligned}
T & =1 / 3(4000 \pi / 2+3 \times \pi / 2) \\
& =1 \text { how } 34 \text { minutes }
\end{aligned}
$$

it would take this long to walk arandat the lake
V) Pat should raw directly accuse
the lake e to B

So $P(K) \Rightarrow P(k+1)$. As $P(3)$ is true we conclude that $P(n)$ is true fo all counting nos. $n \geq 3$ bey he POI.
(*) Using brute fore, ire., factorials:-

$$
\begin{aligned}
k_{c_{3}}+k_{c_{2}} & =\frac{k!(k-3)!}{3!}+\frac{k!}{2!(k-1)!} \\
& =\frac{k!(k-2)}{3!(x-2)!}+\frac{k!\times 3}{} \\
& =\frac{k![(x-2)+3)(k-2)!}{3!(k-2)!}=\frac{k+1)!}{3!(k-2)!}={ }^{k+1} c_{3} .
\end{aligned}
$$

