

Number: \qquad

Teacher:

\qquad

2013

Trial Higher School Certificate Examination

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using blue or black pen only Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-14, show relevant mathematical reasoning and/or calculations

Teachers:
Mr Bradford
Mr Johansen*
Mr Mulray
Mr Vuletich

Total marks - 70
Section I: Pages 1-3
10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II: Pages 4-8

60 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

Write your Board of Studies Student Number and your teacher's name on the front cover of each writing booklet

This paper MUST NOT be removed from the examination room

BLANK PAGE

Section I

10 marks

Attempt questions 1 - 10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.
$1 \quad$ Which expression is a correct factorisation of $x^{3}-27$?
(A) $(x-3)\left(x^{2}-3 x+9\right)$
(B) $(x-3)\left(x^{2}-6 x+9\right)$
(C) $(x-3)\left(x^{2}+3 x+9\right)$
(D) $(x-3)\left(x^{2}+6 x+9\right)$

2 From six girls and four boys, a committee of 3 girls and 2 boys is to be chosen. How many different committees can be formed?
(A) 26
(B) 120
(C) 252
(D) 1440

3 The term independent of x in the expansion of $\left(x+\frac{2}{x}\right)^{6}$ is:
(A) 160
(B) 80
(C) 40
(D) 20

4 Consider the function $f(x)=\frac{2 x}{x+1}$ and its inverse function $f^{-1}(x)$.
Evaluate $f^{-1}(3)$.
(A) -3
(B) $\frac{2}{3}$
(C) $\frac{3}{2}$
(D) 3

5 The solution to $2 \sin ^{2} \theta-\sin \theta=0$ for $0 \leq \theta \leq \pi$ is:
(A) $\theta=0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi$
(B) $\theta=0, \frac{\pi}{6}, \frac{5 \pi}{6}, \pi$
(C) $\theta=\frac{\pi}{3}$ or $\frac{2 \pi}{3}$
(D) $\theta=\frac{\pi}{6}$ or $\frac{5 \pi}{6}$

6 An object is projected with a velocity of $30 \mathrm{~ms}^{-1}$ at an angle of $\tan ^{-1}\left(\frac{3}{4}\right)$ to the horizontal. What is the initial vertical component of its velocity?
(A) $18 \mathrm{~ms}^{-1}$
(B) $50 \mathrm{~ms}^{-1}$
(C) $30 \tan \left(\frac{3}{4}\right) \mathrm{ms}^{-1}$
(D) $30 \sin \left(\frac{3}{4}\right) \mathrm{ms}^{-1}$

7 The integral of $\cos ^{2} 2 x$ is ?
(A) $\frac{\cos ^{3} 2 x}{3}+C$
(B) $\left(\frac{\cos 2 x}{6}\right)^{3}+C$
(C) $\frac{x}{2}+\frac{\sin 4 x}{8}+C$
(D) $\frac{x}{2}+\frac{\sin 2 x}{4}+C$
$8 \quad$ Which diagram best represents $P(x)=(x-a)^{2}\left(b^{2}-x^{2}\right)$, where $a>b$?
(A)

(B)

(C)

(D)

9 Which of the following is the general solution of $2 \sin ^{2}\left(6 t+\frac{\pi}{4}\right)=1$?
(A) $t=\frac{n \pi}{3}-\frac{\pi}{6}$ and $t=\frac{n \pi}{3}+\frac{\pi}{12}$, where n is an integer.
(B) $t=\frac{n \pi}{12}-\frac{\pi}{24}$, where n is an integer.
(C) $t=\frac{n \pi}{3}$ and $t=\frac{n \pi}{3}+\frac{\pi}{12}$, where n is an integer.
(D) $t=\frac{n \pi}{12}$, where n is an integer.

10 The equation of the normal to the parabola $x^{2}=4 a y$ at the variable point $P\left(2 a p, a p^{2}\right)$ is given by $x+p y=2 a p+a p^{3}$.

How many different values of p are there such that the normal passes through the focus of the parabola?
(A) 0
(B) 1
(C) 2
(D) 3

Section II

60 marks
 Attempt Questions 11 - 14
 Allow about 1 hour and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Solve the equation $\frac{1}{x-3}<3$.

3
(b) Evaluate $\int_{0}^{3} \frac{d x}{\sqrt{9-x^{2}}}$, giving your answer in exact form.
(c) Differentiate with respect to x :
(i) $y=\tan ^{-1} 2 x$

1
(ii) $y=\sec ^{4} x$
(d) Find, correct to the nearest degree, the acute angle between the lines $y=3$ and $y=-\frac{5}{3} x+2$.
(e) Let α, β and γ be the roots of $2 x^{3}-x^{2}+3 x-2=0$. Find the value of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$.
(f) Use the substitution $u=1+\tan x$ to evaluate $\int_{0}^{\frac{\pi}{4}} \frac{\sec ^{2} x}{\sqrt{1+\tan x}} d x$.

Leave your answer in exact form.

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) (i) By considering $f(x)=x-3 \sin x$, show that the curves $y=x$ and approximation of the x-coordinate of P. Give your answer correct to two decimal places.
(b) In the diagram, $A B C E$ is a cyclic quadrilateral such that $A O$ is parallel to $B C$. O is the centre of the circle and $\angle A B E=\angle O B C=2 x^{\circ}$.

Copy or trace the diagram into your writing booklet.
(i) Prove that $\angle A E B=x^{\circ}$.
(ii) Prove that $\angle B C E=3 x^{\circ}$.
(c) Melissa takes a bottle of milk from the refrigerator for baby Henry. To heat the bottle, Melissa puts it in a saucepan of continuously boiling water.
Let $y^{\circ} \mathrm{C}$ be the temperature of the milk time t minutes after the baby's bottle is placed in the boiling water. The temperature of the milk increases such that $\frac{d y}{d t}=a(100-y)$ where a is a positive constant. The milk's temperature when the bottle is placed into the boiling water is $5^{\circ} \mathrm{C}$.
(i) Verify that $y=100-95 e^{-a t}$ satisfies the differential equation.
(ii) After two minutes, the temperature of the milk is measured to be $18^{\circ} \mathrm{C}$. Find the exact value of a.
(iii) Henry can be given the bottle safely when the temperature of the milk is more than $39^{\circ} \mathrm{C}$. What is the minimum length of time that Melissa can leave the bottle in boiling water before it can be given to the baby safely? Answer correct to the nearest minute.
(d) Use mathematical induction to prove that for integers $n \geq 1$,

$$
1 \times 3+2 \times 4+3 \times 5+\ldots+n(n+2)=\frac{n}{6}(n+1)(2 n+7)
$$

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) Consider the letters of the word MILLER.
(i) How many arrangements of these letters are possible if the letters are arranged in a straight line?
(ii) What is the probability that the L's will be separated when the letters are arranged in a straight line?
(iii) If the letters are arranged in a circle, how many arrangements are possible?
(b) The probability of snow falling in the Snowy Mountains on any one of the thirty-one days in August is 0.2

Find the probability that August has exactly 10 days in which snow falls.
Give your answer as a percentage, correct to the nearest whole per cent.
(c) A particle moves along a straight line such that its distance from the origin at t seconds is x metres and its velocity is v.
(i) Prove that $\frac{d^{2} x}{d t^{2}}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$.

2
(ii) If the acceleration satisfies $\frac{d^{2} x}{d t^{2}}=-4\left(x+\frac{16}{x^{3}}\right)$, and if the particle is
initially at rest when $x=2$, show that

$$
v^{2}=4\left(\frac{16-x^{4}}{x^{2}}\right)
$$

(d) Assume that tides rise and fall in Simple Harmonic Motion. A ship needs 11 metres of metres of water to pass down a channel safely. At low tide, the channel is 8 metres deep and at high tide 12 metres deep. Low tide is at 10.00 am and high tide is at 4.00 pm .

Find the first time after 10.00 am at which the ship can safely proceed through the channel.

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) The coefficient of x^{k} in $(1+x)^{n}$, where n is a positive integer, is denoted by ${ }^{n} C_{k}$. Show that

$$
{ }^{n} C_{0}+2^{n} C_{1}+3^{n} C_{2}+\ldots+(n+1){ }^{n} C_{n}=(n+2) 2^{n-1} .
$$

(b) Let $g(x)=e^{x}+\frac{1}{e^{x}}$ for all real values of x and let $f(x)=e^{x}+\frac{1}{e^{x}}$ for $x \leq 0$.
(i) Sketch the graph $y=g(x)$ and explain why $g(x)$ does not have an inverse function.
(ii) On a separate diagram, sketch the graph of the inverse function $y=f^{-1}(x)$.
(iii) Find an expression for $y=f^{-1}(x)$.
(c) A projectile is fired from the origin O with velocity V and with angle of elevation θ, where $\theta \neq \frac{\pi}{2}$. You may assume that

$$
x=V t \cos \theta \text { and } y=-\frac{1}{2} g t^{2}+V t \sin \theta
$$

where x and y are the horizontal and vertical displacements of the projectile in metres from O at time t seconds after firing.
(i) Show that the equation of flight of the projectile can be written as

$$
y=x \tan \theta-\frac{1}{4 h} x^{2}\left(1+\tan ^{2} \theta\right), \text { where } \frac{V^{2}}{2 g}=h
$$

(ii) Show that the point (X, Y), where $X \neq 0$, can be hit by firing at two different angles θ_{1} and θ_{2} provided

$$
X^{2}<4 h(h-Y) .
$$

(iii) Show that no point above the x axis can be hit by firing at two different angles θ_{1} and θ_{2}, satisfying $\theta_{1}<\frac{\pi}{4}$ and $\theta_{2}<\frac{\pi}{4}$.

End of paper

STANDARD INTEGRALS

$$
\text { Note } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\quad \ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\quad \frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\quad \frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\quad \sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

$$
\begin{array}{lll}
M C \rightarrow \text { Self } & Q 1 \rightarrow A J & Q 3 \rightarrow I B \\
& Q 2 \rightarrow M & Q 4 \rightarrow M V
\end{array}
$$

Y12 Mathematics Extension 1 (HSC ASSESSMENT TASK 5: TRIAL HSC) - Term 32013

Y12 Mathematics Extension 1 (HSC ASSESSMENT TASK 5: TRIAL HSC) - Term 32013

Y12 Mathematics Extension 1 (HSC ASSESSMENT TASK 5: TRIAL HSC) - Term 32013

Y12 Mathematics Extension 1 (HSC ASSESSMENT TASK 5: TRIAL HSC) - Term 32013

Y12 Mathematics Extension 1 (HSC ASSESSMENT TASK 5: TRIAL HSC) - Term 32013

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
4B: a) (i) Arrangemants $=\frac{6!}{2!}$ $=360$ (ii) i (lis separtad $)$ $\begin{aligned} & =1-P\left(L_{s}^{\prime} \text { logether }\right) \\ & =1-\frac{5!}{360} \\ & =\frac{1}{3} \end{aligned}$ (iii) Arangements $=\frac{5}{2}$ $=60$ 1) $p($ now $)=0.2, p($ no inow $)$ p(exathy 10 tays of smout) $\begin{aligned} & ={ }^{31} C_{10}(0.8)^{21}(02) \\ & =0.0418894 \ldots \\ & =4.18894 \ldots \% \\ & =4 \% \end{aligned}$	$=0.8$	c) $\begin{aligned} \frac{d}{d x}\left(\frac{1}{x^{2}}\right) & =\frac{d}{d v}\left(\frac{1}{2} v^{2}\right) \times \frac{d v}{d x} \\ & =v \times \frac{d v}{d x} \\ & =\frac{d x}{d t} \times \frac{d v}{d x} \\ & =\frac{d v}{d t} \\ & =\frac{d^{2}}{d^{2}} \end{aligned}$ (ii) $\begin{aligned} \frac{4^{2}}{d^{2}} & =-4\left(x+\frac{1}{x^{3}}\right) \\ \frac{x^{2}}{x^{2}} & =\left(-4 x-4 x^{-3}\right) \\ & =-4 x^{2}+\frac{1}{x^{2}}+d \\ v=0 x-2 & \Rightarrow 0=-x+\frac{4 x}{4} \\ v^{2} & =-4 x^{2}+\frac{64}{x^{2}} \\ & =-4 x^{4}+64 \\ & =\frac{x^{2}}{x^{2}-4 x^{2}} \\ & =4\left(\frac{16-x^{4}}{x^{2}}\right) \end{aligned}$	d \checkmark

Y12 Mathematics Extension 1 (HSC ASSESSMENT TASK 5: TRIAL HSC) - Term 32013

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Q13 (d) $\begin{gathered} \therefore \text { Wavelingth }=12 \text { hous } \\ \text { lead } \\ =\frac{2 \pi}{n} \\ \alpha=\frac{2 \pi}{n} \\ a=\frac{\pi}{6} \end{gathered}$ and amplude $=2$ met CONT'			

Question $13(d)$ cont h
Let $x(t)$ be the depth of water in the chancel measured from $10: 00 \mathrm{am}$ where $t=0$. Then' as the motion is Simple Harmonic, $x(t)$ can be modelled by the formula:-
$x(t)=2 \cos \left(\frac{\pi}{6} t+\alpha\right)+10$ where 10 is the mean tidal mark.
Now $x(0)=8 \Rightarrow \cos (\alpha)=-1$ or $\alpha=\pi($ say $)$.
So

$$
\begin{aligned}
x(t) & =2 \cos \left(\frac{\pi}{6} t+\pi\right)+10 \\
& =10-2 \cos \left(\frac{\pi t}{6} t\right) ;[\cos (\pi+\theta)=-\cos \theta]
\end{aligned}
$$

We went tin first occurrence for when $x(t)=11$ as the waster depth is increasing from its low tidal position.

$$
\begin{aligned}
\therefore \quad 11=10-2 \cos \left(\frac{\pi}{6} t\right) & \Rightarrow \cos \left(\frac{\pi}{6} t\right)=-1 / 2 \\
& \Rightarrow \frac{\pi}{6} t=2 \pi / 3 \text { or } t=4 .
\end{aligned}
$$

Consequently, the first offtwrtunity to negotiate the channel safely after 10:00 am in 2:00 pm (4 hours later).
or
Alternative Approaches
Let $x(E)$ repmenet the diplacement of the wash level relative to it mean tidal provision. Th $x(t)=2 \cos \left(\frac{\pi}{6} t+\alpha\right)$ and $x(0)=-2$. This inflies $\alpha=\pi$ as before \& we have $x(t)=-2 \cos \left(\frac{\pi}{6} t\right)$. We wat fist occurrence fo when $-2 \cos \left(\frac{\pi}{6} t\right)=1 \quad(t 1 \Leftrightarrow 1 \mathrm{~mm})$.
$\Rightarrow \cos \left(\frac{\pi}{6} t\right)=-1 / 2$ as before, etc.
If a student models the distance function by $x(t) \cdot 2 \sin \left(\frac{\pi}{6} t+\beta\right)$ the, as before, $x(0)=8 \Rightarrow \sin (\alpha)=-1 \Rightarrow \alpha=\frac{3 \pi}{2}(\operatorname{soc})$.

$$
\text { So } \begin{aligned}
x(t) & =2 \sin \left(\frac{\pi}{6} t+\frac{3 n}{2}\right)+10 \\
& =2 \sin \left(\left(\frac{\pi}{6} t+\frac{\pi}{2}\right)+\pi\right)+10 \\
& =-2 \sin \left(\frac{\pi}{6} t+\frac{\pi}{2}\right)+10 \\
& =-2 \cos \left(\frac{\pi}{6} t\right)+10 \text { as be fine ute! }
\end{aligned}
$$

Y12 Mathematics Extension 1 (HSC ASSESSMENT TASK 5: TRIAL HSC) - Term 32013

Y12 Mathematics Extension 1 (HSC ASSESSMENT TASK 5: TRIAL HSC) - Term 32013

Y12 Mathematics Extension 1 (HSC ASSESSMENT TASK 5: TRIAL HSC) - Term 32013

Y12 Mathematics Extension 1 (HSC ASSESSMENT TASK 5: TRIAL HSC) - Term 32013

Aleestion 14
pant (c) (iii)
Alternatively, if we suppose $\tan \theta_{1} \& \tan \theta_{2}$ are distinct solutions with $0<\theta_{1}, \theta_{2}<\frac{\pi}{4}$, then $0<\tan \theta_{1}, \tan \theta_{2}<1$ \& $\sum_{\alpha}<2$. However, from $x^{2} \cdot \tan ^{2} \theta-4 h x \cdot \tan \theta+\left(x^{2}+4 h y\right)=0$, we have $\sum \alpha=\frac{4 h}{x}$. So $\frac{4 h}{x}<2 \Rightarrow x>2 h$ or $x^{2}>4 h^{2}$ From pert $(i i), x^{2}<4 h\left(h^{x}-y\right)$, ie, $x^{2}<4 h^{2}-4 h y$. Now $4 h y>0$ since $h=\frac{v^{2}}{2 g}>0$ \& the paint (X, Y) is above the x-axes from dobla. So, $4 h^{2}-4 h y<4 h^{2} \&$ consequently $x^{2}<4 h^{2}$ 区 $*\left(x^{2}<4 h^{2}-4 h y<4 h^{2} \Rightarrow x^{2}<4 h^{2} \sim\right.$ Trichotomy property for inequalities). From $<\& *$ we hove $x^{2}>4 h^{2}$ \& simultaneously $x^{2}<4 h^{2}$. This is impossible! We have a contradiction and accordingly the initial supposition is false.

