

Northern Beaches Secondary College Manly Selective Campus

2014 HSC Trial Examination

Mathematics Extension 1

General Instructions

- Reading time 5 minutes.
- Working time 2 hours.
- Write using blue or black pen.
- Board-approved calculators and templates may be used.
- All necessary working should be shown in every question.
- Multiple choice questions are to be completed on the special answer page.

Total marks – 70

• Attempt Questions 1-14

Multiple choice section

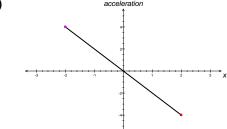
Answer each of the following ten (10) questions on the special answer sheet provided.

- Q1. $\frac{2 \tan \theta}{1 + \tan^2 \theta}$ is equivalent to?
 - A) $\cos 2\theta$
 - B) $\sin 2\theta$
 - C) $\tan 2\theta$
 - D) $\cot 2\theta$
- Q2. The remainder theorem when $P(x) = x^3 2x^2 4x + 7$ is divided by 2x + 3 is:
 - A) 4
 - B) $\frac{41}{8}$
 - C) $-\frac{1}{8}$
 - D) -26
- Q3. The point P(2,2) divides the interval joining A(-2, -4) and $B(x_2, y_2)$ in the ratio 2:1. The coordinates of B are?
 - A) (4, 5)
 - B) (6, 8)
 - C) (0, -1)
 - D) (10, 14)
- Q4. The term independent of x in the expansion $\left(x + \frac{3}{x}\right)^4$ is?
 - A) 3
 - B) 6
 - C) 18
 - D) 54

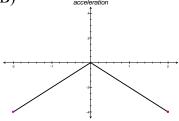
Q5. A particle is moving along a straight line. The displacement of the particle from a fixed point O is given by x. The graphs below show acceleration against displacement.

Which of the graphs below best represents a particle moving in simple harmonic motion?

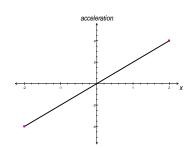
(A)



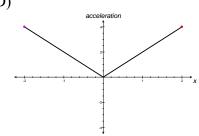
(B)



(C)



(D)



Q6. The definite integral $\int_{e}^{e^2} \frac{2}{x(\log_e x)^2} dx$ is evaluated using

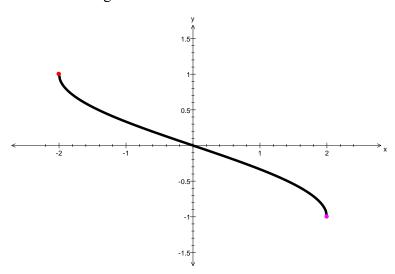
the substitution $u = \log_e x$.

The value of the integral is?

A)
$$2\left(\frac{1}{e} - \frac{1}{e^2}\right)$$

$$\mathbf{B}) \quad 2\left(\frac{1}{e^2} - \frac{1}{e}\right)$$

Q7. The function shown in the diagram below has the equation $y = A\sin^{-1}Bx$. Which of the following is true?



(A)
$$A = 1, B = \frac{1}{2}$$

(B)
$$A = -1, B = 2$$

(C)
$$A = \frac{-2}{\pi}, B = \frac{1}{2}$$

(D)
$$A = \frac{2}{\pi}, B = 2$$

Q8. Three English books, four Mathematics books and five Science books are randomly placed along a bookshelf. What is the probability that the Mathematics books are all next to each other?

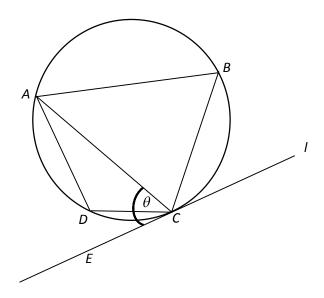
A)
$$\frac{1}{3!5!}$$

B)
$$\frac{4!9!}{12!}$$

C)
$$\frac{4!3!5!}{12!}$$

D)
$$\frac{4!}{9!}$$

Q9. A, B, C and D are points on a circle. The line l is tangent to the circle at C. $\angle ACE = \theta$.



What is $\angle ADC$ in terms of θ ?

- A) $90^{\circ} \theta$
- B) $180^{\circ} \theta$
- C) $180^{\circ} 2\theta$
- D) θ

Q10. What is the indefinite integral for $\int (\cos^2 x + \sec^2 x) dx$?

A)
$$\frac{1}{2}x + \frac{1}{4}\sin 2x + \frac{1}{2}\tan x + c$$

B)
$$\frac{1}{2}x - \frac{1}{4}\sin 2x + \frac{1}{2}\tan x + c$$

$$C) \qquad \frac{1}{2}x + \frac{1}{4}\sin 2x + \tan x + c$$

$$D) \qquad \frac{1}{2}x - \frac{1}{4}\sin 2x + \tan x + c$$

End of Multiple Choice

Free response questions - answer each question in a separate Booklet

Question 11: Start a new Booklet

15 Marks

a) Solve
$$\left(\frac{x+3}{x^2-1}\right) \le 0$$

b) A container ship brings a total of 1200 cars into Australia. Of these cars, three hundred have defective brakes.

A total of five hundred cars are unloaded at Sydney.

Find an expression for the probability that one hundred of the cars unloaded at Sydney have defective brakes.

2

(NOTE: You don't need to simplify or evaluate the expression).

c) How many times must a die be rolled so that the probability of at least one six exceeds 0.5?

2

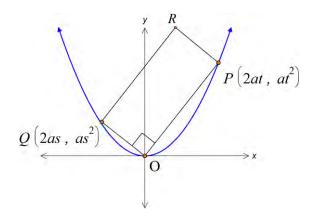
d) Line A is defined by the equation y = 2x + 1. Line B is defined by the equation y = mx + b

If the acute angle between the two is 45 degrees, what are the possible values of m?

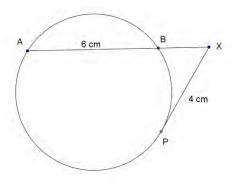
2

Question 11: continued on next page

Question 11: continued.



- e) In the diagram above the point R is the fourth vertex of the rectangle POQR. The points P and Q move such that $\angle POQ = 90^{\circ}$.
 - (i) Show that st = -4
 - (ii) Find the locus of the point R
- f) Find the general solution of the equation: $\sin\theta \cos\theta = \frac{1}{2}$
- g) The diagram shown below shows a circle and AB is a chord of length 6 cm. The tangent to the circle at P meets AB produced at X. PX = 4 cm. Find the length of BX.



Question 12: Start a new Booklet

15marks

1

2

a) (i) Show that a zero of the function

$$f(x) = \log_e x - \frac{1}{x}$$

lies between x = 1 and x = 2.

(ii) Use one application of Newton's Method with an initial approximation of x = 1.5 to obtain an improved estimate to the solution of the equation:

$$\log_e x - \frac{1}{x} = 0.$$

(State your answer to one decimal place.)

b) The rate of change of the temperature *T* of a cool item placed in a hot environment is determined by the equation.

$$\frac{dT}{dt} = k(S - T)$$

where k is a constant and T is the temperature of the object, and S is the temperature of the environment.

(i) Show that $T = S - Ae^{-kt}$ is a solution to the differential equation:

$$\frac{dT}{dt} = k(S - T). 1$$

Jamie is cooking a large roast in an oven set to 160°C. The roast will be cooked when the thermometer shows that the temperature of the centre of the roast is 150°C. When Jamie started cooking, the temperature of the centre of the roast was 4°C and 30 minutes later it was 60°C.

(ii) How long will it take for the roast to be cooked?

3

Question 12 continued on next page

Question 12 continued

- c) (i) Show that $\frac{1}{(n+1)!} \frac{n+1}{(n+2)!} = \frac{1}{(n+2)!}$
 - (ii) Use mathematical induction to show that, for all integers $n \ge 1$,

$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}.$$

- d) Given the function $f(x) = \frac{x^2 1}{x^3 8}$
 - (i) State the vertical asymptote. 1
 - (ii) Sketch the graph of the function. Clearly show on your diagram the x intercepts.
 (Your diagram should be one third of a page in size)

Question 13: Start a new Booklet

15 marks

- a) Find $\int e^{x+e^x} dx$ using the substitution $u = e^x$
- b) A particle is moving in a straight line. At time t seconds it has displacement x metres from a fixed point O on the line. The velocity is given by

$$\dot{x} = -\frac{1}{8}x^3$$

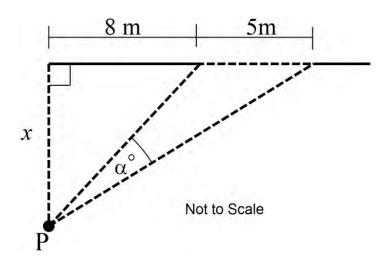
The acceleration of the particle is given by \ddot{x} . The particle is initially 2 metres to the right of O.

- (i) Show that $\ddot{x} = \frac{3}{64}x^5$
- (ii) Find an expression for x in terms of t 3
- c) The letters of the word **INTEGRAL** are arranged in a row. Calculate the probability that there are three letters between the letters "N' and "T".

Question 13 continued on next page

Question 13 continued

d) During the medieval wars, the enemy wanted to attack a fortress with a 5 metre opening along a front wall. The strategy was to stand at the point P, on a line 8 metres from the opening and perpendicular to the wall, as per the diagram. The archer stands x metres away from the wall, thus giving an angle of vision, α , through which to fire arrows from a cross-bow.



(i) Show that the angle of vision α is given by

$$\alpha = \tan^{-1}\left(\frac{13}{x}\right) - \tan^{-1}\left(\frac{8}{x}\right)$$

(ii) Determine the distance x which gives the maximum angle of vision α .

Question 14: Start a new Booklet

15 marks

3

2

a) Let α , β , γ be the roots of $P(x) = 2x^3 - 5x^2 + 3x - 5$.

Find the value of
$$\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2}$$

b) Let
$$(3+2x)^{20} = \sum_{r=0}^{20} a_r x^r$$

- (i) Write down an expression for a_r
- (ii) Show that $\frac{a_{r+1}}{a_r} = \frac{40 2r}{3r + 3}$
- (iii) Find the value of r which produces the greatest coefficient in the expansion of $(3 + 2x)^{20}$
- c) A particle is moving in a straight line in simple harmonic motion. At time *t* it has displacement *x* metres from a fixed point *O* on the line where

$$x = (\cos t + \sin t)^2$$

At time t, the velocity of the particle is $\dot{x} ms^{-1}$ and the acceleration is $\ddot{x} ms^{-2}$

- (i) Show that $\ddot{x} = -4(x-1)$
- (ii) Find the extreme positions of the particle during its motion.

Question 14 continued on next page.

Question 14continued

d) (i) Show that:

$$(1-x)^n \left(1+\frac{1}{x}\right)^n = \left(\frac{1-x^2}{x}\right)^n$$

3

(ii) By considering the expansion of $(1-x)^n \left(1+\frac{1}{x}\right)^n$ or otherwise, express

$$\binom{n}{2}\binom{n}{0} - \binom{n}{3}\binom{n}{1} + \dots + (-1)^n \binom{n}{n}\binom{n}{n-2}$$

in simplest form.

END OF EXAMINATION PAPER

This page has been left blank.

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

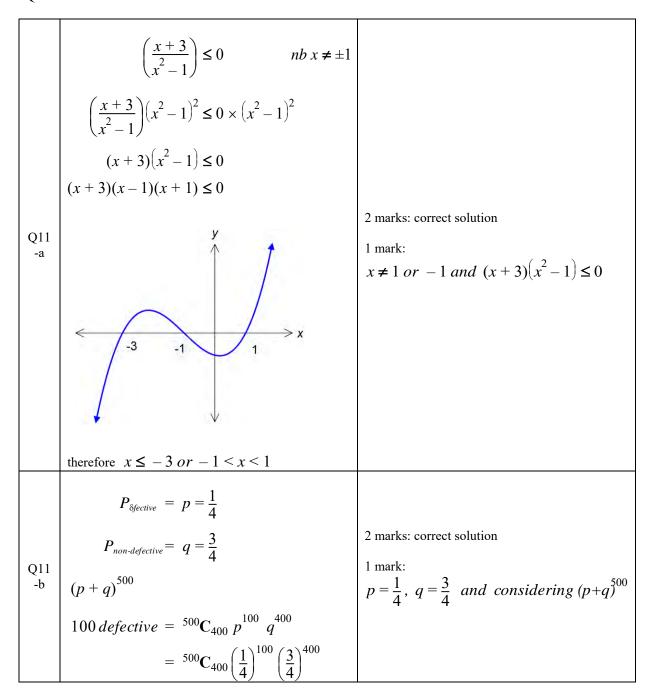
$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE:
$$\ln x = \log_e x$$
, $x > 0$

Q1	Let $t = \tan \theta$ then $\frac{2 \tan \theta}{1 + \tan^2 \theta} = \frac{2t}{1 + t^2}$ $= \sin 2\theta$	В
Q2	$x = -\frac{3}{2}$ $\left(-\frac{3}{2}\right)^3 - 2 \times \left(-\frac{3}{2}\right)^2 - 4 \times \left(-\frac{3}{2}\right) + 7 = \frac{41}{8}$	В
Q3	$\frac{1(-2) + 2x}{2+1} = 2 \Rightarrow x = 4$ $\frac{1(-4) + 2y}{2+1} = 2 \Rightarrow y = 5$	A
Q4	$T_{k+1} = {}^{4}C_{k}x^{4-k} \left(\frac{3}{x}\right)^{k}$ $= {}^{4}C_{k}x^{4-k} \left(3^{k}x^{-k}\right)$ $= {}^{4}C_{k}3^{k}x^{4-2k}$ independent of $x \Rightarrow 4-2k = 0$ $k = 2$ the term is ${}^{4}C_{2} \times 3^{2} = 54$	D
Q5	For simple harmonic motion $x = -n^2 x$	A

Q6	$\int_{e}^{e^{2}} \frac{2}{x(\log_{e} x)^{2}} dx = 2 \int_{e}^{e^{2}} \frac{1}{(\log_{e} x)^{2}} \times \frac{1}{x} dx$ $= 2 \int_{1}^{2} \frac{1}{u^{2}} du$ $= 2 \int_{1}^{2} u^{-2} du$ $= 2 \left[\frac{u^{-1}}{-1} \right]_{1}^{2}$ $= -2 \left[\frac{1}{u} \right]_{1}^{2}$ $= -2 \left(\frac{1}{2} - 1 \right)$ $= 1$	D
Q7	$A = \frac{-2}{\pi}$ Domain is $D: -1 \le Bx \le 1$ $-\frac{1}{B} \le x \le \frac{1}{B}$ $\therefore \frac{1}{B} = 2$ $B = \frac{1}{2}$	C
Q8	<u>4!9!</u> <u>12!</u>	В
Q9	180° – θ	В
Q10	$\frac{1}{2}x + \frac{1}{4}\sin 2x + \tan x + c$	С

Q11



	$p_6 = \frac{1}{6} \qquad q_{not 6} = \frac{5}{6}$	
	$\therefore \qquad p_{no\ 6's} = \left(\frac{5}{6}\right)^n$	
	$\therefore 1 - \left(\frac{5}{6}\right)^n > 0.5$	2 marks: correct solution 1 mark: $1 - \left(\frac{5}{6}\right)^n > 0.5$
	$0.5 > \left(\frac{5}{6}\right)^n$	Or bald correct answer
Q11-c	$ \ln(0.5) > n\ln\left(\frac{5}{6}\right) $	Note: many students failed to
	$\frac{\ln(0.5)}{\ln\left(\frac{5}{6}\right)} < n$	recognise that $\ln\left(\frac{5}{6}\right)$ is
	$\ln\left(\frac{5}{6}\right)$	negative requiring inequality sign to be reversed
	$3 \cdot 8 < x$	
	$\therefore \qquad n=4$	
	Therefore 4 throws of dice required.	
	$y = 2x + 1 \qquad m_1 = 2 \qquad m_2 = m$	
	$\tan\theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $	
Q11-d	$1 = \left \frac{2 - m}{1 + 2m} \right $	2 marks: correct solution
	$-1 = \frac{2-m}{1+2m} \qquad 1 = \frac{2-m}{1+2m}$	1 mark: correct formula
	$-2m - 1 = 2 - m \qquad 1 + 2m = 2 - m$	
	$m = -3 m = \frac{1}{3}$	

		1
Q11-e-i	$st = -4$ $m_{OQ} = \frac{as^2}{2as} = \frac{s}{2}$ $m_{OP} = \frac{at^2}{2at} = \frac{t}{2}$ $m_{OQ} \times m_{OP} = -1$ $\frac{s}{2} \times \frac{t}{2} = -1$ $to st = -4$	1 mark: correct demonstration
Q11-e-ii	$Q(2as, as^{2}) P(2at, at^{2})$ $As shape is a rectangle$ $R = (2as + 2at, as^{2} + at^{2})$ $x = 2a(s + t) \qquad y = a(s^{2} + t^{2})$ $\frac{x}{2a} = (s + t)$ $(s + t)^{2} = s^{2} + 2st + t^{2}$ $(s + t)^{2} - 2st = s^{2} + t^{2}$ $\frac{x^{2}}{4a^{2}} - 2(-4) = s^{2} + t^{2}$ $y = a\left(\frac{x^{2}}{4a^{2}} + 8\right)$ $y = \frac{x^{2}}{4a} + 8a$ $4ay = x^{2} + 32a^{2}$ $x^{2} = 4a(y - 8a)$	2 marks: correct demonstration 1 mark: applying $(s+t)^2 = s^2 + 2st + t^2$ Note: too many students were unable to write down coords of R, but wasted time deriving them
Q11-f	$\sin\theta \cos\theta = \frac{1}{2}$ $\therefore 2\sin\theta \cos\theta = 1$ $\sin 2\theta = 1$ $2\theta = \frac{\pi}{2} + 2n\pi$ $\theta = \frac{\pi}{4} + n\pi$	2 marks :correct solution 1 mark: correct base value

Q11-g	$XB. AX = XP^{2}$ $(6+x)x = 16$ $x^{2} + 6x - 16 = 0$ $(x+8)(x-2) = 0$ $x = -8 \text{ or } 2$ $\therefore \qquad x = 2 \text{ distance}$	2 marks: correct solution 1 mark: correct equation $(6 + x) x = 16$

Q12 $f(x) = \log_e x - \frac{1}{x}$ 1 mark - correct $f(1) = \log_e 1 - \frac{1}{1} = 0 - 1 = neg$ explanation based on correct values Q12-a-i calculated. $f(2) = \log_e 2 - \frac{1}{2} = 0.19 = pos$ Therefore at least one root must lie between 1 and 2 as graph moves from negative to positive. $f(x) = \log_e x - \frac{1}{x}$ $f'(x) = \frac{1}{x} + \frac{1}{x^2} = \frac{x+1}{x^2}$ 2 marks - correct solution $a_2 = a_1 - \frac{f(x)}{f'(x)}$ Q12-a-i 1 mark - correct substitution into $=1.5 - \frac{\log_e 1.5 - \frac{1}{1.5}}{\frac{1.5 + 1}{(1.5)^2}}$ correct formula = 1.735Version 1 $T = S - Ae^{-kt}$ Verision 2 $\frac{dT}{dt} = kAe^{-kt}$ $T = S - Ae^{-kt}$ $= kS - kS + kAe^{-kt}$ $= -k(-S + S - Ae^{-kt})$ = -k(-S + T) $\frac{dT}{dt} = kAe^{-kt}$ $= kAe^{-kt}$ 1 mark - fully explained in Q12b-i explanation of substitution. = k(S-T) = k(S-T) from ①

	$T = S - Ae^{-kt}$	
	at t = 0 T = 4	
	$4 = 160 - Ae^0$	
	A = 156	
	at t = 30 T = 60	
	$60 = 160 - 156e^{-30k} \qquad \qquad \bigcirc$	3 marks – correct solution
q12b-ii	$e^{-30k} = \frac{100}{156}$	2 marks – correct value for k
	$-30k = \ln \frac{100}{156}$	
	$k = \ln \frac{100}{156} \div -30 = 0.014823$	1 mark – correct to line (1)
	$150 = 160 - 156e^{-kt}$	
	$e^{-kt} = \frac{10}{156}$	
	$t = \ln \frac{10}{156} \div -k$	
	$= \ln \frac{10}{156} \div \left(-\ln \frac{100}{156} \div -30 \right)$	
	= 185min 20sec	
	$\left \frac{1}{(n+1)!} - \frac{n+1}{(n+2)!} \right $	
Q12-c	$= \frac{1}{(n+1)!} - \frac{n+1}{(n+2)(n+1)!}$	
	$=\frac{n+2}{(n+2)(n+1)!}-\frac{n+1}{(n+2)!}$	1 mark – correct solution
	$=\frac{(n+2)-(n+1)}{(n+2)!}$	
	$=\frac{1}{(n+2)!}$	

Q12c-ii	$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$ $For n = 1$ $LHS = \frac{1}{(1+1)!} = \frac{1}{2}$ $RHS = 1 - \frac{1}{(1+1)!} = \frac{1}{2}$	
Q12c-ii	$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$ Assume true for $n = k$ ie. $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots \frac{k}{(k+1)!} = 1 - \frac{1}{(k+1)!}$ RTP true for $n = k+1$ $LHS = \frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots \frac{k}{(k+1)!} + \frac{k+1}{((k+1)+1)!}$ $= 1 - \frac{1}{(k+1)!} + \frac{k+1}{(k+2)!}$ $= 1 - \left\{ \frac{1}{(k+1)!} - \frac{k+1}{(k+2)!} \right\}$ $= 1 - \frac{1}{(k+2)!}$ $= RHS$ Therefore proved true for all n by process of mathematical induction.	3 marks – correct solution clearly showing use of assumption and or substitution or matching algebra 2 marks – solution partially showing use of assumption and or substitution or matching algebra 1 mark – correct for $n = 1$
Q12d-i	$f(x) = \frac{x^2 - 1}{x^3 - 8}$ $= \frac{x^2 - 1}{(x - 2)(x^2 + x + 4)}$ $\therefore x = 2 \text{ is vertical asymptote}$	1 mark – correct solution $x \neq 2$ not accepted.
Q12d-ii	$\begin{array}{c} x \text{ Intercept} \\ (-1,0) \\ \hline \end{array} \begin{array}{c} x \text{ Intercept} \\ (1,0) \\ \hline \end{array} \begin{array}{c} x \text{ Intercept} \\ \hline \end{array} \begin{array}{c} x \text{ Intercept} \\ \hline \end{array}$ $\begin{array}{c} x \text{ Intercept} \\ \hline \end{array} \begin{array}{c} x \text{ Intercept} \\ \hline \end{array} $	3 marks - correct shape - correct asymptotes - correct <i>x</i> intercepts

Q13

Q13-a	$\int e^{x + e^x} dx$ $u = e^x \qquad du = e^x dx$ $= \int e^x \times e^{e^x} dx$ $= \int e^u du$ $= e^u + C$ $= e^{e^x} + C$	3 marks – correct solution 2 marks – for correct expression $\int e^{u} du = e^{u} + C$ 1 mark for $e^{x + e^{x}} = e^{x} \cdot e^{e^{x}}$
Q13b-i	$\dot{x} = -\frac{1}{8}x^3 = v$ $\therefore \frac{1}{2}v^2 = -\frac{1}{128}x^6$ $\ddot{x} = \frac{d\left(\frac{1}{2}v^2\right)}{dx} = \frac{6}{128}x^5$ $= \frac{3}{64}x^5$	2 marks for correct solution. 1 mark for $\frac{1}{2}v^2 = \frac{1}{128}x^6$

Q13b-ii	$\dot{x} = -\frac{1}{8}x^{3}$ $\frac{dx}{dt} = -\frac{1}{8}x^{3}$ $\therefore \frac{dt}{dx} = -\frac{8}{x^{3}} = -8x^{-3}$ $t = \int -8x^{-3}dx = \frac{-8x^{-2}}{-2}$ $t = \frac{4}{x^{2}} + C$ $at t = 0 \qquad x = 2$ $0 = \frac{4}{4} + C$ $\therefore C = -1$ $t = \frac{4}{x^{2}} - 1$ $t + 1 = \frac{4}{x^{2}}$ $x^{2} = \frac{4}{t+1}$ $x = \sqrt{\frac{4}{t+1}}$ Note; Positive answer only to agree original conditions	3 marks for correct solution 2 marks - $t = \frac{4}{2} + C$ and $C = -1$ - $t = \frac{4}{x^2} + C$ and correct primitive from incorrect value for C 1 mark - $t = \frac{4}{x^2}$
Q13c	INTEGRAL N T T T T T T T T T	3 marks – correct solution 2 marks – for $n(S)=8!$ and any two correct of 4 or 2! or 6! 1 mark - 8! -any two of 4 or 2! or 6!

	Not to Scale	
Q13-d	$\alpha = \tan^{-1}\left(\frac{13}{x}\right) - \tan^{-1}\left(\frac{8}{x}\right)$ $\alpha = \angle QPS - \angle QPR$ $\tan(\angle QPR) = \frac{8}{x} \qquad \tan(\angle QPS) = \frac{13}{x}$ $\angle QPR = \tan^{-1}\frac{8}{x} \angle QPS = \tan^{-1}\frac{13}{x}$ $\therefore \qquad \alpha = \tan^{-1}\left(\frac{13}{x}\right) - \tan^{-1}\left(\frac{8}{x}\right)$	1 mark for correct solution
Q13-d-ii	$\alpha = \tan^{-1}\left(\frac{13}{x}\right) - \tan^{-1}\left(\frac{8}{x}\right)$ $\frac{d\alpha}{dx} = -\frac{13}{x^2}\left(\frac{1}{1 + \left(\frac{13}{x}\right)^2}\right) + \frac{8}{x^2}\left(\frac{1}{1 + \left(\frac{8}{x}\right)^2}\right)$ $\therefore at \frac{d\alpha}{dx} = 0$ $\frac{13}{x^2}\left(\frac{1}{1 + \left(\frac{13}{x}\right)^2}\right) = \frac{8}{x^2}\left(\frac{1}{1 + \left(\frac{8}{x}\right)^2}\right)$ $\frac{8x^2}{x^2 + 64} = \frac{13x^2}{x^2 + 169}$ $8(x^2 + 169) = 13(x^2 + 64)$ $x^2 = \frac{520}{5}$ $x = \sqrt{104}$ Test for maximum $x = 10 \qquad \frac{d\alpha}{dx} = -\frac{13}{100}\left(\frac{1}{1 + \left(\frac{13}{10}\right)^2}\right) + \frac{8}{100}\left(\frac{1}{1 + \left(\frac{8}{10}\right)^2}\right) = 0.0004$ $x = 10.2 \qquad \frac{d\alpha}{dx} = -0.0000004$ Therefore change in gradient positive, zero to negative therefore maximum.	3 marks – correct solution 2 marks - $x = \sqrt{104}$ 1 mark - correct for $\frac{d\alpha}{dx}$ - value of x correctly obtained from incorrect $\frac{d\alpha}{dx}$

Q14-a	$\alpha + \beta + \gamma = -\frac{b}{a} = \frac{5}{2}$ $\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a} = \frac{3}{2}$ $\alpha\beta\gamma = -\frac{d}{a} = \frac{5}{2}$ $\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2} = \frac{\beta^2\gamma^2 + \alpha^2\gamma^2 + \alpha^2\beta^2}{\alpha^2\beta^2\gamma^2}$ $(\alpha\beta + \alpha\gamma + \beta\gamma)^2$ $= \alpha^2\beta^2 + \alpha^2\gamma^2 + \beta^2\gamma^2 + 2(\alpha^2\beta\gamma + \alpha\beta^2\gamma + \alpha\beta\gamma^2)$ $= \alpha^2\beta^2 + \alpha^2\gamma^2 + \beta^2\gamma^2 + 2\alpha\beta\gamma(\alpha + \beta + \gamma)$ $\therefore \qquad \left(\frac{3}{2}\right)^2 = \alpha^2\beta^2 + \alpha^2\gamma^2 + \beta^2\gamma^2 + 2 \times \frac{5}{2} \times \frac{5}{2}$ $\frac{9}{4} - \frac{25}{2} = \alpha^2\beta^2 + \alpha^2\gamma^2 + \beta^2\gamma^2$ $\frac{\beta^2\gamma^2 + \alpha^2\gamma^2 + \alpha^2\beta^2}{\alpha^2\beta^2\gamma^2} = \left(-\frac{41}{4}\right) \div \frac{25}{4} = -\frac{41}{25}$	3 marks: correct solution 2 marks: partial correct with a least 2 values of ratios of coefficients correct with correct required expansion 1 mark: at least two ratios correct only Or 1 mark: correct required expansion only
	$(3 + 2x)^{20}$ $\therefore x^{r} term = {}^{20}\mathbf{C}_{r} 3^{20-r} . (2x)^{r}$ $a_{r} = {}^{20}\mathbf{C}_{r} 3^{20-r} . (2)^{r}$	1 mark: correct solution

		<u></u>
	$a_{r} = {}^{20}\mathbf{C}_{r} 3^{20-r} \cdot (2)^{r}$ $a_{r+1} = {}^{20}\mathbf{C}_{r+1} 3^{19-r} \cdot (2)^{r+1}$ $\frac{a_{r+1}}{a_{r}} = \frac{{}^{20}\mathbf{C}_{r+1} 3^{19-r} \cdot (2)^{r+1}}{{}^{20}\mathbf{C}_{r} 3^{20-r} \cdot (2)^{r}}$ $= \frac{20! \times 3^{19-r} \cdot (2)^{r+1}}{(19-r)!(r+1)!} \times \frac{(20-r)!r!}{20! \times 3^{20-r} \cdot (2)^{r}}$ $= \frac{2(20-r)}{3(r+1)}$ $= \frac{40-2r}{3r+3}$	2 marks: correct solution 1 mark: partial correct with both terms correct
	$\frac{40-2r}{3r+3} \le 1$ $40-2r \le 3r+3$ $37 \le 5r$ $7 \cdot 4 \le r$ $\vdots \qquad r = 8$ $r = 8$ $^{20}\mathbf{C}_8 3^{12} \times 2^8 = 1 \cdot 714 \times 10^{13}$ $r = 7$ $^{20}\mathbf{C}_7 3^{13} \times 2^7 = 1 \cdot 582 \times 10^{13}$ $\mathbf{Test} \ r = 9$ $^{20}\mathbf{C}_9 3^{11} \times 2^9 = 1 \cdot 523 \times 10^{13}$	1 mark: correct solution
14c-i	$x = (\cos t + \sin t)^{2} = \cos^{2} t + 2\sin t \cos t + \sin^{2} t$ $\therefore x = 1 + \sin 2t$ $\dot{x} = 2\cos 2t$ $\dot{x} = -4\sin 2t$ $= -4(1 + \sin 2t - 1)$ $= -4(x - 1)$	2 marks: correct solution 1 mark: correct expression for velocity
14c-ii	$x = 1 + \sin 2t$ $-1 \le \sin 2t \le 1$ $0 \le 1 + \sin 2t \le 2$ $0 \le x \le 2$ therefore extremes of position are $x = 0$ and $x = 2$	2 marks: correct solution 1 mark: only one correct extreme

14 d -i	$(1-x)^n \left(1 + \frac{1}{x}\right)^n = \left[(1-x)\left(1 + \frac{1}{x}\right)\right]^n$ $= \left[1 + \frac{1}{x} - x - 1\right]^n$ $= \left(\frac{1}{x} - x\right)^n$ $= \left[\frac{1-x^2}{x}\right]^n$	1 mark: correct solution
	$=\left\lfloor \frac{1-x}{x} \right\rfloor$	

Determine the coefficient of x^2 on both sides of the equation.

$$RHS = (1-x)^{n} \left(1 + \frac{1}{x}\right)^{n}$$
$$= \left[\sum_{k=0}^{n} (-1)^{k} {}^{n}\mathbf{C}_{k} x^{k}\right] \left[\sum_{k=0}^{n} {}^{n}\mathbf{C}_{k} x^{-k}\right]$$

 \therefore coefficient of x^2

$$\binom{n}{2}\binom{n}{0} - \binom{n}{3}\binom{n}{1} + \dots + (-1)^n \binom{n}{n}\binom{n}{n-2}$$

$$LHS = \left(\frac{1-x^2}{x}\right)^n = \left(\frac{1}{x} - x\right)^n$$

$$= \sum_{k=0}^n (-1)^k \binom{n}{k} x^{-(n-k)} x^k$$

$$= \sum_{k=0}^n (-1)^k \binom{n}{k} x^{2k-n}$$

14d-ii

 \therefore coefficient of x^2 at

$$2k - n = 2$$

$$k = 1 + \frac{n}{2}$$

If *n* is odd, then *k* is not an integer therefore cannot exist.

therefore

$$\binom{n}{2}\binom{n}{0} - \binom{n}{3}\binom{n}{1} + \dots + (-1)^n \binom{n}{n}\binom{n}{n-2} = 0$$

If *n* is even then $(-1)^{1+\frac{n}{2}} \binom{n}{1+\frac{n}{2}}$ is coefficient of x^2

therefore

$$\binom{n}{2}\binom{n}{0} - \binom{n}{3}\binom{n}{1} + \dots + (-1)^n \binom{n}{n}\binom{n}{n-2} = (-1)^{1+\frac{n}{2}}\binom{n}{1+\frac{n}{2}}$$

3 marks : correct solution

2 marks: partial correct with significant progress to equating coefficients of squared term

1 mark: one expression for the squared term correct