

2012 TRIAL Examination

Number: _____

Teacher:	

Year 12 Extension 1 Mathematics

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using blue or black pen only
- Board approved calculators may be used
- A table of standard integrals is provided at the back of the paper
- Show all necessary working in questions 11-14

Teachers: Mr Bradford Mr Harnwell Mr Sedgman Miss Yamaner*

Section I ~ Pages 1-3

- 10 marks
- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II ~ Pages 4-9

- 60 marks
- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

Write your Board of Studies Student Number on the front cover of each answer booklet

This paper MUST NOT be removed from the examination room.

BLANK PAGE

Section I

10 marks Attempt questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1 Two dice are rolled and the sum of the numbers is written down. Find the probability of rolling a total less than 6.

(A)
$$\frac{1}{4}$$

(B) $\frac{5}{36}$
(C) $\frac{5}{12}$
(D) $\frac{5}{18}$

2 What are the domain and range of
$$y = \cos^{-1}\left(\frac{5x}{2}\right)$$
?

- (A) Domain: $-2.5 \le x \le 2.5$ and Range: $0 \le y \le \pi$ 5π
- (B) Domain: $0 \le x \le \frac{5\pi}{2}$ and Range $-1 \le y \le 1$ (C) Domain: $-\frac{5\pi}{2} \le x \le \frac{5\pi}{2}$ and Range: $0 \le y \le \pi$ (D) Domain: $-\frac{2}{5} \le x \le \frac{2}{5}$ and Range: $0 \le y \le \pi$

3 How many fourteen-letter arrangements of LONDONOLYMPICS are possible?

(A) $\frac{14!}{12!}$ (B) $\frac{14!}{4!}$ (C) $\frac{7!}{2!3!}$ (D) $\frac{14!}{2!+2!+3!}$ 4 What is the acute angle between the lines y = 2x - 1 and x - 3y + 6 = 0?

- (A) 18°
- (B) 45°
- (C) 63°
- (D) 82°

5 At a dinner party, the host, hostess and their six guests sit at a round table. In how many ways can they be arranged if the host and hostess are separated?

- (A) 720
- (B) 1440
- (C) 3600
- (D) 5040

6 If
$$\lim_{x \to H} \frac{2x^3 + 4x}{x^2 - 4} = \infty$$
 what is a value for *H*?

- (A) $H = \infty$
- (B) H = 4
- (C) H = 1
- (D) H = 0

7 If $t = \tan \frac{x}{2}$ which of the following is an expression for $\frac{dx}{dt}$?

(A) $\frac{2}{1+t^2}$ (B) $1+t^2$ (C) $\frac{1}{2}(1+t^2)$ (D) $\frac{1}{1+t^2}$ Which of the following is an expression for $\int \frac{2x}{\sqrt{1+x^2}} dx$?

(A) $\log_e(1+x^2) + C$ (B) $\log_e \sqrt{1+x^2} + C$

(C)
$$\sqrt{1+x^2}+C$$

(D)
$$2\sqrt{1+x^2} + C$$

9

8

Point *A* is moving on the curve $y = 2x^3$ in such a way that its *x*-coordinate is changing at a constant rate of 0.5 units per second. What rate is the gradient changing when x = 1?

(A) 0.5 s^{-1} (B) 2 s^{-1} (C) 6 s^{-1} (D) 12 s^{-1}

10 We can express sin x and cos x in terms of tan $\frac{x}{2}$, for all values of x except.....

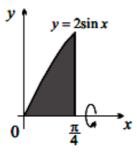
- (A) $x = \dots \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4} \dots$
- (B) $x = \dots \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2} \dots$
- (C) $x = ...\pi, 3\pi, 5\pi...$
- (D) $x = ... 2\pi, 6\pi, 8\pi...$

End of Section I

Section II

60 marks Attempt questions 11 – 14 Allow about 1 hour 45 minutes for this section

Answer each question in a separate writing booklet. Extra writing booklets are available.


All necessary working should be shown in every question.

Question 11 (15 marks) Use a SEPARATE writing bookletMarks

(a) Solve
$$\frac{5x}{x-2} \ge 3$$
. 3

- (b) (i) Show that the function $g(x) = x^2 \log_e(x+1)$ has a zero between 0.7 and 0.9. 1
 - (ii) Use the method of halving the interval to find an approximation to this zero f(x), correct to one decimal place.
- (c) Find the term independent of x in the expansion of $\left(4x^3 \frac{1}{x}\right)^{12}$. 2

(d)

The diagram above shows the region bounded by the curve $y = 2 \sin x$, the *x*-axis and 2 the line $x = \frac{\pi}{4}$. Find the exact volume of the solid generated when the shaded region is rotated about the *x*-axis.

Question 11 continues on page 5

Question 11 continued

(e) Molten plastic at a temperature of 250° C, is poured into a mould to form a car part. After 20 minutes the plastic has cooled to 150° C. If the temperature after *t* minutes, is T° C, and the surrounding air temperature is 30° C, then the rate of cooling is given by:

$$\frac{dT}{dt} = -k(T-30)$$
, where k is a constant.

- (i) Show that $T = 30 + Ae^{-kt}$, where A is a constant, satisfies the equation. 1
- (ii) Show that the value of A is 220° C. 1
- (iii) Find the value of k to 2 decimal places. 1
- (iv) The plastic can be taken out of the mould when the temperature drops 2
 below 80° C. How long after the plastic has been poured will the temperature be reached? Give your answer to the nearest minute.

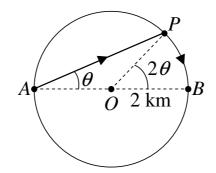
End of Question 11

Questio	on 12 (15 marks) Use a SEPARATE writing booklet	Marks
(a)	A mobile phone company has a success rate of 70% when signing up new custome enter a particular store. If 10 new customers walk into the store:	ers who
	(i) Find the probability that 9 of these people sign up. Give your answer to the nearest whole percentage.	1
	(ii) What is the most likely number of customers to sign up?	1
(b)	The polynomial $P(x) = x^3 + ax + b$ has $(x-5)$ as one of its factors and has a remainder of -60 when divided by $(x+5)$. Find the values of <i>a</i> and <i>b</i> .	3
(c)	Use the substitution $u = \tan x$ to evaluate $\int_0^{\frac{\pi}{3}} \tan^2 x \sec^2 x dx$.	3

(d) A particle moves in a straight line and its displacement x metres from the origin after t seconds is given by:

$$x = \cos^2 3t, t > 0.$$

(i) When is the particle first at
$$x = \frac{3}{4}$$
?


(ii) In what direction is the particle travelling when it is first at $x = \frac{3}{4}$? 2 Give a reason for your answer.

(iii) Express the acceleration of the particle in terms of *x*.
(iv) Hence, show that the particle is undergoing simple harmonic motion.
(v) State the period of the motion.
1

Question 13 (15 marks) Use a SEPARATE writing booklet

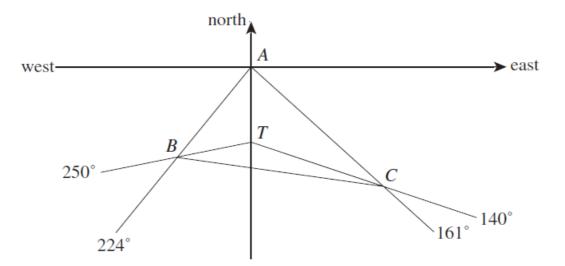
- (a) A Rotary Club has 12 females and 25 male members. The club is to choose a representative team consisting of 2 women and 4 men to send to an international conference. In how many ways can this representative team be chosen? Express your answer as an ordinary numeral. **2**
- (b) The polynomial $P(x) = 2x^3 5x^2 + kx + 40$ has roots α, β and γ .
 - (i) Find the value of $\alpha + \beta + \gamma$. 1 (ii) Find the value of $\alpha\beta\gamma$. 1
 - (iii) Two of the roots are equal in magnitude but opposite in sign.2Find the third root and hence find the value of *k*.

(c)

The diagram shows a circular lake, centre O, of radius 2 km with diameter AB. Pat can row at 3 km/h and can walk at 4 km/h and wishes to travel from A to B as quickly as possible. Pat considers the strategy of rowing direct from A to a point P and then walking around the edge of the lake to B. Let $\angle PAB = \theta$ radians, and let the time taken for Pat to travel from A to B by this route be T hours.

(i) Show that
$$T = \frac{1}{3}(4\cos\theta + 3\theta)$$
. 2

(ii) The value of
$$\theta$$
 for which $\frac{dT}{d\theta} = 0$ is of the form $\sin^{-1} a$. Find *a* and hence 2 find, *to the nearest minute*, the corresponding time for this value of θ .


(iii) If
$$\theta = 0$$
, find, to the nearest minute, the time taken and interpret your answer. 2

(iv) If
$$\theta = \frac{\pi}{2}$$
, find, to the nearest minute, the time taken and interpret your answer. 2

(v) Hence, determine what strategy Pat should employ to minimise the time taken 1 to travel from *A* to *B*.

Marks

- (a) A total of five players are selected at random from four sporting teams. Each of the teams consists of ten players numbered 1 to 10.
 - (i) What is the probability that of the five selected players, three are numbered '6' **1** and two are numbered '8'? *Leave your answer as a fraction in lowest terms*.
 - (ii) What is the probability that the five selected players contain at least four players 2 from the same team? *Leave your answer as a fraction in lowest terms.*
- (b) From point A, the bearings of B and C are 224° and 161° respectively. From point T, 30 km due south of A, the bearings to B and C are 250° and 140° respectively.

<u>Copy</u> the diagram into your writing booklet.

(i) Show that the distance from *B* to *C* in kilometres is given by

$$(BC)^{2} = 900 \left[\left(\frac{\sin 44^{\circ}}{\sin 26^{\circ}} \right)^{2} + \left(\frac{\sin 19^{\circ}}{\sin 21^{\circ}} \right)^{2} - \frac{2\sin 44^{\circ} \sin 19^{\circ} \cos 110^{\circ}}{\sin 26^{\circ} \sin 21^{\circ}} \right].$$

(ii) Hence or otherwise determine the time it will take to sail from *B* to *C* at an average speed of 10 km/h. *Give your answer to the nearest minute.*

Question 14 continues on page 9

Marks

2

Question 14 continued

(c) (i) Prove by mathematical induction that for all counting numbers *n* with $n \ge 3$, **3** $\sum_{r=2}^{n-1} {}^{r}C_{2} = {}^{n}C_{3}.$

(ii) Show that
$$\sum_{r=1}^{n} (1+x)^{r-1} = \sum_{r=1}^{n} {}^{n}C_{r}x^{r-1}$$
. 2

(iii) Using the result from (ii) alone show once more that for $n \ge 3$, $\sum_{r=2}^{n-1} {}^{r}C_{2} = {}^{n}C_{3}$. **2** (*Do not use induction*.)

End of paper

STANDARD INTEGRALS

 $\int x^n \, dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; x \neq 0, \text{ if } n < 0$ $\int \frac{1}{x} dx = \ln x , \qquad x > 0$ $\int e^{ax} dx = \frac{1}{a} e^{ax}, \qquad a \neq 0$ $\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$ $\int \sin ax \, dx \qquad = \qquad -\frac{1}{a} \cos ax, \quad a \neq 0$ $\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$ $\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$ $\int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$ $\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \ -a < x < a$ $\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$ $\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$

Note $\ln x = \log_e x$, x > 0

1 of 6

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
MULTIPLE CHOICE Q1-10 QID Q5C Q9C QID Q6A Q10C	(II c (nout) b	$V = T \int_{0}^{T_{4}} 4 \sin^{2} x dx$	
Q3 B Q7 A Q4 B Q8 D <u>Question II</u> G) $5x(2-2) = 5(2-2)^{2}$ $x = 5x^{2} - 102 = 7 = 5(2^{2} - 42 + 4)$ $5x^{2} - 102 = 7 = 5x^{2} - 122 + 12$ $2x^{2} + 22 - 12 = 12$ $x^{2} + 2 - 12 = 12$ $x^{2} + 2 - 12 = 12$ $x^{2} + 2 - 12 = 12$		$= 4\pi \int_{0}^{T_{4}} (\frac{1}{2} - \frac{1}{4} \cos 2x) dx$ $= 4\pi \left[\frac{1}{2} - \frac{1}{4} \sin 2x \right]_{0}^{T_{4}} /$ $= 4\pi \left[\left(\frac{1}{2} - \frac{1}{4} \sin 2x \right)_{0}^{-1} - 0 \right]$ $= 4\pi^{2} - 4\pi - 4$	fur concet integration .
b) $g(x) = x^2 - \log e(x+1)$ $g(0.7) = (0.7)^2 - \log e(0.7+1)$ = -0.04 $g(0.9) = (0.9)^2 - \log e(0.9+1)$ = 0.168 Since sign change :. 2000	estublishing sign change. Den't cledut	$= \sum_{r=0}^{12} C_r + \frac{12}{2} \frac{363}{2} \frac{363}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \left(-1\right)^r (\overline{2}^r)$ $= 36-3r-r=0$ $= 36-3r-r=0$ $r=q$ $r=q$ $r=q$ $\frac{12}{2} \frac{1}{2} \frac{1}{2}$	F.T marks coverded of c is incomed
9 is continuous. 9 is continuous. 9(0.3) = 0.32 - loge (0.8+1) 0.05221 >0 9(0.7) <0	mark if du- cussion my continuity mitted for some progress.	$AT_{dt} = -kAe^{-kt}$ must = -k(T-30)	shuu ot shau
200 between 0.7 and 0.8 9(0.75) = 0.752 - luge (0.75+1) = 0.00 230870 2000 between 0.75 and 0.7	(Sign diagram also gains mork fir working)	$\frac{111}{150} = 30 + 220 e^{-20k}$	

フ

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Question12		di) (15 ² 3t = 34	
2i) P(54(1255)=0.7		(1) 3+=生人年	
P(not success) = 0.3		= = 43/2	
$^{10}Cq (0.7)^{9} (0.5)' = 12^{\circ} lo \vee$		3t = 1%, 51%	
ii) nxp=10x07 = 7 people		t - 1/10, 51/18	
e) P(5)=0		i- at t= The seconds	
125+5a+b=0 - O	meaningfu	dii) v= dz = 2 cos 3t (-3 sin:	St) Evidence of
P(-3) = -60	V Progless	ב טוב דב בח א- ב	+ colculation of
-125 - 5a+10=-60-6		100 to to - 2	not V(18) required
		$= -3 \times 306t$	
Solve simultaneously () + (2)		(co sin 26 = 2	
5a + 6+ 125 =0		$at t = \frac{\pi}{18} dx_{dt} = -3 \sin 1$	5
- 5a+ b- 65 =0 +		40	,
26+60 = 0		since VCO the particle is	V rece
b = -30 V		travelling to the left towards the origin (of in the negative direct	. Vans
:. a - 19 r		diii) diz = -3 sin 6t	Equivalently
		d*2 (12 0 - 3 (03 6 t x 6	$Z = \frac{1}{(1+(-6))} + $
-) let u= tan x	Allow for	d* 2/dx = - 3 cus 6t x6 = - 18 cus 6t	=-18 co 3++185in
$\frac{du}{dx} = \sec^2 x$	$\int_{1}^{1/2} u du = \begin{bmatrix} \frac{3}{4} \\ \frac{1}{3} \end{bmatrix}$	$= -18(2\omega s^{2} 3t -$	$1) = \frac{1}{2} = \frac{1}{8} (m^{3} t - s) r^{1}$
du = sec ² x dx	ol L'O		
t 2=0 u=0	$= \left[\frac{4a^3\chi}{3} \right]^{\frac{3}{2}}$	= -18(2n-1)v	= -18(24-1
notis usis	= 13	div) a=-18(2x-1)	
	· · · ·	$= -36(x_{k})$	Equivalently
Juz du	upon re- instating the	$=-6^{2}(x-k)$	2=-n(2-2
	original limits	which is in the form of 2 = -n2 (2-10)
	Preamble :	: It is undergane S.H.M. with	centre
6-2-10	Let a, B beth	of oscillation at x=1/2	
(<u>())</u> -0	change of limits	dv) Period = 2I	
	of variable.	- 25	
- N3 - r		= The seconds r	<u> </u>

2 of 6

X

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Question 13 a) ${}^{12}C_2 \times {}^{25}C_4 = 834 \ 900$ b) $\alpha + \beta + \gamma = -b_{\alpha}$ = 5/2 ii) $\alpha + \beta + \gamma = -d_{\alpha}$ = -40/2 = -40/2 = -20 iii) $\alpha + (-\alpha) + \gamma = 5/2$ $\chi = 5/2$ $\chi = 5/2$ $\chi = 5/2$ $\chi = 5/2$ $\chi = -20$ $\alpha (-\alpha) \gamma = -20$ $\Rightarrow -\alpha^2 = -8 \ using (1)$ $\alpha^2 = 8 - (2)$ HISO $\alpha\beta + \alpha\gamma + \beta\gamma = \frac{K}{2} \ 8 \ \beta = -\alpha$ $\Rightarrow -\alpha^2 + \alpha\gamma - \alpha\gamma = \frac{K}{2}$	Sum of roots Product of Roots ·B = - ~ with y the third root	Ci) $\angle APB = \frac{T}{4} (\angle in a \text{ service})$ $\therefore \omega = 6 = \frac{AP}{AB}$ $AP = AB \omega = 6 = 4 \omega 0 \text{sor}$ arc length = rB $arc PB = 0B \times 2D$ $= 2 \times 20$ = 40 Time from A to B = Time for AB + Tim $= \frac{AP}{3} + \frac{PB}{4} \times$ $= \frac{4 \cos 6}{3} + 6$ $= \frac{1}{3} (4 \cos 6 + 36)$ (i) $dT_{d0} = \frac{1}{3} (-4 \sin 6 + 3)$ $= \frac{1}{3} (4 \cos 6 + 3) = 0$ $\sin 8 = \frac{3}{4}$ $T = \frac{1}{3} (4 \cos (\sin^{-3} \frac{3}{4}) + 3 \times (\sin^{-3} \frac{3}{4})$ = 1 how 44 minutes (ii) $T = \frac{1}{3} (4 \cos 6 + 3 \times 0)$	$f_{r} = \frac{90}{200}$ $f_{r} = \frac{90}{200}$ $f_{r} = \frac{100}{200}$
	in product pairs	=1 hour 44 minutes	und the lake

3 of 6

ai)

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
40 C3 27417 aii) "At least 4 players' = 4 or 5 players 5 players from 1 tran selected 10 C5 usu But there are 4 teams, hence 5 players from the same team can be selected $+C_1 \times 10 C_5 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 1$	Unsimplified: 24 658,008 Nopenalty if fraction unsimplifical	Using the cosine rule in ΔBTC $(BC)^{2} = (BT)^{4} + (TC)^{2} - 2(BT)(TC)w$ $= 30^{2} (\frac{BIN 44}{BIN 26})^{2} + 30^{4} (\frac{SIN 14}{SIN 26})^{2} + 30^{4} (\frac{SIN 14}{SIN 26})^{2} + \frac{30 SIN 44^{4}}{SIN 26^{4}} \times \frac{30 SIN}{SIN 26^{4}} \times 30 SI$	q° 2 1 q' x (15) 1 q' x

4 of 6

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Qiff Let P(n) be the proposition: $\sum_{r=2}^{n-1} c_2 = nc_3, n \ge 3.$ Then LHS _{P(3)} = $\sum_{r=2}^{3-1} c_2$ = $\sum_{r=2}^{2} c_2$ = 1 = $3c_3$ = RHS _{P(3)} . So P(3) is true. Assume the proposition is true for some arbitrary counting no. K (K \ge 3), re., essence := $\sum_{r=2}^{K-1} c_2 = Kc_3.$ Our aim is to r=2 this assumption to show that P(KH) is necessarily true. LHS _{P(KH)} = $\sum_{r=2}^{\infty} c_2$ $(= (\sum_{r=2}^{K-1} c_2) + Kc_2$ $K = Kc_3 + Kc_3$ $K = Kc_3 + Kc_3 + Kc_3$ $K = Kc_3 + Kc_3 + K$	Partitioning Aummation Equivalatly,	C ii) Firstly, $\sum_{r=1}^{n} r_{c} x^{r-1}$ = $n_{c_{1}} + n_{c_{2}} x + n_{c_{3}} x^{2} + \dots + n_{c_{n}} x^{n-1}$. $\sum_{r=1}^{n} (1+x)^{r-1}$ = $(1+x)^{n} + (1+x) + (1+x)^{2} + \dots + (1+x)^{n-1}$ = $\frac{1}{x} (0+x)^{n} - 1$ = $\frac{1}{x} [(1+x)^{n} - 1]$ = $\frac{1}{x} [n_{c_{1}} + n_{c_{2}} x + n_{c_{3}} x^{2} + \dots + n_{c_{n}} x^{n} - 1]$ Binomial Expansion of $(1+x)^{n}$ = $\frac{1}{x} [n_{c_{1}} x + n_{c_{2}} x^{2} + \dots + n_{c_{n}} x^{n-1}]$ = $n_{c_{1}} + n_{c_{2}} x + \dots + n_{c_{n}} x^{n-1}]$ = $n_{c_{1}} + n_{c_{2}} x + \dots + n_{c_{n}} x^{n-1}]$ = $n_{c_{1}} + n_{c_{2}} x + \dots + n_{c_{n}} x^{n-1}]$ = $n_{c_{1}} + n_{c_{2}} x + \dots + n_{c_{n}} x^{n-1}]$ = $n_{c_{1}} + n_{c_{2}} x + \dots + n_{c_{n}} x^{n-1}]$ = $n_{c_{1}} + n_{c_{2}} x + \dots + n_{c_{n}} x^{n-1}]$ = $n_{c_{1}} + n_{c_{2}} x + \dots + n_{c_{n}} x^{n-1}]$ = $n_{c_{1}} + n_{c_{2}} x + \dots + n_{c_{n}} x^{n-1}]$ = $n_{c_{1}} + n_{c_{2}} x + \dots + n_{c_{n}} x^{n-1}]$ = $n_{c_{1}} + n_{c_{2}} x + \dots + n_{c_{n}} x^{n-1}]$ = $n_{c_{1}} + n_{c_{2}} x + \dots + n_{c_{n}} x^{n-1}]$ = $n_{c_{1}} + n_{c_{2}} x + \dots + n_{c_{n}} x^{n-1}]$ = $n_{c_{1}} + (1+x)^{n} + (1+x)^{$	Geometric Services with n Herms. $h = \frac{q(r-1)}{r-1}$ $n_c = 1$ 1/2 for meaningful 1/2 for meaningful 1/2 for meaningful 1/2 for meaningful 1/2 for meaningful 1/2 for meaningful 1/2 for meaningful 1/2 for 1/2
progless = RHSp(K+1).	Property for Binomial Coff		algebraic extraction
So P(K) => P(K+1). As P(3) is true we conclude that P(n) is to to all counting nor. n 23 by the	i e i	$k_{e_3} + k_{c_2} = \frac{k!}{3!(k-2)!} + \frac{k!}{2!(k-2)!}$ $= \frac{k!(k-2)!}{3!(k-2)!} + \frac{k!\times3}{3!(k-2)!}$ $= \frac{k![(k-2)!+3]}{3!(k-2)!} = \frac{(k+1)!}{3!(k-2)!}$	$\frac{1}{(-2)!} = k^{H_1} c_2$

696