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Section I 
10 marks  

Attempt questions 1 – 10  

Allow about 15 minutes for this section 

 

Use the multiple-choice answer sheet for Questions 1-10.  

________________________________________________________________________________ 

 

1 Two dice are rolled and the sum of the numbers is written down. Find the probability of 

rolling a total less than 6. 

 

(A) 
1

4
   

 (B)     
5

36
  

 (C) 
5

12
   

 (D) 
5

18
 

 

2 What are the domain and range of 1 5
cos ?

2

x
y

−  
=  

 
 

  

(A) Domain:   2.5 2.5x− ≤ ≤       and      Range:    0 y π≤ ≤        

(B)    Domain:   
5

0
2

x
π

≤ ≤         and              Range 1 1y− ≤ ≤  

(C) Domain:   
5 5

2 2
x

π π
− ≤ ≤      and                 Range:    0 y π≤ ≤         

(D) Domain:   
2 2

5 5
x− ≤ ≤           and Range:    0 y π≤ ≤  

 

3 How many fourteen-letter arrangements of  LONDONOLYMPICS  are possible?  

 

(A)   
14!

12!
            

(B)   
14!

4!
               

(C)   
7!

2!3!
        

(D)   
14!

2! 2! 3!+ +
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4 What is the acute angle between the lines 2 1y x= −  and 3 6 0x y− + = ? 

(A) 18° 

(B) 45° 

(C) 63° 

(D) 82° 

 

 

 

 

5 At a dinner party, the host, hostess and their six guests sit at a round table. In how many 

ways can they be arranged if the host and hostess are separated? 

 

(A) 720 

(B) 1440 

(C) 3600 

(D) 5040 

 

  

  

 

6 If 
3

2

2 4
lim

4x H

x x

x→

+
= ∞

−
 what is a value for H? 

 

(A) H =  

(B) H = 4   

(C) H = 1 

(D) H = 0 

 

 

 

7   If tan
2

x
t =  which of the following is an expression for 

dx

dt
? 

 

(A) 
2

2

1 t+
 

(B) 21 t+  

(C) ( )21
1

2
t+  

(D) 
2

1

1 t+
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8    Which of the following is an expression for 
2

2
?

1

x
dx

x+



  

 

(A) 2log (1 )e x C+ +  

(B) 2
log 1e x C+ +  

(C) 
21 x C+ +  

(D) 
22 1 x C+ +  

 

  

  

9    Point A is moving on the curve 32y x=  in such a way that its x-coordinate is changing at a  

    constant rate of 0.5 units per second. What rate is the gradient changing when 1x = ? 

 

    (A)        0.5 s-1 

    (B)        2 s-1 

    (C)        6 s-1 

    (D)        12 s-1 

 

 

10   We can express sin x and cos x in terms of tan 
2

x
, for all values of x except……. 

 

 (A) 
3 5

... , , ...
4 4 4

x
π π π

=    

 (B)     
3 5

... , , ...
2 2 2

x
π π π

=   

 (C) ... ,3 ,5 ...x π π π=    

 (D) ...2 ,6 ,8 ...x π π π=  

 

  

  

End of Section I 
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Section II 
60 marks  

Attempt questions 11 – 14  

Allow about 1 hour 45 minutes for this section 

 

Answer each question in a separate writing booklet. Extra writing booklets are available. 

 

All necessary working should be shown in every question.  

________________________________________________________________________________ 

 

Question 11 (15 marks) Use a SEPARATE writing booklet Marks 

 

(a) Solve 
5

3
2

x

x
≥

−
.           3

  

 

(b) (i) Show that the function ( )2( ) log 1eg x x x= − +  has a zero between 0.7 and 0.9.    1

    

 

 (ii) Use the method of halving the interval to find an approximation to this zero   2 

  of ( ),g x correct to one decimal place.         

   

 

(c) Find the term independent of x in the expansion of 

12

3 1
4x

x

 
− 

 
.      2 

 

 

 

(d)  

 
 The diagram above shows the region bounded by the curve 2siny x= , the x-axis and   2 

 the line .
4

x
π

=  Find the exact volume of the solid generated when the shaded region  

 is rotated about the x-axis.   

 

 

Question 11 continues on page 5 
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Question 11 continued             Marks 

 

(e) Molten plastic at a temperature of 250º C, is poured into a mould to form a car part. After 

20 minutes the plastic has cooled to 150º C. If the temperature after t minutes, is T º C, and 

the surrounding air temperature is 30º C, then the rate of cooling is given by: 

  

( 30),
dT

k T
dt

= − −  where k is a constant. 

 

 

 

 (i) Show that 30 ,ktT Ae−= + where A is a constant, satisfies the equation.      1 

 

 

 (ii) Show that the value of A is 220º C.     1 

 

 

 (iii) Find the value of k to 2 decimal places.       1

        

 

 (iv) The plastic can be taken out of the mould when the temperature drops   2 

  below 80º C. How long after the plastic has been poured will the  

  temperature be reached? Give your answer to the nearest minute.         

 

 

 

 

 

 

End of Question 11 
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Question 12 (15 marks) Use a SEPARATE writing booklet    Marks 

 

(a) A mobile phone company has a success rate of 70% when signing up new customers who 

enter a particular store. If 10 new customers walk into the store: 

 

(i) Find the probability that 9 of these people sign up. Give your answer to the            1 

 nearest whole percentage.                                                                                                                       

  

(ii) What is the most likely number of customers to sign up?                                         1 

 

 

(b) The polynomial 3( )P x x ax b= + +  has ( )5x − as one of its factors and has  3 

a remainder of 60−  when divided by ( )5x +  . Find the values of a and b.  

 

(c) Use the substitution tanu x=  to evaluate 
2 23

0
tan secx x dx

π

 .               3 

 

 

(d) A particle moves in a straight line and its displacement x metres from the origin after t 

seconds is given by:  

 
2cos 3 , 0.x t t= >   

  

      (i) When is the particle first at 
3

?
4

x =         1 

 

    (ii) In what direction is the particle travelling when it is first at  
3

?
4

x =     2 

Give a reason for your answer.       

    

 

    (iii) Express the acceleration of the particle in terms of x.     2 

 

    (iv) Hence, show that the particle is undergoing simple harmonic motion.   1 

 

    (v) State the period of the motion.                   1
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Question 13 (15 marks) Use a SEPARATE writing booklet Marks 

 

(a) A Rotary Club has 12 females and 25 male members. The club is to choose a representative 

team consisting of 2 women and 4 men to send to an international conference. In how many 

ways can this representative team be chosen? Express your answer as an ordinary numeral. 2 

            

(b) The polynomial 3 2( ) 2 5 40P x x x kx= − + + has roots , and .α β γ  

(i)      Find the value of .α β γ+ +  1 

(ii)     Find the value of .αβγ  1 

(iii)    Two of the roots are equal in magnitude but opposite in sign.  2 

          Find the third root and hence find the value of k.  

 

(c)  

 

B 
O 

P 

A 
2 km 

θ 
2θ 

 

The diagram shows a circular lake, centre O, of radius 2 km with diameter AB.  Pat can row at 

3 km/h and can walk at 4 km/h and wishes to travel from A to B as quickly as possible.  Pat 

considers the strategy of rowing direct from A to a point P and then walking around the edge 

of the lake to B.  Let ∠ PAB = θ radians, and let the time taken for Pat to travel from A to B 

by this route be T hours. 

          (i)       Show that T = 
1

3
(4cosθ + 3θ).         2 

          (ii)     The value of θ  for which 0
dT

dθ
= is of the form

1sin a
− . Find a and hence    2 

       find, to the nearest minute, the corresponding time for this value of θ.    

 

          (iii)     If 0,θ = find, to the nearest minute, the time taken and interpret your answer.    2 

 

          (iv)     If ,
2

π
θ = find, to the nearest minute, the time taken and interpret your answer.   2  

  

           (v)     Hence, determine what strategy Pat should employ to minimise the time taken   1 

       to travel from A to B.             
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Question 14 (15 marks) Use a SEPARATE writing booklet Marks 

 

 

(a) A total of five players are selected at random from four sporting teams. Each of the teams 

consists of ten players numbered 1 to 10. 

 

(i) What is the probability that of the five selected players, three are numbered ‘6’  1 

and two are numbered ‘8’? Leave your answer as a fraction in lowest terms. 

        

 

    (ii) What is the probability that the five selected players contain at least four players  2 

from the same team? Leave your answer as a fraction in lowest terms.  

       

 

 

 

 

(b) From point A, the bearings of B and C are 224º and 161º respectively. From point T, 30 km 

due south of A, the bearings to B and C are 250º and 140º respectively. 

 

 
 

 

Copy the diagram into your writing booklet. 

 

 

(i) Show that the distance from B to C in kilometres is given by   3 

 

( )
2 2

2 sin 44 sin19 2sin 44 sin19 cos110
900

sin 26 sin 21 sin 26 sin 21
BC

 ° ° ° ° °   
= + −    

° ° ° °     
. 

 

 

(ii) Hence or otherwise determine the time it will take to sail from B to C at an  2 

average speed of 10 km/h. Give your answer to the nearest minute.   

      

Question 14 continues on page 9 
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Question 14 continued              Marks 

 

 

(c) (i) Prove by mathematical induction that for all counting numbers n with 3,n ≥     3 
1

2 3

2

.
n

r n

r

C C
−

=

=                

 

(ii) Show that ( )
1 1

1 1

1 .
n n

r n r

r

r r

x C x
− −

= =

+ =           2 

(iii) Using the result from (ii) alone show once more that for 3,n ≥  
1

2 3

2

.
n

r n

r

C C
−

=

=    2 

      (Do not use induction.) 

 

 

 

 

 

 

 

 

End of paper 
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