
\qquad

Knox Grammar School
2015
Trial Higher School Certificate
Examination

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using blue or black pen only Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-14, show relevant mathematical reasoning and/or calculations

Teachers:
Mr Vuletich
Mr Bradford
Mrs Dempsey
Ms Yun

Total marks - 70
Section I: Pages 2-5
10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

> Section II: Pages 6-10

60 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

Write your Name, your Board of Studies Student Number and your Teacher's Name on the front cover of each writing booklet

This paper MUST NOT be removed from the examination room

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1 - 10.

1 The point P divides the interval joining $A(4,1)$ and $B(-1,11)$ externally in the ratio 2:3. Which of these are the coordinates of P ?
(A) $(2,5)$
(B) $(14,-19)$
(C) $(1,7)$
(D) $(-11,31)$

2 What is $\lim _{x \rightarrow 0} \frac{5 \sin 3 x}{x}$?
(A) 15
(B) $\frac{5}{3}$
(C) $\frac{3}{5}$
(D) $\frac{1}{15}$

3 Which of the following is the solution to the inequation $\frac{x-3}{x} \leq 0$?
(A) $x \leq 3$
(B) $x<0$ or $x \geq 3$
(C) $0<x \leq 3$
(D) $0 \leq x \leq 3$

4 Differentiate $\frac{1}{\sqrt{4-x^{2}}}$.
(A) $\sin ^{-1} \frac{x}{2}$
(B) $\frac{1}{2} \sin ^{-1} \frac{x}{2}$
(C) $\frac{-1}{2 \sqrt{\left(4-x^{2}\right)^{3}}}$
(D) $\frac{x}{\sqrt{\left(4-x^{2}\right)^{3}}}$

5 The expression $\sin x-\sqrt{3} \cos x$ can be written in the form $2 \sin (x+\alpha)$. Find the value of α.
(A) $\quad \alpha=\frac{\pi}{6}$
(B) $\alpha=-\frac{\pi}{6}$
(C) $\quad \alpha=\frac{\pi}{3}$
(D) $\quad \alpha=-\frac{\pi}{3}$

6 The equation of motion of a particle moving in Simple Harmonic Motion is given by $\ddot{x}=1-3 x$. Which of the following statements is true?
(A) The period of motion is $\frac{2 \pi}{\sqrt{3}}$ and the centre is $x=\frac{1}{3}$
(B) The period of motion is $\frac{2 \pi}{3}$ and the centre is $x=3$
(C) The period of motion is $\frac{-2 \pi}{3}$ and the centre is $x=3$
(D) The period of motion is $\frac{2 \pi}{3}$ and the centre is $x=\frac{1}{3}$.

7 What is the exact value of $\tan ^{-1}\left(\tan \frac{5 \pi}{6}\right)$?
(A) $-\frac{1}{\sqrt{3}}$
(B) $\sqrt{3}$
(C) $\frac{5 \pi}{6}$
(D) $-\frac{\pi}{6}$
$8 \quad$ What is the coefficient of x in $\left(x^{2}-\frac{2}{x}\right)^{5}$?
(A) $\quad-160$
(B) -80
(C) $\quad-32$
(D) 3

9 Mark, Greg and four friends arrange themselves at random in a circle. What is the probability that Mark and Greg are not together?
(A) $\frac{1}{120}$
(B) $\frac{2}{5}$
(C) $\frac{3}{5}$
(D) $\frac{119}{120}$

10 By using symmetry arguments, what is the value of $\int_{-a}^{a} \cos ^{-1} x d x$ where $-1 \leq a \leq 1$?
(A) 0
(B) $\frac{a \pi}{2}$
(C) $a \pi$
(D) $2 a \pi$

Section II

60 marks

Attempt Questions 11-14
Allow about 1 hour and 45 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Find the size of the acute angle between the lines $2 x+y=5$ and $3 x-y=1$.
(b) Using the substitution $u=2 x^{2}+1$, or otherwise, find $\int x\left(2 x^{2}+1\right)^{\frac{5}{4}} d x$. 3
(c) Let $P(x)=(x+1)(x-3) Q(x)+a(x+1)+b$, where $Q(x)$ is a polynomial and a and b are real numbers.
When $P(x)$ is divided by $(x+1)$ the remainder is -11 .
When $P(x)$ is divided by $(x-3)$ the remainder is 1 .
(i) What is the value of b ?
(ii) What is the remainder when $P(x)$ is divided by $(x+1)(x-3)$? 2
(d) Let $f(x)=\sin ^{-1}(x+4)$.
(i) State the domain of the function $f(x)$.
(ii) Find the gradient of the graph of $y=f(x)$ at the point where $x=-4$.
(iii) Sketch the graph of $y=f(x)$.
(e) In a factory that makes metal containers it is found that 2% have defects. Find the probability (leaving answers in index form) that a random sample of twenty such metal containers should contain:
(i) no defective containers.
(ii) not more than one defective container.

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) Find the exact value of the volume of the solid of revolution formed when the region bounded by the curve $y=\sin 2 x$, the x-axis and the line $x=\frac{\pi}{8}$ is rotated about the x-axis.
(b) (i) Find the vertical and horizontal asymptotes of the hyperbola $y=\frac{x-1}{x-3}$ and hence sketch the graph of $y=\frac{x-1}{x-3}$, carefully showing any intercepts with the coordinate axes.
(ii) Hence, or otherwise, find the values of x for which $\frac{x-1}{x-3} \leq 2$
(c) A team of 4 players consists of 2 men and 2 women.

A total of 7 players are available of which 4 are women and 3 are men.
(i) How many different teams of 4 players can be selected?

1
(ii) If 2 of the players are husband and wife and wish to play in the same team, how many different teams can now be selected if the husband and wife are on the team?
(d) Consider the function $f(x)=e^{x}-e^{-x}$.
(i) Show that $f(x)$ is increasing for all values of x.
(ii) Show that the inverse function is given by:

$$
\begin{equation*}
f^{-1}(x)=\log _{e}\left(\frac{x+\sqrt{x^{2}+4}}{2}\right) \tag{1}
\end{equation*}
$$

(iii) Hence, or otherwise, solve $e^{x}-e^{-x}=3$. Give your answer correct to two decimal places.

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) Use mathematical induction to prove that $3^{3 n}+2^{n+2}$ is divisible by 5 , for all positive integers.
(b) (i) Show that the equation $e^{-x}=\sin 2 x$ has a root lying between 1 and 2 .
(ii) By taking 1.5 as a first approximation, use one application of Newton's method to obtain a better approximation to this root. Give your answer correct to three decimal places.
(c) A particle is moving in simple harmonic motion about the origin O. Its displacement $x \mathrm{~cm}$ from O at time t seconds satisfies the equation:

$$
\ddot{x}=-\pi x
$$

(i) If the velocity of the particle is $v \mathrm{~cm}$ per second, derive an expression for v^{2} as a function of x, given that the amplitude of the motion is 4 cm .
(ii) Where is the particle when its speed is 5 cm per second, giving your answer correct to 4 significant figures?
(d) Two parametric points $P\left(2 p, p^{2}\right)$ and $Q\left(2 q, q^{2}\right)$ lie on the parabola $x^{2}=4 y$, where P lies in the $1^{\text {st }}$ quadrant, Q in the $2^{\text {nd }}$ quadrant and the line through $P Q$ is parallel to the line $y=m x$, where $m>0$ as shown in the diagram below.

(i) Show that $p+q=2 m$.

The equation of the normal to the parabola at the point P is $x+p y=p^{3}+2 p$. (Do NOT prove this)
(ii) Find the coordinates of N, the point of intersection of the normals to the curve from P and Q.
(iii) Determine the Cartesian equation of the locus of N as the line $P Q$ moves parallel to the line $y=m x$. Describe the locus of N if $m=0$.

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a)

Two circles intersect at B, E and $A X$ is a tangent to the circle $A B E . A B$ produced meets the second circle at C, and $X C$ meets the circle $B C D E$ again at D as shown.

Let $\angle X A C=\alpha^{\circ}$ and $\angle A X C=\beta^{\circ}$.
Copy or trace the diagram into your writing booklet.
(i) Give the reason why $\angle A E B=\alpha^{\circ}$
(ii) Prove that $A X D E$ is a cyclic quadrilateral.
(b) Tom and Jerry play a game by each tossing a fair coin. The game consists of tossing the two coins together, until for the first time either two heads appear when Tom wins, or two tails appear when Jerry wins.
(i) What is the probability that Tom wins at or before the third toss?
(ii) Hence, or otherwise, show that the probability that Tom wins at or before the $n^{\text {th }}$ toss is $\frac{1}{2}-\frac{1}{2^{n+1}}$.
(c) (i) Use the binomial theorem to write out the expansion of $(1+x)^{n}$.
(ii) Hence prove that $\sum_{r=1}^{n} r^{n} C_{r} 2^{r-1}=n .3^{n-1}$.
(d) Two particles are projected from the same point on level ground with the same speed $V \mathrm{~m} / \mathrm{s}$ and with angles of projection α and $\frac{\pi}{2}-\alpha$ to the horizontal.

The equations of motion for a particle projected at an angle of α are

$$
x=V t \cos \alpha \text { and } y=V t \sin \alpha-\frac{1}{2} g t^{2}
$$

(Do NOT prove these equations)
(i) Prove that the maximum height h_{1} of a particle with angle of projection α

$$
\text { is } h_{1}=\frac{V^{2} \sin ^{2} \alpha}{2 g} \text {. }
$$

The greatest heights they reach are h_{1} and h_{2}.
(ii) Show that, for any α,
$h_{1}+h_{2}=\frac{1}{2} R$, where R is the maximum range.
(iii) Explain why both particles have the same range. Furthermore, given $\tan \alpha=\frac{3}{4}, V=200 \mathrm{~m} / \mathrm{s}$ and $g=10 \mathrm{~m} / \mathrm{s}^{2}$, what time must elapse between the instants of projection if the particles collide as they strike the ground?

End of paper

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\quad \frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\quad \ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\quad \frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=\quad-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\quad \frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\quad \frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Note $\ln x=\log _{e} x, \quad x>0$

2015 Year 12 Mathematics Ext 1 HSC Task 5 Solutions

2015 Year 12 Mathematics Ext 1 HSC Task 5 Solutions

Suggested Solution (s)
11(d) $f^{\prime}(x)=\sin ^{-1}(x+4)$
i) domain $-1 \leqslant x+4 \leqslant 1$
$-5 \leqslant x \leqslant-3$

ii) $f^{\prime}(x)=\frac{1}{\sqrt{1-(x+4)^{2}}}$

$$
\begin{aligned}
f^{\prime}(-4) & =\frac{1}{\sqrt{1-(-4+4)^{2}}} \\
& =1
\end{aligned}
$$

iii)
e) $P(D)=\frac{1}{50} \quad P(\tilde{D})=\frac{49}{50}$
consider $\left(\frac{49}{50}+\frac{1}{50}\right)^{20}$
i)

$$
\begin{aligned}
P(x=0) & ={ }^{20} C_{0}\left(\frac{49}{10}\right)^{20} \\
& =\left(\frac{49}{50}\right)^{20}
\end{aligned}
$$

ii)

$$
\text { i) } \begin{aligned}
& P(x \leqslant 1)=P(x=0)+P(x=1) \\
&=\left(\frac{49}{50}\right)^{20}+{ }^{20} C_{1}\left(\frac{49}{50}\right)^{14}\left(\frac{1}{50}\right) \\
&=\left(\frac{49}{50}\right)^{20}+20\left(\frac{49}{50}\right)^{19}\left(\frac{1}{50}\right) \\
&=\left(\frac{49}{50}\right)^{19}\left[\frac{49}{50}+\frac{20}{50}\right] \\
&=\left(\frac{49}{50}\right)^{19}\left(\frac{69}{50}\right) \quad \begin{array}{l}
\text { (0.98 } \\
\text { or equivalent }
\end{array} \\
& \hline\binom{20}{1}(0.02)(0.98)^{19}
\end{aligned}
$$

QUESTON 12
(9) $\quad v=\pi \int y^{2} d x$

$$
\begin{aligned}
& =\pi \int_{0}^{\frac{\pi}{8}} \operatorname{An}^{2} 2 x d x \\
& =\frac{\pi}{2} \int_{0}^{\frac{\pi}{8}} 1-\cos 2 A x-1-\cos 4 x \\
& =\frac{\pi}{2}\left[x-\frac{\sin ^{2} 4 x}{4}\right]_{0}^{\frac{\pi}{8}} \\
& =\frac{\pi}{2}\left(\frac{\pi}{8}-\frac{1}{4}-\frac{1}{4} \operatorname{An} \frac{\pi}{2}\right)-(0-\mu x) \\
& =\frac{\pi}{2}\left(\frac{\pi}{8}-\frac{1}{4}\right) \\
& \\
& =\frac{\pi}{16}(\pi-2) 4^{3}
\end{aligned}
$$

(b) i) $\quad y=\frac{x-1}{x-3}$
vertical uspuptote : $x=3$

$$
\begin{align*}
y= & \frac{x-3+2}{x-3} \\
& =1+\frac{2}{x-3} \tag{3}
\end{align*}
$$

If $x \rightarrow \infty, \frac{2}{x+3} \rightarrow 0 \therefore y \rightarrow 1$
\quad hertahtul unpuptole: $y=1$

At pant of werichon with $y=2$

$$
\begin{gathered}
2=\frac{x-1}{x-3} \\
2 x-6=x-1 \\
x=5
\end{gathered}
$$

$\therefore \frac{x-1}{x-3} \leqslant 2$ for $x<3$ and $x \geqslant 5$
(c) 4 players 2nen, 2naiden.

7 avulable $4 \mathrm{me}, 3 \mathrm{~m}$.
(i) nouble of teans $={ }^{4} C_{2} \times{ }^{3} C_{2}$ $=18$
(ii) number of tecius $={ }^{3} C_{1} x^{2} C_{1}$ $=6$.
(d) $f(x)=e^{1}-e^{-x}$
i) $f^{\prime}(x)=e^{x}+e^{-x}$
>0 for all $x \in$ il.
$\therefore f(x)$ minereating for all $x \in \mathbb{R}$.
(ii)

$$
\begin{aligned}
\text { Let } y & =e^{x}-e^{-x} \\
& =e^{x}-\frac{1}{e^{x}} \\
& =\frac{e^{2 x}-1}{e^{x}}
\end{aligned}
$$

$t^{-1}:$

$$
{ }^{-1}: \quad x=\frac{e^{2 y}-1}{2 e^{1 y}}
$$

$$
e^{y} x=e^{2 y}-1
$$

$$
e^{2 y}-e^{4} x-1=0
$$

Let $u=e^{y}$

$$
\begin{aligned}
& \begin{aligned}
& u^{2}-u x-1=0 \\
& u=\frac{x \pm \sqrt{x^{2}-4(1)(1)}}{2} \\
&=\frac{x \pm \sqrt{x^{2}+4}}{2} \\
& \therefore e^{y}=\frac{x \pm \sqrt{x^{2}+4}}{2} \\
& e^{3}>0 \therefore e^{y}=\frac{x+\sqrt{x^{2}+4}}{2} \\
& \therefore y=\ln \left(\frac{x+\sqrt{x^{2}+4}}{2}\right)
\end{aligned}
\end{aligned}
$$

(iii)

$$
\therefore f^{-1}(x)=\ln \frac{2}{\frac{x+\sqrt{x^{2}+4}}{2}} \text { as regd }
$$

$$
\begin{align*}
e^{x}-e^{-x} & =3 \tag{1}\\
f^{-1}(3) & =\ln \left(3+\sqrt{3^{2}+4}\right) \\
& =\ln \left(\frac{3+\sqrt{13}}{13}\right) \\
& =1.1947 \\
& =1.19(2 d p)
\end{align*}
$$

QUESTON B.
(1) P.T $3^{3 n}+2^{n+2}$ is cherabibley 5

Nep 1: Prone thui for $n=1$
when $n=1,3^{3 n}+2^{n+2}$

$$
\begin{aligned}
& =3^{3}+2^{3} \\
& =35
\end{aligned}
$$

when 15 demedhe ofy
\therefore hue for $n=1$
Step L:
Alsuming towe for $n=k$
Re. $3^{3 k}+2^{k+2}=5$ it for rome intery x^{-1} prove huse for $n=k+1$

$$
\begin{aligned}
& 3^{3(k+1)}+2^{k+1+2} \\
& =3^{3 k+3}+2^{k+3} \\
& =3^{3 k} \cdot 3^{3}+2^{k} \cdot 2^{3} \\
& =3^{3}\left(5 m-2^{k+2}\right)+2^{k} \cdot 2^{3} \\
& =135 m-27 \cdot 2^{k+2}+2 \times 2^{k+2} \\
& =135 m-25 \times 2^{k+2} \\
& =5\left(27 m-52^{k+2}\right)
\end{aligned}
$$

Thech is dumeble bys
Anice hue for $n=1$ and two for $n=k+1$, cosuming tme for $n=k$, thein true fo $n=1+1=2$, $n=241=3 \mathrm{et} \quad \therefore$ the fo all prodve wageger
(b) , i)

$$
\begin{aligned}
\text { Let } f(x)=e^{-x}-\sin 2 x \\
\begin{array}{rlrl}
f(1) & =e^{-1}-\sin 2 \quad f(2) & =e^{-2}-\sin 4 \\
& =-0.541 \ldots & & =0.892 \ldots \\
& & >0
\end{array}
\end{aligned}
$$

root hes benwed $x=1$ and $x=2$
(i)

$$
\begin{align*}
\dot{a}_{2} & =a_{1}-\frac{+\left(a_{1}\right)}{t^{(}\left(a_{1}\right)} \quad f^{\prime}(x)=-e^{-x}-2 \cos 2 x \\
& =1-5-e^{-15}-\operatorname{sun}_{4} \tag{2}\\
& =e^{-15}-2 \cos 3 \\
& =1.4533 \\
& =1-453\left(t_{0} 3 d_{p}\right)
\end{align*}
$$

(c) $\ddot{x}=-\pi x$.
$x=-n^{2} x, n \sqrt[3 i \pi]{\pi}$ or: $\quad r^{2}=n^{2}\left(u^{2}-x^{2}\right)$ $=\pi\left(16-x^{2}\right)$
(i) $\frac{1}{2} v^{2}=\int-\pi x d x$

$$
=-\frac{\pi x^{2}}{2}+c .
$$

aupltudele $=4$: chen $v=0, x=4$

Whew $x=0, r=4 \pi$
(ii) When $v=5$,
$25=-\pi x^{2}+16 \pi$

$$
\pi x^{2}=16 \pi-\frac{25}{25}
$$

$$
x^{2}=16-\frac{25}{11}
$$

$$
\begin{equation*}
=\frac{16-25}{\pi} \tag{1}
\end{equation*}
$$

$$
x= \pm \sqrt{\frac{16 \pi-25}{\pi}}
$$

$$
= \pm 2.836(t 045 t)
$$

$$
\begin{align*}
& m_{\text {fle }}=\frac{p^{2}-q^{2}}{2 p-2 q} \\
& m=\frac{p+q}{2} \\
& \quad-p+q=2 \text { an as req } \tag{1}
\end{align*}
$$

(ii) $)^{x+p y}=p^{3}+z_{p}-$ - eqn of numal alp

$$
\begin{aligned}
\text { A. }: x+q y & \left.=q^{3}+2 q-q\right) \\
(p-q) y & =p^{3}-q^{3}+2 p-2 q \\
(p-q) y & =p-q)\left(p^{2}+p++q^{2}\right)+2(p-q) \\
y & =p^{2}+p+q^{2}+2
\end{aligned}
$$

$$
x+p\left(p^{2}+p y+y^{2}+2\right)=p^{3}+2 p
$$

$$
x=-p^{2} y-p y^{2}
$$

$$
\begin{equation*}
=-p q(p+q) \tag{2}
\end{equation*}
$$

$$
=12.8358
$$

$\therefore N\left(-p q(p+y), p^{2}+p q+q^{2}+2\right)$
(iii) for locus of N

$$
\begin{aligned}
x & =-p q(\rho+q) \\
& =-p q(2 m) \quad \text { fran (i) }
\end{aligned}
$$

$$
\text { Now, } y=p^{2}+q^{2}+p q+2
$$

$$
=(p+q)^{2}-p q+2
$$

$$
=(2 m)^{2}+\frac{x}{2 i n}+2
$$

$$
\begin{aligned}
& y=4 m^{2}+\frac{x}{2 m}+2 \\
& y=\frac{x}{2 m}+4 m^{2}+2 \\
& \varphi m=0, \quad m_{P Q}=0 \quad \text { u } P Q \text { is litratal } \\
& \text { and } p+q=0
\end{aligned}
$$

- Ance $\mathrm{Ptq}=2 \mathrm{~m}$

$$
N=\left(-2 m p q, m^{2}+2-p q\right)
$$

\therefore when $m=0, N \cup(0,2-p q)$
Mance p>0, y<0 (or vilaversa), py<0.

$$
\begin{aligned}
& \text { locur is } x=0 \text { 和 } y>2
\end{aligned}
$$

2015 Year 12 Mathematics Ext 1 HSC Task 5 Solutions

Suggested Solution (s)
Question $14+(C)$
i) $(1+x)^{n}=\sum_{r=0}^{n}{ }^{n} c_{r} x^{n}$
$={ }^{n} c_{0}+{ }^{n} c_{1} x+{ }^{n} c_{2} x^{2}+\cdots+{ }^{n} c_{n} x$
ii) Differentiating both sides

$$
\begin{aligned}
& n(1+x)^{n} \\
& \begin{aligned}
=n & c_{1}+2^{n} c_{2} x
\end{aligned}+3^{n} c_{3} x+\cdots \\
& \\
& +n \cdot{ }^{n} c_{n} x^{n-1}
\end{aligned}
$$

Now put $x=2$

$$
\begin{aligned}
& n(3)^{n-1}={ }^{n} c_{1}+2^{n} c_{2} \cdot 2+ \\
& 3^{n} c_{3} 2^{2}+\cdots+n^{n} c_{n} 2^{n-1} \\
& n \cdot 3^{n-1}=\sum_{r=1}^{n} r^{n} 2^{r-1}
\end{aligned}
$$

Q14(d)

$$
\begin{equation*}
\dot{x}=v \cos \alpha \quad \dot{y}=v \sin \alpha-g \alpha \tag{i}
\end{equation*}
$$

At maximum height $y=0$
ie) $V \sin \alpha-g t=0$

$$
\begin{equation*}
t=\frac{v \sin x}{g} \tag{1}
\end{equation*}
$$

sub (1) into $y(I)$

$$
\begin{aligned}
y & =v\left(\frac{v \sin \alpha}{9}\right) \sin \alpha-\frac{1}{2} g\left(\frac{\nu \sin \alpha}{9}\right)^{2} \\
& =\frac{v^{2} \sin ^{2} \alpha}{9}-\frac{v^{2} \sin ^{2} \alpha}{29}
\end{aligned}
$$

$$
=\frac{v^{2} \sin ^{2} \theta}{2 g}
$$

greatest height for projection $\left(\frac{\pi}{2}-\alpha\right)$ $=\frac{v^{2} \sin ^{2}\left(\frac{\pi}{2}\right.}{2 g}$
$=\frac{v^{2} \cos ^{2} \alpha}{2 g}$
h_{1} th 2 $=\frac{v^{2} \sin ^{2} \alpha}{2 g}+\frac{v^{2} \cos ^{2} \phi}{2 \theta}$
$=\frac{v^{2}\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)}{2 g}$
$=\frac{v^{2}}{2 g}$
$=\frac{1}{2}\left(\frac{v^{2}}{g}\right)$
$=\frac{1}{2} R$ were R is max range $=\frac{v^{2}}{9}$.

Suggested Solution (s)
Q14 (d) (iii)
$\operatorname{Tin} \alpha=\frac{3}{5}$
Time of flight fur particle

$$
\begin{aligned}
& =\frac{2 v 5 \sin \alpha}{9} \\
& =\frac{2 \times 200 \times \frac{3}{5}}{10} \\
& =24 \mathrm{sec}
\end{aligned}
$$

(a)

$$
\begin{aligned}
& \left(\frac{\pi}{2}-\alpha\right) \\
\Rightarrow & 2 v \frac{2 \sin \left(\frac{\pi}{2}-\alpha\right)}{9} \\
= & \frac{2 v \cos \alpha}{9} \\
= & \frac{2 \times 200 \times \frac{4}{5}}{10} \\
= & 32 \text { seconds }
\end{aligned}
$$

Range for particle with

- angle of projection α

$$
=\frac{2 v^{2} \cos \alpha \sin \alpha}{9}
$$

- angle af $\left(\frac{\pi}{2}-\alpha\right)$

$$
=\frac{2 v^{2} \sin \left(\frac{\pi}{2}-\alpha\right) \cos \left(\frac{\pi}{2}-\alpha\right)}{9}
$$

$$
=\frac{2 v^{2} \cos \alpha \sin \alpha}{g}
$$

- range for particle with angle of projection α
$\therefore 8$ seconds must elapse between the instants of projection if the particle collide so they strike the ground.

