

Number:	

Teacher:

2013 Trial Higher School Certificate Examination

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using blue or black pen only Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-14, show relevant mathematical reasoning and/or calculations

Total marks – 70

Section I: Pages 1-3

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II: Pages 4-8

60 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

Teachers: Mr Bradford Mr Johansen* Mr Mulray Mr Vuletich

Write your Board of Studies Student Number and your teacher's name on the front cover of each writing booklet

This paper MUST NOT be removed from the examination room

Number of Students in Course: 74

BLANK PAGE

Section I

10 marks Attempt questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

Which expression is a correct factorisation of $x^3 - 27$? 1 (A) $(x-3)(x^2-3x+9)$ (B) $(x-3)(x^2-6x+9)$ (C) $(x-3)(x^2+3x+9)$ (D) $(x-3)(x^2+6x+9)$ 2 From six girls and four boys, a committee of 3 girls and 2 boys is to be chosen. How many different committees can be formed? (A) 26 (B) 120 (C) 252 (D) 1440 The term independent of x in the expansion of $\left(x + \frac{2}{x}\right)^6$ is: 3 (A) 160 (B) 80 (C) 40 (D) 20 Consider the function $f(x) = \frac{2x}{x+1}$ and its inverse function $f^{-1}(x)$. 4 Evaluate $f^{-1}(3)$. (A) -3 (B) $\frac{2}{3}$ (C) $\frac{3}{2}$ (D) 3

The solution to $2\sin^2 \theta - \sin \theta = 0$ for $0 \le \theta \le \pi$ is:

(A)
$$\theta = 0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi$$

(B) $\theta = 0, \frac{\pi}{6}, \frac{5\pi}{6}, \pi$
(C) $\theta = \frac{\pi}{3} \text{ or } \frac{2\pi}{3}$
(D) $\theta = \frac{\pi}{6} or \frac{5\pi}{6}$

6

5

An object is projected with a velocity of 30 ms⁻¹ at an angle of $\tan^{-1}\left(\frac{3}{4}\right)$ to the horizontal.

What is the initial vertical component of its velocity?

- (A) 18 ms⁻¹
- (B) 50 ms^{-1}
- (C) $30 \tan\left(\frac{3}{4}\right) \text{ms}^{-1}$ (D) $30 \sin\left(\frac{3}{4}\right) \text{ms}^{-1}$

The integral of $\cos^2 2x$ is ?

(A)
$$\frac{\cos^{3} 2x}{3} + C$$

(B)
$$\left(\frac{\cos 2x}{6}\right)^{3} + C$$

(C)
$$\frac{x}{2} + \frac{\sin 4x}{8} + C$$

(D)
$$\frac{x}{2} + \frac{\sin 2x}{4} + C$$

Which diagram best represents $P(x) = (x-a)^2 (b^2 - x^2)$, where a > b?

9 Which of the following is the general solution of $2\sin^2\left(6t + \frac{\pi}{4}\right) = 1$?

- (A) $t = \frac{n\pi}{3} \frac{\pi}{6}$ and $t = \frac{n\pi}{3} + \frac{\pi}{12}$, where *n* is an integer.
- (B) $t = \frac{n\pi}{12} \frac{\pi}{24}$, where *n* is an integer. (C) $t = \frac{n\pi}{3}$ and $t = \frac{n\pi}{3} + \frac{\pi}{12}$, where *n* is an integer.

(D)
$$t = \frac{n\pi}{12}$$
, where *n* is an integer.

10 The equation of the normal to the parabola $x^2 = 4ay$ at the variable point $P(2ap, ap^2)$ is given by $x + py = 2ap + ap^3$.

How many different values of p are there such that the normal passes through the focus of the parabola?

(A) 0

8

- **(B)** 1
- (C) 2
- (D) 3

End of Section I

Section II

60 marks Attempt Questions 11 – 14 Allow about 1 hour and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

(a) Solve the equation
$$\frac{1}{x-3} < 3$$
. 3

(b) Evaluate
$$\int_{0}^{3} \frac{dx}{\sqrt{9-x^2}}$$
, giving your answer in exact form. 2

(c) Differentiate with respect to x:

(i)
$$y = \tan^{-1} 2x$$
 1

(ii)
$$y = \sec^4 x$$
 2

(d) Find, correct to the nearest degree, the acute angle between the lines y = 3 2 and $y = -\frac{5}{3}x + 2$.

(e) Let
$$\alpha, \beta$$
 and γ be the roots of $2x^3 - x^2 + 3x - 2 = 0$. Find the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$. 2

(f) Use the substitution
$$u = 1 + \tan x$$
 to evaluate $\int_{0}^{\frac{\pi}{4}} \frac{\sec^2 x}{\sqrt{1 + \tan x}} dx$. 3

Leave your answer in exact form.

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) (i) By considering $f(x) = x - 3\sin x$, show that the curves y = x and $y = 3\sin x$ meet at a point *P* whose *x*-coordinate is between x = 2 and x = 3.

1

2

- (ii) Use one application of Newton's method, starting at x = 2, to find an approximation of the *x*-coordinate of *P*. Give your answer correct to two decimal places.
- (b) In the diagram, *ABCE* is a cyclic quadrilateral such that *AO* is parallel to *BC*. *O* is the centre of the circle and $\angle ABE = \angle OBC = 2x^\circ$.

Copy or trace the diagram into your writing booklet.

- (i) Prove that $\angle AEB = x^\circ$. 2
- (ii) Prove that $\angle BCE = 3x^\circ$. 2

Question 12 continues on page 6

(c) Melissa takes a bottle of milk from the refrigerator for baby Henry. To heat the bottle, Melissa puts it in a saucepan of continuously boiling water. Let $y^{\circ}C$ be the temperature of the milk time *t* minutes after the baby's bottle is placed

in the boiling water. The temperature of the milk increases such that $\frac{dy}{dt} = a(100 - y)$ where *a* is a positive constant. The milk's temperature when the bottle is placed into the boiling water is 5° C.

- (i) Verify that y = 100 95e^{-at} satisfies the differential equation.
 (ii) After two minutes, the temperature of the milk is measured to be 18° C.
 2 Find the exact value of a.
 (iii) Henry can be given the bottle safely when the temperature of the milk is more than 39° C. What is the minimum length of time that Melissa can leave the bottle in boiling water before it can be given to the baby safely? Answer correct to the nearest minute.
- (d) Use mathematical induction to prove that for integers $n \ge 1$,

$$1 \times 3 + 2 \times 4 + 3 \times 5 + \dots + n(n+2) = \frac{n}{6}(n+1)(2n+7).$$

3

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) Consider the letters of the word MILLER.

(i)	How many arrangements of these letters are possible if the letters are	1
	arranged in a straight line?	
(ii)	What is the probability that the L's will be separated when the letters are	2
	arranged in a straight line?	
(iii)	If the letters are arranged in a circle, how many arrangements are possible?	1

- (b) The probability of snow falling in the Snowy Mountains on any one of the thirty-one 2 days in August is 0.2
 Find the probability that August has exactly 10 days in which snow falls.
 Give your answer as a percentage, correct to the nearest whole per cent.
- (c) A particle moves along a straight line such that its distance from the origin at *t* seconds is *x* metres and its velocity is *v*.

(i) Prove that
$$\frac{d^2x}{dt^2} = \frac{d}{dx} \left(\frac{1}{2}v^2\right)$$
. 2

(ii) If the acceleration satisfies
$$\frac{d^2x}{dt^2} = -4\left(x + \frac{16}{x^3}\right)$$
, and if the particle is **3**

initially at rest when x = 2, show that

$$v^2 = 4\left(\frac{16-x^4}{x^2}\right).$$

(d) Assume that tides rise and fall in Simple Harmonic Motion. A ship needs 11 metres
4 of metres of water to pass down a channel safely. At low tide, the channel is 8 metres
deep and at high tide 12 metres deep. Low tide is at 10.00 am and high tide is at 4.00 pm.

Find the first time after 10.00 am at which the ship can safely proceed through the channel.

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) The coefficient of x^k in $(1+x)^n$, where *n* is a positive integer, is denoted by nC_k . **3** Show that

$${}^{n}C_{0} + 2{}^{n}C_{1} + 3{}^{n}C_{2} + \dots + (n+1){}^{n}C_{n} = (n+2)2^{n-1}.$$

(b) Let
$$g(x) = e^x + \frac{1}{e^x}$$
 for all real values of x and let $f(x) = e^x + \frac{1}{e^x}$ for $x \le 0$

- (i) Sketch the graph y = g(x) and explain why g(x) does not have an 2 inverse function.
- (ii) On a separate diagram, sketch the graph of the inverse function $y = f^{-1}(x)$. 1

3

2

(iii) Find an expression for
$$y = f^{-1}(x)$$
.

(c) A projectile is fired from the origin *O* with velocity *V* and with angle of elevation θ , where $\theta \neq \frac{\pi}{2}$. You may assume that $x = Vt\cos\theta$ and $y = -\frac{1}{2}\alpha t^2 + Vt\sin\theta$

$$x = vt\cos\theta$$
 and $y = -\frac{1}{2}gt + vt\sin\theta$,

where x and y are the horizontal and vertical displacements of the projectile in metres from O at time t seconds after firing.

(i) Show that the equation of flight of the projectile can be written as
$$y = x \tan \theta - \frac{1}{4h} x^2 (1 + \tan^2 \theta)$$
, where $\frac{V^2}{2g} = h$.

(ii) Show that the point (X, Y), where $X \neq 0$, can be hit by firing at two different angles θ_1 and θ_2 provided

$$X^2 < 4h(h-Y).$$

(iii) Show that no point **above** the *x* axis can be hit by firing at two different **2**
angles
$$\theta_1$$
 and θ_2 , satisfying $\theta_1 < \frac{\pi}{4}$ and $\theta_2 < \frac{\pi}{4}$.

End of paper

STANDARD INTEGRALS

$\int x^n \ dx$	=	$\frac{1}{n+1}x^{n+1},$	$n \neq -1; x \neq 0$, if $n < 0$
$\int \frac{1}{x} dx$	=	$\ln x$,	<i>x</i> > 0
$\int e^{ax} dx$	=	$\frac{1}{a}e^{ax},$	$a \neq 0$
$\int \cos ax \ dx$	=	$\frac{1}{a}\sin ax$,	$a \neq 0$
$\int \sin ax \ dx$	=	$-\frac{1}{a}\cos ax$,	$a \neq 0$
$\int \sec^2 ax dx$	=	$\frac{1}{a} \tan ax$,	$a \neq 0$
$\int \sec ax \tan ax \ dx$	x =	$\frac{1}{a} \sec ax$,	$a \neq 0$
$\int \frac{1}{a^2 + x^2} dx$	=	$\frac{1}{a}\tan^{-1}\frac{x}{a},$	$a \neq 0$
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$	=	$\sin^{-1}\frac{x}{a},$	$a > 0, \ -a < x < a$
$\int \frac{1}{\sqrt{x^2 - a^2}} dx$	=	$\ln\left(x+\sqrt{x^2}\right)$	$\overline{-a^2}$), $x > a > 0$
$\int \frac{1}{\sqrt{x^2 + a^2}} dx$	=	$\ln\left(x+\sqrt{x^2}\right)$	$\overline{+a^2}$)

Note $\ln x = \log_e x, x > 0$

 $\begin{array}{ccc} \text{MC} \rightarrow \text{Self} & \text{GI} \rightarrow \text{AF} & \text{G3} \rightarrow \text{IB} \\ \text{G2} \rightarrow \text{IM} & \text{G4} \rightarrow \text{HV} \end{array}$

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments	
Section I (Mulliple Choice) 1. $x^{3}-3^{3} = (x-3)(x^{2}+3x+q)$	> C /	$\frac{1}{4} = \frac{18}{18} = \frac{1}{18} $	> A /	
2. $C_3 \times 4C_2 = 120$	> B /	7. $\cos^2 \lambda n = \frac{1}{\lambda} + \frac{1}{\lambda} \cos 4x$		
$3 \cdot T_{k+1} = 6C_k x^{6-k} \left(\frac{2}{n}\right)^k = 6C_k x^{k-k} (-2k)^{k-2k}$		$\int \frac{1}{2} t \frac{1}{2} \cos 4x dx = \frac{3}{2} \frac{1}{8} \frac{1}{8}$	$C \rightarrow C$	
6-24 =0, K=3		$8 - P(x) = (x - q)^{2} (b - x) (b + x)$		
$4 = -3\lambda$ = 160	> A /	= 0 when $n=9,\pm b$ a7b and $r(0) > 0$	⇒ C /	/
$4 \cdot lef x = \frac{2y}{y+1}$		1. $\sin\left(6t+\frac{\pi}{4}\right)=\pm\frac{1}{4}$		
$\begin{array}{l} x \gamma + \chi = \lambda \gamma \\ \chi = \lambda \gamma - \chi \gamma \\ \kappa = \gamma \left(2 - \kappa \right) \end{array}$		(+; 平; 平; 平; 平)… (+: 0) 平, 下, 平,…		
$y = \frac{1}{2 - \chi}$	> A /	$f=0, \overline{1}, \overline{1}, \overline{1}, \overline{1}, \overline{1}, \cdots$		/
F (3) = -3		$\frac{2\pi i}{1k} = 2ap + ap^{3}$		¥
$s = \sin \theta \left(2\sin \theta - i \right) = 0$ $\sin \theta = 0 = \sin \theta = \frac{1}{2}$		$x=0, \gamma=q \rightarrow ap = 2ap + ap^{3}$		
$\Theta = 0, T, \overline{C}, \overline{C}$	→ B /	0 = apt ap 0 = apt (itp ² p=0 is the only sola	-> B	/

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Section \mathbb{I} GII: $a) \frac{1}{n-3} < 3$		$e) \frac{\beta \chi_{f \alpha} \chi_{f \lambda} \beta}{\chi \beta \chi} = \frac{1}{2} / \frac{1}{2} /$	
$\begin{array}{c} x-3 < 3(x-3)^{2} \\ 3(x-3)^{2} - (x-3) > 0 \\ (x-3) \left[3(x-3)^{-1} \right] > 0 \\ (x-3) \left[3(x-3)^{-1} \right] > 0 \\ \frac{1}{10} $		F) $u = if fank$ du = sich dk k = 0, u = 1 k = 0, u = 1 $x = \frac{\pi}{4}, v = \lambda$ $\int \overline{F} \frac{sich}{\sqrt{1} + \ln k} dk = \int \frac{du}{dk} \frac{du}{dk}$ $= \int \frac{du}{dk} \frac{du}{dk}$ $= \int \frac{du}{dk} \frac{du}{dk}$ $= \int \frac{du}{dk} \frac{du}{dk}$	
c) (i) $\frac{44}{44} = \frac{2}{1+4n^2}$ (ii) $\frac{44}{4n} = 4(5ncx)^3 \cdot secx$ $= 4 sec^2 x 4an$	lanse /	$= 2\sqrt{2} - 2$ $= 2\left(\sqrt{2} - 1\right)$	
d) $I_{an}\Theta = \left \frac{-5}{3}\right /$ $\Theta = 5q^{\circ}/$			

Y12 Mathematics Extension 1 (HSC ASSESSMENT TASK 5: TRIAL HSC) - Term 3 2013

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Q12:		LBCE = 180° - LEAD (ensite a cycl	ongly of
(i) $f(x) = x - Jsing(x)$		$= 180^{\circ} - (180^{\circ} - 32^{\circ})$	
$f(2) = 2 - 3 \sin 2$		= 3,0	an and a shadowed of the State of State of States of States and States of States
= -0-72-<0		c) (i) y= 100-150-4t > 1:	e-et= 100-y (
$(3) = 3 - 3 \sin 3$	<i>√</i>	$dt = -95 \times -9e^{-9t}$	
= 2-5/66		$dt = q(q5e^{-qt})$	
difficult since of the are of	Must have	= q (100-y) (10.	n ()
continuous then root lies		(ii) $f=2, y=18$	
between x=2 and x=3.		-> 18= 100 - 45e-24	
(ii) $f'(x) = 1 - 3 - 3 - 3 - 3$		-82 = -15 c ⁻²⁴	
$2i_{1} = 2 - 2 - 3 - 3 - 2 - 3 - 3$		$e^{-L_{7}} = \frac{g_{2}}{15}$	
= 2-3237		$-2q = l_{n}\left(\frac{82}{85}\right)$	
- 2-32		$q = -\frac{1}{2} \ln \left(\frac{82}{95}\right)$	
b) (i) LAUB = LCBO (alternate	r, 10/1BC	(iii) 1= 2 , y = 39	
LAEB = LAUB langle lat the	a central o	39 = 100 - 15 - 97	
$= \frac{1}{2} \left(2\pi \right)$	ng (recom	$-61 = -95 e^{-9t}$	
* X	,	$e^{-4t} = \frac{61}{15}$	
$LEAB = 180^{\circ} - LAEB - LABE $	of BAEB	$-4f = l_{h}\left(\frac{61}{45}\right)$	
$= 180 - 3x^{2}$		$- + = \ln\left(\frac{4}{15}\right)$	
		$\frac{1}{2} \left(\frac{82}{95} \right)$	
		= (·0)	
		= 6 minute	\mathcal{O}

Y12 Mathematics Extension 1 (HSC ASSESSMENT TASK 5: TRIAL HSC) - Term 3 2013

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Q12 unfil:		: Since the statement is	
d) Prove the statement is free	ler n=1	twe for not and	
LHS = i(1+2)	6	n= k+1, then it is	
RHS = +(1+1)(2+7)		for all the second	
= 3		(in integers off)	*
= LHS	V		
the statement is true for n	- Tennontering		
Assume the statement is live	for ask		
12 1×3 +2×4 ++ K(K+2) =	$\frac{k}{\zeta} \left(k + i \right) \left(2 \right)$	kr7)	
Prove the statement is tru	e Grn	k+1	
$\overset{\text{le}}{=} S_{k+1} = \frac{k+1}{i} \left(k+L \right) \left(2k+1 - \frac{k+1}{i} \right) \left$	Commence of the second		
Skr1 = TKII + SK			
$= (k+1)(k+3) + \frac{k}{C}(k+1)(2)$	kt7 Fis	n Assumption	
$= k_{fl} \left(\begin{pmatrix} k_{f3} \end{pmatrix} + \frac{k}{C} \left(2k_{f} \right) \right)$			
$= \frac{k_{H}}{C} \left[\left(\left(k_{H} \right) \right) + k \left(2k \right) \right]$	+7]]		
$= \frac{k+1}{6} \left[2k^{2} + 13k + 18 \right]$			
$= \underbrace{k_{FL}}_{C} \left[\left(2k_{Fq} \right) \left(k_{Fs} \right) \right]$			
- the statement is true for n=k+1			

Y12 Mathematics Extension 1 (HSC ASSESSMENT TASK 5: TRIAL HSC) - Term 3 2013

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
$(4B:)$ (1) Arrangements = $\frac{6!}{2!}$ = 360 V (11) I(L's separated)		$ \begin{array}{c} (i) \frac{d}{dx} \left(\frac{1}{2} v^{2} \right) = \frac{d}{dv} \left(\frac{1}{2} v^{2} \right) \times \frac{dv}{dx} \\ = v \times \frac{dv}{dx} \\ = \frac{dv}{dt} \times \frac{dv}{dx} \\ = \frac{dv}{dt} \end{array} $	
$= 1 - P(L'_{S} logether)$ $= 1 - \frac{5!}{360}$ $= \frac{2}{3}$ (iii) Arrangements = 5!		$ \begin{array}{c} \frac{dt}{dt} = \frac{d^{2}n}{dt^{2}} \\ \frac{dt}{dt^{2}} = -4\left(x + \frac{16}{n^{3}}\right) \\ \frac{d^{2}n}{dt^{2}} = \int \left(-4n - 64n^{-3}\right) \end{array} $	dic
H) P(snow) = 0.2, P(no snow) P(exactly to days of snow) P(exactly to days of snow)	= 0-8	$= -\lambda_{1}\lambda + \frac{3\lambda}{3}\lambda + C$ $\frac{1}{3}\lambda^{2} \rightarrow 0 = -8 + \frac{3\lambda}{4}$ $\frac{1}{4}\lambda^{2} = -4\lambda^{2} + \frac{1}{64}$	
= 0.0418894 = 4.18894 = 4.18894		$= -\frac{4}{10} + \frac{1}{10} + \frac{1}{1$	

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
QB QB 12 metros 12 metros 14 Ship 10 metros 8 metros 10 metr	- Jen Lan		
10 gm 4pm Chevis	> <i>\</i>		
$i. Wavelength = it hours$ $I.u.l = \Delta T ik = \Delta T n = T and mylilode = \Delta metric$	s).		
CONTO			

Question 13(d) cont's

Let x(t) be the depth of water in the channel neasured from 10:00 am where t = 0. Then, as the motion is Simple Harmonsc, x(t) can be modelled by the formula :n be modelled by The tormula: - $\pi(t) = 2\cos(\frac{\pi}{6}t + \alpha) + 10$ where 10 is the mean tidal mark. Now $\chi(0) = 8 \Rightarrow con(\alpha) = -1 \text{ or } \chi = \Pi(say)$. So $\chi(E) = 2\cos(\frac{\pi}{6}t+\pi) + 10$ $= 10 - 2\cos\left(\frac{4t}{6}t\right); \left[\cos\left(\frac{4t}{7}+0\right) = -\cos\theta\right]$ We want the first occurrence for whe $\chi(t) = 1/\alpha_0$ the wake depth is increasing from its low fided position. $11 = 10 - 2 \cos\left(\frac{\pi}{6}t\right) \Rightarrow \cos\left(\frac{\pi}{6}t\right) = -\frac{1}{2}$ Consequently, the first opportunity to regotiate the channel safely after 10:00 an in 2:00 pm (4 hours later). V OR ath 10:00 an is 2-00 pm. ALTERNATIVE APPROACH Lat $\chi(t)$ represent the diplacement of the work level relative to its mean tidal position. The $\chi(t) = 2\cos\left(\frac{\pi}{6}t+d\right)$ and $\chi(0) = -2$. This implies $\chi = \pi$ as before & we have $\chi(t) = -2\cos\left(\frac{\pi}{6}t\right)$. We was first occurrence to when $-2\cos\left(\frac{\pi}{6}t\right) = 1^{\circ}$ $(+1 \Leftrightarrow 11m)$. $\Rightarrow \cos\left(\frac{\pi}{6}t\right) = -\frac{1}{2}$ as before, etc. If a student models the distance function by $\pi(t) = 2\sin(\frac{\pi t}{6}t+\beta)$. the , as before, $\pi(0) = 8 \implies \sin(\alpha) = -1 \implies \alpha = \frac{3\pi}{2}(say)$. $s_{0} = 2 \sin \left(\frac{1}{6} t + \frac{3}{2} \right) + 10$ = $2 \sin \left(\left(\frac{\pi}{6} t + \frac{\pi}{2} \right) + \pi \right) + 10$ = - 2 m (# + #) + 10 = - 2 Los (Et) +10 as before etc.

Q14:			
(1) $(1+)$ = $nC_0 + nC_1 + nC_2$	t Sit	$\cdots + c_{n} 0$	
$\frac{d}{dn}\left(1+n\right)^{n} = \frac{d}{dn}\left(nc_{n}+nc_{n}\right)^{n}$	- t ng n t p	$ng_{x}^{3} + \dots + ng_{n}^{n}$	
$n(100)^{-1} = 7$	+ 2 2 2	+3 grt + + n 2 22-1	
Sh = in (0 > 2) =	nç r	$nc_{i} + nc_{i} + nc_{j} + \dots + nc_{n}$	0 /
She are in $(D > n2^{n-1})$	Qu, Qu	$nc_{1} + 2nc_{2} + 3nc_{3} + \dots + nnc_{n}$	(4)
$(\mathcal{Y} + (\mathcal{Y}) \rightarrow_n 2^{2n-1} +$	2 = 2	+ 2 ~ + 3 ~ + + ~ 5 ++	$(n+i)^n c_n$
: 2 ⁿ⁻¹ (n+	$x = c_0$	+2°,+3°,+4°,++	-(n+i) nc
$\begin{pmatrix} b \\ \end{pmatrix} \end{pmatrix} \begin{pmatrix} y \\ y \\ y \\ y \\ y \\ z \\ z \\ z \\ z \\ z \\$			
g(n) does not have an inverse Conction because for every value of y? there are 2 values of	»,~ 2, / 2,	or equivalent (-not monotonic -not one-to-one)	

Y12 Mathematics Extension 1 (HSC ASSESSMENT TASK 5: TRIAL HSC) - Term 3 2013

Suggested Solution (s)

Comments

Comments

Suggested Solution (s)

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
$(e) i) x \in V f \in G$		N.	
$I = -\frac{1}{2}J^{2} + V + \sin \theta$		Vinge ()	
J_{ab} () in (2) \Rightarrow γ =	$-\frac{1}{4} \left(\frac{\pi}{V_{LS}} \right)$	$e \int + v \left(\frac{x}{v_{r,j0}} \right) \sin \theta$	
900 900 900	2 VA cost - grit se	$\frac{1}{2}\Theta + \pi hen \Theta$	
kiji, Gove	-2912 -2912	recto + x ten O	
	na masaa na masaa na na masaa	nt sector + n tan 0/~>	$h = \sqrt{\frac{1}{2}}$
	en X	lan Q - Int (Ithon Q) >	ACO: It fan
ii) y = 2 lon 0 - 4 hy = 4 ha lan	+h ~ (0 - ~ ~	It funto) (It funto)	
$r^2 fan^2 \Theta = 4$	be tan 0	Fil + 4hy = 0 0	
Two distinct ros	· X tan	$\theta = 4hX$ for $\theta + X + 4h$ $\Delta > 0$ (in lon θ)	Y = 0
i S. 	(-42 X)2	$-4(x^{2})(x^{2}+4LY) > 0$	\checkmark
	((, ¹ X 4),	$-4X^{+} - 16hX^{+}Y > 0$ $-X^{+} - 4hY > 0$	ance x > 0

antil

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Q14 confid:			
(c) (i) $4h^2 - 4h^2 - 7x^2$			
4L(L-Y) > X			
\times			
" IF x 2 4 h (h-Y) the	e are	2 solutions, ten Of and 1	an O,
to the equation. be used to hit	(\mathbf{X}, \mathbf{Y})	different ingles Q, and Q,	, ero
iii) Xthante - 4hx han	6 r (x	+4LY) = a from ii)	
where tan O, a	nd tan	On are solutions.	
: land, tandy	= X ² +	4 hy using traduct of ro	5
· land, land	x 1_= 1	t 4LY X2	
: tan Q	Inn OL>	1, since Y70	
But if both $\sigma \leqslant \Theta$,		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
$0 < lan \Theta, < l an$	L 0(1	and, <1 and so	
tan Q, lan Q2 <	energy and the second sec		
" No point with	170	can be hit from 2 differ	\sim
angles Q,	and Oz	salisfying Q, KF and Q,	<#

Y12 Mathematics Extension 1 (HSC ASSESSMENT TASK 5: TRIAL HSC) - Term 3 2013

Duestin 14 Pant (c) (iii) Alternatively, if we suppose tand, & tand, are distinct solutions with 0<0, 02 < IT, then 0< tand, tand, <1 & $\Sigma \propto \langle 2 \rangle$ However, from $\chi^2 \tan^2 \theta - 4h\chi$. Level + $(\chi^2 + 4h\chi) = 0$, we have $\Sigma \chi = \frac{4h}{\chi}$. So $\frac{4h}{\chi} \langle 2 \Rightarrow \chi > 2h$ or $\chi^2 > 4h_{\infty}$ From part (ii), $\chi^2 < 4h(\hat{h}-\hat{Y})$, i.e., $\chi^2 < 4h^2 - 4h\hat{Y}$. Now $4h\hat{Y} > 0$ since $h = \frac{\sqrt{2}}{2g} > 0 \&$ the faint (χ, \hat{Y}) is above the x-axis from data. So, 4h2-4hY < 4h2& consequently $x^2 < 4h^2 \oplus \Re x^2 < 4h^2 - 4hY < 4h^2 \Rightarrow x^2 < 4h^2 - Trichotomy$ proparty for inequalities). From & & & we have X > 4h & simultaneously X = 4h? This is impossible! We have a contradiction and accordingly the initial supposition is false.