

Number:	
---------	--

Teacher:

2014 Trial Higher School Certificate Examination

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using blue or black pen only Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-14, show relevant mathematical reasoning and/or calculations

Total marks – 70

Section I: Pages 1-3

- 10 marks
- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II: Pages 4-8

60 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

Teachers: Mr Bradford Mr Vuletich Mrs Dempsey Ms Yun

Write your Board of Studies Student Number and your teacher's name on the front cover of each writing booklet

This paper MUST NOT be removed from the examination room

Number of Students in Course: 80

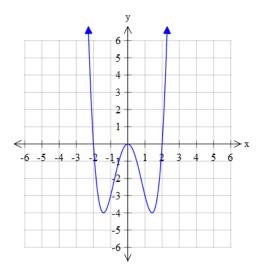
BLANK PAGE

Section I

10 marks Attempt questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1	Finc	$\lim_{x\to 0}$	$\frac{\sin 7x}{5x}$
	(A)	0	
	(B)	$\frac{5}{7}$	
	(C)	1	
	(D)	$\frac{7}{5}$	


2 The point *P* divides the interval from A(-2, 2) to B(8, -3) internally in the ratio 3:2. What is the *x*-coordinate of *P*?

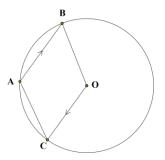
- (A) 4
- (B) 2
- (C) 0
- (D) –1

3 Which function best describes the polynomial

$$y = P(x)?$$

- (A) $y = x^2(4-x^2)$
- (B) $y = x^3(x-2)(x+2)$
- (C) $y = x^2(x^2 4)$
- (D) $y = x^3(2-x)(x+2)$

Which of the following is the domain of the function $y = \sin^{-1} 2x$?


(A)
$$-2 \le x \le 2$$

(B) $0 \le x \le 2\pi$
(C) $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$
(D) $-\frac{1}{2} \le x \le \frac{1}{2}$

5 In the expression $(1+x)(1+x)^9$, the coefficient of x^5 is:

- (A) 126
- (B) 210
- (C) 252
- (D) 504

6 The points *A*, *B* and *C* lie on a circle centred at O. *AB* is parallel to *CD* and $\angle ABO = 42^{\circ}$. What is the size of $\angle CAB$?

- (A) 42°
- (B) 82°
- (C) 138°
- (D) 111°

7

A family of eight is seated randomly around a circular table.

What is the probability that the two youngest members of the family sit together?

(A)
$$\frac{6!2!}{7!}$$

(B) $\frac{6!}{7!2!}$
(C) $\frac{6!2!}{8!}$
(D) $\frac{6!}{8!2!}$

8 When the polynomial P(x) is divided by (x+1)(x-3), the remainder is 2x+7.

What is the remainder when P(x) is divided by x-3?

- (A) 1
- (B) 7
- (C) 9
- (D) 13
- 9 The function $f(x) = 3x x^3$ has a relative maximum at (1, 2) and a relative minimum at (-1, -2). What is the largest domain containing the origin for which f(x) has an inverse function $f^{-1}(x)$.
 - (A) $-1 \le x \le 1$
 - (B) -1 < x < 1
 - (C) $-2 \le x \le 2$
 - (D) -2 < x < 2
- 10 Which expression represents the ratio of the sum of 2n terms to the sum of n terms of any Geometric Progression?
 - (A) 2:1
 - (B) $r^n:1$
 - (C) $(r^n+1):1$
 - (D) $(r^n 1):1$

End of Section I

Section II

60 marks Attempt Questions 11 – 14 Allow about 1 hour and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

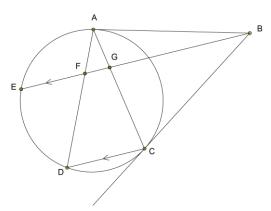
(a) Find the values of k such that (x-2) is a factor of the polynomial **2** $P(x) = x^3 - 2x^2 + kx + k^2.$

(b) Find the value of
$$\sum_{n=2}^{5} {}^{n}c_{2}$$
. 2

(c) Solve the equation
$$\frac{4}{2x-1} < 1$$
. 3

(d) Find the angle that $y = \tan^{-1} 2x$ makes with the <u>y-axis</u> at the origin. 3 Give your answer to the nearest degree.

(e) Use the substitution
$$u = \ln x$$
 to evaluate,


$$\int_{e}^{e^{2}} \frac{1}{x \ln x} dx.$$
3

(f) The probability of snow falling in the Snowy Mountains on any one of the thirty-one 2 days in August is 0.2. Find the probability that August has exactly 10 days in which snow falls. Give your answer as a percentage to the nearest whole per cent.

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet.

- (a) (i) Show that $f(x) = 2\sin x 10x + 5$ has a root between 0.6 and 0.7. 1
 - (ii) Use one step of Newton's method and starting with x=0.6, find a better **2** approximation. Answer to 2 decimal places.
- (b) In the diagram *EB* is parallel to *DC*. Tangents from *B* meet the circle at *A* and *C*.

Copy or trace the diagram into your writing booklet.

(i) Prove that
$$\angle BCA = \angle BFA$$
.
3

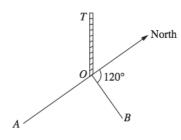
(ii) Prove *ABCF* is a cyclic quadrilateral. 1

(c) Use mathematical induction to prove that $2^{3n} - 3^n$ is divisible by 5 for $n \ge 1$. 3

(d) Consider the function $f(x) = \cos^{-1} 2x$.

(i) Sketch the function
$$f(x)$$
 for $-\frac{1}{2} \le x \le \frac{1}{2}$ 2

(ii) Find the exact volume formed when y = f(x) is rotated about the y-axis **3** from $0 \le y \le \pi$.

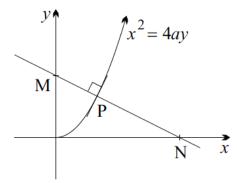

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.

- (a) In how many ways can a committee of 3 men and 4 woman be selected from a group 1 of 8 men and 10 women?
- (b) It is known that two of the roots of the equation $2x^3 + x^2 kx + 6 = 0$ are reciprocals 2 of each other. Find the value of k.
- (c) A salad, which is initially at a temperature of $25 \degree \text{C}$, is placed in a refrigerator that has a constant temperature of $3\degree \text{C}$. The cooling rate of the salad is proportional to the difference between the temperature of the refrigerator and the temperature, *T* of the salad. That is, *T* satisfies the equation $\frac{dT}{dt} = -k(T-3)$ where *t* is the number of minutes after the salad is placed in the refrigerator.

(i) Show that
$$T = 3 + Ae^{-kt}$$
 satisfies this equation. 1

- (ii) The temperature of the salad is 11 °C after 10 minutes. 3Find the temperature of the salad after 15 minutes.
- (d) From a point *A* due south of a tower, the angle of elevation of the top of the tower *T*, is 23° . From another point *B*, on a bearing of 120° from the tower, the angle of elevation of *T* is 32° . The distance *AB* is 200 metres.



- (i) Copy the diagram into your writing booklet, adding the given information to 1 your diagram.
- (ii) Hence find the height of the tower.

Question 13 continues on page 7

3

(e) A normal is drawn to the parabola $x^2 = 4ay$ at the point $P(2ap, ap^2)$, where p > 0. The normal intersects the *x*-axis at *N* and the *y*-axis at *M* as shown in the diagram below.

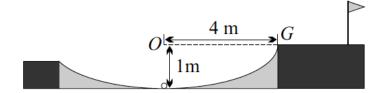
(i) Find the equation of the normal *PN*.

(ii) It is known that the point *P* divides *NM* in the ratio 3:2. Find the value of 2 the parameter *p*.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) A particle moves in a straight line so that its acceleration is given by $\frac{dv}{dt} = x - 1$, where v is its velocity and x is its displacement from the origin. Initially, the particle is at the origin and has velocity v = 1.


(i) Show that
$$v^2 = (x-1)^2$$
 2

(ii) By finding an expression for
$$\frac{dt}{dx}$$
, or otherwise, find x as a function of t. 2

(b) The diagram below shows a golf ball in the middle of a 1m deep bunker and 4m from the edge of the green at *G*. The ball is hit with an initial speed of 12 m/s at an angle of elevation α. By taking the origin at 0, the horizontal and vertical equations of motion are:

 $x = 12t \cos \alpha$ and $y = -5t^2 + 12t \sin \alpha - 1$.

(Do NOT prove these equations)

(i) Find the maximum height the ball reaches above G when
$$\alpha = 30^{\circ}$$
. 2

(ii) Find the range of values that α may take so that the ball lands on the green at or beyond *G*. Give your answer correct to the nearest 5°. 3

(c) (i) Use mathematical induction to show that
$$\ln(n!) > n$$
 3
for all positive integers $n \ge 6$.

(ii) Hence show that
$$\frac{1}{n!} < \frac{1}{e^n}$$
 for all positive integers $n \ge 6$. 1

2

(iii) Hence show that,

$$\frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \frac{1}{6!} + \frac{1}{7!} + \frac{1}{8!} + \dots < \frac{103}{60} + \frac{1}{e^5(e-1)}$$

End of paper

STANDARD INTEGRALS

$\int x^n \ dx$	=	$\frac{1}{n+1}x^{n+1},$	$n \neq -1; x \neq 0$, if $n < 0$
$\int \frac{1}{x} dx$	=	$\ln x$,	<i>x</i> > 0
$\int e^{ax} dx$	=	$\frac{1}{a}e^{ax},$	$a \neq 0$
$\int \cos ax dx$	=	$\frac{1}{a}\sin ax$,	$a \neq 0$
$\int \sin ax dx$	=	$-\frac{1}{a}\cos ax$,	$a \neq 0$
$\int \sec^2 ax dx$	=	$\frac{1}{a} \tan ax$,	$a \neq 0$
$\int \sec ax \tan ax dx$	lx =	$\frac{1}{a} \sec ax$,	$a \neq 0$
$\int \frac{1}{a^2 + x^2} dx$	=	$\frac{1}{a}\tan^{-1}\frac{x}{a},$	$a \neq 0$
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$	=	$\sin^{-1}\frac{x}{a},$	a > 0, -a < x < a
$\int \frac{1}{\sqrt{x^2 - a^2}} dx$	=	$\ln\left(x+\sqrt{x^2}\right)$	$\overline{-a^2}$), $x > a > 0$
$\int \frac{1}{\sqrt{x^2 + a^2}} dx$	=	$\ln\left(x+\sqrt{x^2}\right)$	$+a^2$)

Note $\ln x = \log_e x, \quad x > 0$

2014 Year 12 Mathematics Extension 1 Task 5 (Trial HSC) SOLUTIONS

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
1. lin 117 × 7 = 7 x-20 7x × 5 = 5 D		Question 11	
2. $x = \frac{3x8 + 2x \cdot 2}{2} = 4$ A		(a) $P(x) = x^3 - 2x^2 + kx + k^2$ $R(x) = 0, 8 - 8 + 2k + k^2 = 0$	
5		k(k+2) = 0	0
$\begin{array}{l} 3. y = 2L^2(x^2-4) \\ = x^2(2L-2)(2L+2) \end{array} $: K=0 or k=-2	Ð
4162261, -1/26261/2 D		(b) $\sum_{n=2}^{5} n_{c_{1}} = \frac{2c_{1}+3c_{1}+4c_{1}+5c_{2}}{2c_{1}+3c_{1}+4c_{1}+5c_{2}}$	\bigcirc
5. (1+2)(1+2) ⁹		= 1 + 3 + 6 + 10	
$w_{eff} = \chi^{5} = 1 \times {}^{9} c_{5} + 1 \times {}^{9} c_{4}$ = 126 + 126		= 20	Ø
= 252		(c) $\frac{4}{2x-1} < 1 x \neq \frac{1}{2}$	
6. LBOC = 138° (co-inter) Replax LBOC = 222° D		4 (2n-1) < (2n-1)2	Ø
$LCAB = 111^{\circ}$		$(2n-1)^2 - 4(2n-1) > 0$ (2n-1)(2x-5) > 0	
$\frac{7.6! \times 2!}{7!}$ A		-' x 4 1/2 or x7 1/2	9
8. Rx) = (2+1)(x-2) 0x + 2x+7	¢	$\begin{aligned} y &= \tan^2 2x \\ y' &= \frac{2}{1 + 4x^2} \end{aligned}$	
P(3) = 13 D		= 2 when x=0	
·····		$\Theta = tan' 2 = > 0 = 63°26'$	Ø'
9. 1-1 -1621 A		repuised angle = 26° 34' = 27° (nevert degree	Ø
10. $S_{1} = a(r^{n}-1) c_{1} = a(r^{2n}-1)$		(e) $\int_{\pi/\pi \pi}^{\pi} dx = \int_{\pi}^{\pi} \frac{1}{\pi} du$	2
10. $S_{n} = \frac{\alpha(r^{n}-1)}{r-1}, S_{2n} = \frac{\alpha(r^{2n}-1)}{r-1}$		$u = h x = \left[\ln u \right]^{2}$ $du = \frac{1}{2} du$	
$S_{2n} = S_n$	· .	$\mu = e_{-2}\mu = i = i = 2$	Ð
$r^{2n} + r^{n} + C$	i i	f) P(s)=0.2, P(5)=0.8	
$\binom{n}{r-1}(r^{n}+1) \neq r^{n}-1$ $r^{n}+1 \geq 1$		Plexactly 10 days of Anon)	
		$= 31_{c} (0.8)^{21} (0.2)^{10}$	D
		= 0:04188894 = 4%	ษ

2014 Year 12 Mathematics Extension 1 Task 5 (Trial HSC) SOLUTIONS

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
QUESTION 12		-) Prove 23" - 3" is divisible by	5, 121
a)(i) fa) = 2 sin x - 10x + 5		When $p=1$, $2^{3}-3'=8-3$ =5 which is di	visible bys
f(0.6) = 0.129 > 0		Assume true when n=k	
f(0.7) = -0.712 20	0	ie $\lambda^{3k} = 5I$ for some integer	Σ.
between 0.6 and 0.7.		when n=k+r	
(ii) $x_2 = x_1 - f(x_1)$		$2^{3(k+1)} - 3^{k+1} = 2^{3k+3} - 3^{k} \times 3^{k+3}$	
$\frac{1}{4'(\kappa_1)}$		$= \chi^3 \times \chi^{3k} - 3 \times \chi^{3k}$	
$\chi_2 = 0.6 - \frac{0.129}{8.349}$	\mathbb{O}	$= 8\left[\frac{3^{3k}}{2} - 3^{k}\right] + 5 \times 3^{k}$	
$K_2 = 0.6 \pm 0.015$ $K_2 = 0.62 (2dp)$	0	$= 8 \times 5I + 5 \times 3^{k}$ $= 5 \int 8I + 3^{k}$	
() A		If true for n=k, then true	3
E F F F B		for n=k+1 and since true when then troe for all n 21	n=1,
		d) for) = cos-12n	Ì
i) Since tangents from an		i) for shape	2
external point are cyval, AB = CB. :. ABC is isosceles	\square	- Y ₂ Y ₂ x	•
$(ii)_{LBCA} = LADC$		ii) $v = 2\pi \int_{0}^{\eta_{L}} \chi^{2} dy \cos y = 2\pi$	
(orighe between chord and tonge is equal to the angle in the alternate segment).	O	$V = \frac{2\pi}{4} \int \frac{\pi}{4} \int \frac{\pi}{4} dy$	
LBFA = LADC		0	
(corresponding angles are equal EBIIDC).	\odot	$V = \frac{\pi}{2} \int \frac{\pi}{2} \left(\cos 2y + i \right) dy$	
: L BLA = L BFA		$b = \frac{\pi}{4} \left[\frac{4i\pi \lambda y}{2} + y \right]_{0}^{\frac{1}{2}}$	
(11) Since LBCA = LBFA, they represent angles at the circumfe	rence		\sim
stunding on a chord AB (arc AB) of		Volume = TT units 3.	3)
another circle, and ABCF is a cyclic guadritateral.			

2

cyclic quadrilateral.

2014 Year 12 Mathematics Extension 1 Task 5 (Trial HSC) SOLUTIONS

$ \frac{g_{UESTRON 13}}{(a) 8c_3 \times {}^{10}c_4 = 11760} \qquad (1) \qquad $	
(4) $8_{c_3} \times {}^{10}c_4 = 1/760$ (b) $T_{r+1} = {}^{n}c_r \ A^{p-r}b^r$ $for (2x+3y)^{1/2}$ $T_{r+r} = {}^{1/2}c_r (2x)^{1/2-r}(3y)^r$ $T_5 = {}^{1/2}c_4 (2x)^8 (3y)^4$ $= {}^{1/2}c_4 \cdot 2^8 \cdot 3^4 \cdot x^8 \cdot y^4$ (ii) $\angle AoB = 60^\circ$ $OA = \frac{OT}{4in32^\circ} , \ OB = \frac{OT}{4in32^\circ}$ $OB = \frac{OT}{4in32^\circ} , \ OB = \frac{OT}{4in32^\circ}$ (c) $B_r covine role,$ $2oo^2 = \frac{OT}{4in^223^\circ} (cos 60^\circ)$ $d_r T = -KAe^{-Kt}$ $2oo^2 = OT^2 \left[\frac{1}{1} + \frac{1}{1}\right]$	
$\begin{aligned} & for (2x + 3y)^{12} \\ & T_{7+1} = {}^{12}c_{1}(2x)^{2-r}(3y)^{r} \\ & T_{5} = {}^{12}c_{4}(2x)^{8}(3y)^{4} \\ & = {}^{12}c_{4}\cdot 2^{8}\cdot 3^{4}\cdot x^{5}\cdot y^{4} \\ & (ii) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
$\begin{array}{c} T_{r+r} = {}^{r_{2}} c_{r} \left(2x\right)^{r_{2}-r} \left(3y\right)^{r} \\ T_{5} = {}^{r_{2}} c_{4} \left(2x\right)^{8} \left(3y\right)^{4} \\ = {}^{r_{2}} c_{4} \cdot 2^{8} \cdot 3^{4} \cdot x^{8} \cdot y^{4} \\ (ii) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
$T_{5} = I^{2}c_{4} (2\pi)^{8} (3y)^{4} \qquad (ii) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
$\begin{array}{c} (c) = finite of x^{8}y^{4} \\ = 1^{2}c_{4} \cdot x^{8} \cdot 3^{4} = 10 \ 264 \ 320 \ 0 \\ (c) = 1^{2}c_{4} \cdot x^{8} \cdot 3^{4} = 10 \ 264 \ 320 \ 0 \\ (c) = \frac{1}{2}c_{4}^{2} \cdot x^{8} \cdot 3^{4} = 10 \ 264 \ 320 \ 0 \\ (c) = \frac{1}{2}c_{4}^{2} \cdot x^{8} \cdot 3^{4} = 10 \ 264 \ 320 \ 0 \\ (c) = \frac{1}{2}c_{4}^{2} \cdot x^{8} \cdot 3^{4} = 10 \ 264 \ 320 \ 0 \\ (c) = \frac{1}{2}c_{4}^{2} \cdot x^{8} \cdot 4 - \frac{1}{2}c_{4}^{2} \cdot 4 - $	
$ \begin{array}{c} (4); \\ (5); \\ T = 3 + Ae^{-kt} \\ \hline \\ \\ T - 3 = Ae^{-kt} \\ \hline \\ \frac{d}{dt} = -kAe^{-kt} \end{array} $	
$ \begin{array}{c} (C); \\ T = 3 + Ae^{-kt} \\ T = 3 + Ae^{-kt} \\ \frac{dT}{dt} = -kAe^{-kt} \end{array} $	
$\frac{dT}{dt} = -kAe^{-kt}$	H
$\frac{d^2}{dt} = -KHe$ $\frac{1}{200^2} = 0T^2 \frac{1}{100} + \frac{1}{1000} + \frac{1}$	
$dt = -K(Ae^{-kt})$ $= -K(Ae^{-kt})$ $= -K(Ae^{-kt})$	
$= -K(T-3) \ \text{from } D \qquad 40000 = 0T^2 \times 4.3409$ $\therefore T = 3 + Ae^{-Kt} \ \text{satisfies}. \qquad D \qquad 40000 = 0T^2 \times 4.3409$	
(ii) when to, $T = 25$ T = 9214.5535 T = 96 m (nearest m)	
$1, 25 = 3 + Ae^{-kt}$,
$A = 2Z$ $() \qquad (2) i) AY \qquad JZ^{2} = 4ay \qquad y = \frac{Z^{2}}{4a}$ $M \qquad (2) i) AY \qquad JZ^{2} = 4ay \qquad y = \frac{Z^{2}}{4a}$ $M \qquad (2) i) AY \qquad M \qquad (2) i) AY \qquad (2) i)$	
11 = 3 + 22e	
$e^{-lok} = \frac{4}{11}$ $E_{av}, normal, y - ap^{2} = -\frac{1}{p}(n-2ap)$	
$K = -\frac{1}{10} \ln \left(\frac{4}{11}\right) \qquad (1) \qquad \chi + R_{\rm s}^2 = \pi c_{\rm s}^2 + R_{\rm s}^2 + R_{\rm s}^2 = \pi c_{\rm s}^2 + R_{\rm s}^2 = \pi c_{\rm s}^2 + R_{\rm s}^2 = \pi c_{\rm s}^2 + R_{\rm s}^2 + R_{\rm s}^2 = \pi c_{\rm s}^2 + R_{\rm s}^2 + R_{\rm s}^2 = \pi c_{\rm s}^2 + R_{\rm s}^2 +$	
= 0.10116 (ii) x-courclimate of M is 0. $\mu - courdinate of N is 2op + ap3$	
When $t=15$ $T = 3+22e^{-15k}$ Patio of differences is $\frac{ap^3}{2} = \frac{3}{2}$	
$T = 7.8241$ $\frac{1}{2ap}$ $p^2 = 3$ $p = \sqrt{3} (p>0)$	

3

2014 Year 12 Mathematics Extension 1 Task 5 (Trial HSC) SOLUTIONS

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
$\frac{\partial uostain 14}{(d)(i)} \frac{\partial V}{\partial t} = x-i$ $\frac{\partial}{\partial m} \left(\frac{t}{v}^{2}\right) = x-i$ $\frac{d}{dv} \left(\frac{t}{v}^{2}\right) = x-i$ $\frac{d}{dv} \left(\frac{t}{v}^{2}\right) = x-i$ $\frac{d}{dv} \left(\frac{t}{v}^{2}\right) = x-i$ $\frac{d}{dv} = \frac{t}{2} + x + c$ $\frac{\partial v}{\partial t} = x - x + c$ $\frac{\partial v}{\partial t} = \frac{d}{2} + x + \frac{1}{2}$ $\frac{\partial v}{\partial t} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ $\frac{\partial v}{\partial t} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ $\frac{\partial v}{\partial t} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ $\frac{\partial v}{\partial t} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ $\frac{\partial v}{\partial t} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ $\frac{\partial v}{\partial t} = \frac{1}{2} + $	0	b) i) $\frac{4m}{1m} \frac{G}{G} \frac{P}{M}$ $\frac{1}{1m} \frac{1}{1m} 1$	() %) -1 D
at $n=0$, $\frac{dx}{dt} = 1$ $\frac{dx}{dt} = -(n-1)$ = 1-2t $\frac{dt}{dn} = \frac{1}{1-2}$ $t = \int \frac{1}{1-2t} dt$ $t = -\ln(1-2t) + c$	Ø	$i = -5t^{2} + 12t \operatorname{An} K - 1$ $i = 0 = -5(\frac{1}{3t^{2}} + 12(\frac{1}{3t^{2}}) \operatorname{Ani} 2 - \frac{1}{5}(\frac{1}{3t^{2}}) - 12(\frac{1}{3t^{2}}) + 1 = 0$ $5(\frac{1}{9t^{2}}) - 12(\frac{1}{3t^{2}}) + 1 = 0$ $5(\frac{1}{9t^{2}}) - 12(\frac{1}{3t^{2}}) + 1 = 0$ $5 + 1$,
$t=0, x=0 \implies c=0$ $t=-ln(1-x)$ $-t=-ln(1-x)$ $e^{-t} = 1-x$ $t=-k$		is in 10 10 10 10 10 10 10 10 10 10	

Ð

PTO for C

2014 Year 12 Mathematics Extension 1 Task 5 (Trial HSC) SOLUTIONS

$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	$ \begin{array}{l} (-) i) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
$\begin{array}{c} 1 \neq n(n!) > n \text{ is } \text{true}, \\ \text{then } n(n+i)! > n+i \text{ and} \\ \text{subsec } n(n+i)! > n+i \text{ when } n=6 \\ \text{then } n(n!) > n \text{ for all } n=6 \\ \text{then } n(n!) > n \text{ for all } n=6 \\ \text{i} \\ n! \\ n(n!) > n , n > 6 \\ \vdots & n! \\ n \geq e^{n}, n \geq 6 \end{array}$	$- n/2e^{n}$	$\begin{array}{l} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array}$	-n26 17e) 1)>k)	$\begin{aligned} \ddot{i}\ddot{i} & \dot{i}\dot{i}\dot{j} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \frac{1}{6!} + \frac{1}{7!} + \frac{1}{5!} + \frac{1}{6!} + \frac{1}{7!} + \frac{1}{2!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \frac{1}{e^6} + \frac{1}{e^7!} \\ & < \frac{1}{1!} + \frac{1}{2!} + \frac{1}{6!} + \frac{1}{2!} + \frac{1}{120} + \frac{1}{e^6} \left[1 + \frac{1}{e} + \frac{1}{2!} + \frac$	$\frac{1}{e^{2}t}$