

NORTHERN BEACHES SECONDARY COLLEGE

MANLY SELECTIVE CAMPUS

HIGHER SCHOOL CERTIFICATE

Trial Examination

2015

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Write your Student Number at the top of each page
- Answer Section I- Multiple Choice on Answer Sheet provided
- Answer Section II Free Response in a separate booklet for each question.
- Board approved calculators and templates may be used.

Section I Multiple Choice

- 10 marks
- Attempt all questions

Section II – Free Response

- 60 marks
- Each question is of equal value
- All necessary working should be shown in every question.

Weighting: 40%

Multiple Choice: Answer questions on provided answer sheet.

Q1. The diagram shows a circle with centre *O*. The line *PT* is tangent to the circle at the point *T*. $\angle TOP = 4x^{\circ}$ and $\angle TPO = x^{\circ}$.

What is the value of *x*?

- (A) 9
- (B) 18
- (C) 36
- (D) 72

Q2. Which of the following is a simplified expression for $\frac{\sin 2x}{1 - \cos 2x}$

- (A) $\sin x$
- (B) $\cos x$
- (C) $\tan x$
- (D) $\cot x$

Q3. The point P divides the interval AB in the ratio 3:7. In what external ratio does the A divide the interval PB

- (A) 3:10
- (B) 3:4
- (C) 7:3
- (D) 10:3

Q4. What is the obtuse angle between lines y = -x and $\sqrt{3} y = x$?

- (A) 15°
- (B) 75°
- (C) 105°
- (D) 165°

Q5. What is the value of
$$\int_{1}^{2} \frac{1}{\sqrt{4-x^{2}}} dx$$
?
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{2}$

Q6.

In how many ways can 5 people be selected from a group of 6 and then arranged in a line so that the two oldest people in the selected group are at either end of the line? (NB. No two people are the same age.)

- (A) 720
- (B) 144
- (C) 72
- (D) 36

Q7. The remainder of the division $\frac{x^5 + 1}{x^2 - 1}$ is equal to

- (A) 1
- (B) 2
- (C) *x* + 2
- (D) *x* + 1

Q8. The power of x in the 7th term of the expansion of $\left(\frac{4x}{5} - \frac{8}{5x}\right)^9$ is (A) 3 (B) -3 (C) 5

(D) -5

Q9. The velocity of a particle is given by the equation $v = \sqrt{4 + 4x}$. If the particle is initially located at the origin, what displacement at t = 3?

- (A) 3
- (B) 8
- (C) 15
- (D) 16

Q10. The diagram show the graph of a cubic function y = f(x).

Which is a possible equation of this function?

(A)
$$f(x) = -x(x-2)(x+2)$$

(B)
$$f(x) = x^2(x-2)$$

(C)
$$f(x) = -x^2(x+2)$$

(D)
$$f(x) = -x^2(x-2)$$

End of Multiple Choice

Question 11: Start A New Booklet

(a) Evaluate
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 2\sin^2 x + \cos^2 x \, dx$$
. (3)

(b) (i) Verify that
$$(\alpha\beta + \alpha\gamma + \beta\gamma)^2 = \alpha^2\beta^2 + \alpha^2\gamma^2 + \beta^2\gamma^2 + 2\alpha\beta\gamma(\alpha + \beta + \gamma).$$
 (1)

(ii) Hence, or otherwise, if α , β and γ are the roots of $x^3 - 3x^2 - x + 3 = 0$, evaluate $\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2}$ (3)

(c) (i) Determine the vertical asymptotes for
$$y = \frac{x+1}{x^2 - 16}$$
 (2)
(ii) Hence sketch the curve $y = \frac{x+1}{2}$

(ii) Hence sketch the curve
$$y = \frac{1}{x^2 - 16}$$
 (2)

(d) Find the general solution of the equation

$$\cot\theta \sec^2\theta - \cot\theta - \sqrt{3}\sec^2\theta + \sqrt{3} = 0$$
(4)

15 Marks

Question 12 Start A New Booklet

15 Marks

(a) Use the substitution
$$x = 2\sin\theta$$
 to show $\frac{\pi}{3} + \frac{\sqrt{3}}{2} = \int_0^1 \sqrt{4 - x^2} dx$ (3)

A particle moves with acceleration $\ddot{x} = -\frac{1}{4\sqrt{x}}$. Initially, the particle is one metre (b) to the right of the origin and its velocity is 4m/s.

Find the displacement of the particle when it is at rest.

(3)

(c) ABCD is a cyclic quadrilateral. The tangents from Q touch the circle at A and B.

The diagonal DB is parallel to the tangent AQ, and QA produced intersects CD produced at P.

	(i)	Prove that $\triangle BAD$ is isosceles, giving reasons.	(2)
	(ii)	Find $\leq DCB$ in terms of α , stating reasons.	(1)
	(iii)	Show that P,C, B and Q are concyclic points	(2)
(d)	(i)	Show that $x = 1.8$ is a reasonable approximation for the x value of the point of intersection of $y = 2sin x$ and $y = x$ in the domain $0.78 < x < 2.35$.	(1)
	(ii)	Use Newton's method with one application to find a better approximation to the x value of this point on intersection.	(3)

Question 13 Start A New Booklet

15 marks

(3)

(2)

(a) The diagram shows the parabola $x^2 = 4ay$

The tangent to the parabola at $P(2ap, ap^2)$ cuts the x-axis at T and the normal at P cuts the y-axis at N.

The equation to the tangent is given by $y = px - ap^2$

(i) Show the coordinates of N are
$$(0, a(p^2 + 2))$$
 (2)

- (ii) Let M be the midpoint of NT. Find the Cartesian equation of the locus. (3)
- (b) Use mathematical induction to prove that $(n+1)^2 + n 1$ is divisible by 2 for all integers $n \ge 1$.
- (c) A school band is to be formed with a brass section containing 8 students and a percussion section containing 4 students.
 - (i) In how many ways can the band be formed if 12 students audition for the brass section and 10 students audition for the percussion section? (1)
 - (ii) In how many ways can the band be formed if it is certain that Maria will be successful for the brass audition and Marcus will be successful for the percussion audition?

Question 13 continues on next page

Question 13 continued

(d) At time *t* years the number *N* of individuals is given by $N = \frac{a}{1+b e^{-t}}$ for some constants a > 0, b > 0. The initial population size is 20 and the limiting population size is 100.

(i) Show that
$$\frac{dN}{dt} = N\left(1 - \frac{N}{a}\right)$$
 (2)

(2)

(ii) Find the values of a and b.

Page 8 of 10

Question 14

15 marks

(a) Warehouse A has 100 computers and the probability that of selecting a computer which is defective is 0.02.

Warehouse B has 100 computers, two of which only, are defective.

Joe buys three computers from Warehouse A and three computers from Warehouse B. What is the probability that exactly one of the computers he has bought is defective?

(b) Two towers T_1 and T_2 have heights *h* metres and 2h metres respectively. The second tower is due south of the first tower. The bearing of tower T_1 from a surveyor is 292°. The bearing of the tower T_2 from the surveyor is 232°. The angle of elevation from the surveyor to the top of tower T_1 is 30° while the angle of elevation from the surveyor to the top of tower T_2 is 60°.

Show that the distance *d* between the two towers is given by $d = \frac{\sqrt{21}h}{3}$ metres. (3)

Question 14 continues on next page

(3)

Question 14 continued.

(c) A ball is projected vertically from the ground with a speed of 49 m/s. The height y of the ball at time t is given by $y = -4.9t^2 + 49t$. (Do NOT show this.)

At the same time, a second ball is projected from the ground into the air with an angle of projection θ . Its horizontal displacement is given by $x = 98t \cos \theta$ and its height is given by $y = -4.9t^2 + 98t \sin \theta$. (Do NOT show this.)

- (i) Find the maximum height of the ball that was projected vertically. (2)
- (ii) Find the value of θ at which the second ball should be projected if it is to hit the first ball when the first ball reaches its maximum height. (2)
- (iii) Find the horizontal distance between the two balls when they are first projected into the air. Give your answer in exact form. (1)

(e) Consider the binomial expansion

$$1 + {\binom{n}{1}}x + {\binom{n}{2}}x^2 + {\binom{n}{3}}x^3 + \dots + {\binom{n}{n}}x^n = (1+x)^n$$

Show that, if *n* is even:

$$4 \times 1 \times \binom{n}{2} + 8 \times 3 \times \binom{n}{4} + 12 \times 5 \times \binom{n}{6} + \dots + 2n(n-1)\binom{n}{n} = n(n-1)(2)^{n-2}$$
(4)

End of Examination

Q1	$OT \perp TP \text{radii} \perp \text{ to tangent at point of contact} \\ 5x^\circ + 90^\circ = 180^\circ \\ x = 18$	В
Q2	$\frac{\sin 2x}{1 - \cos 2x}$ $= \frac{2\sin x \cos x}{1 - (1 - 2\sin^2 x)}$ $= \frac{\sin x \cos x}{\sin^2 x}$ $= \frac{\cos x}{\sin x}$ $= \cot x$	D
Q3	3 A A 10	А
Q4	$\int_{1}^{2} \frac{1}{\sqrt{4 - x^{2}}} dx$ $= \left[\sin^{-1} \frac{x}{2} \right]_{1}^{2}$ $= \frac{\pi}{2} - \frac{\pi}{6}$ $= \frac{\pi}{3}$	С

Q5	$m_{1} = -1 \qquad m_{2} = \frac{1}{\sqrt{3}}$ $\tan \theta = \left \frac{m_{2} - m_{1}}{1 + m_{1} m_{2}} \right $ $= \left \frac{\frac{1}{\sqrt{3}} + 1}{1 - \frac{1}{\sqrt{3}}} \right = \left \frac{1 + \sqrt{3}}{\sqrt{3} - 1} \right $ $= 2 + \sqrt{3} $ $\theta = \tan^{-1} (2 + \sqrt{3}) = 75^{\circ}$ $\therefore \text{ Obtuse angle} = 180^{\circ} - 75^{\circ} = 105^{\circ}$	С
Q6	${}^{6}\mathbf{C}_{5} \times {}^{2}\mathbf{P}_{1} \times {}^{3}\mathbf{P}_{3} = 72$	С
Q7	$\frac{x^{5} + 1}{x^{2} - 1}$ $(x^{5} + 1) = (x^{2} - 1)Q(x) + (ax + b)$ $= (x + 1)(x - 1)Q(x) + (ax + b)$ $x = 1 \implies 2 = a + b$ $x = -1 = . \ 0 = b - a$ $\therefore \qquad a = 1 \ b = 1$ $R(x) = x + 1$	D
Q8	${}^{9}\mathbf{C}_{6}\left(\frac{4x}{5}\right)^{3}\left(-\frac{8}{5x}\right)^{6}$ = ${}^{9}\mathbf{C}_{6}\left(\frac{4}{5}\right)^{3}\left(-\frac{8}{5}\right)^{6}x^{3}x^{-6}$ = ${}^{9}\mathbf{C}_{6}\left(\frac{4}{5}\right)^{3}\left(-\frac{8}{5}\right)^{6}x^{-3}$	В

Q9	$v = \sqrt{4 + 4x} = 2\sqrt{1 + x}$ $\frac{dx}{dt} = 2\sqrt{1 + x}$ $\frac{dt}{dt} = \frac{1}{2\sqrt{1 + x}}$ $t = \frac{1}{2} \int (1 + x)^{-\frac{1}{2}} dx$ $t = \frac{1}{2} \times 2 \times \sqrt{1 + x} + C$ $t = 0 \Rightarrow x = 0$ $\therefore C = -1$ $t = \sqrt{1 + x} - 1$ $1 + x = (t + 1)^{2}$ $x = (t + 1)^{2} - 1$ $t = 3$ $x = (1 + 3)^{2} - 1 = 15$	С
Q10	Cubic of form $y = -ax^2(x-b)$ $\therefore y = -x^2(x+2)$	С

Q11

	$\frac{\pi}{2}$ $2\sin^2 x + \cos^2 x \ dx$ $\frac{\pi}{4}$	
	$= \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin^2 x + \cos^2 x + \sin^2 x dx$	3 marks – correct solution
	$= \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 1 + \sin^2 x dx$	2 marks - correct integrand
	$= \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 1 dx + \frac{1}{2} - \frac{1}{2} \cos(2x) dx$	1 mark – simplification to $\frac{\pi}{2}$
	$= \left[\frac{3x}{2} - \frac{\sin(2x)}{4}\right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$ $= \frac{3\pi}{4} - \frac{3\pi}{8} - \frac{\sin\pi}{4} - \frac{\sin\pi}{2}$ $= \frac{3\pi}{8} + \frac{1}{4}$	$\int_{\frac{\pi}{4}} 1 + \sin^2 x dx$
($\begin{aligned} \alpha\beta + \alpha\gamma + \beta\gamma)^{2} \\ &= \alpha^{2}\beta^{2} + \alpha^{2}\beta\gamma + \alpha\beta^{2}\gamma + \alpha^{2}\beta\gamma + \alpha^{2}\gamma^{2} + \alpha\beta\gamma^{2} + \alpha\beta^{2}\gamma + \alpha\beta\gamma^{2} + \beta^{2}\gamma^{2} \\ &= \alpha^{2}\beta^{2} + \beta^{2}\gamma^{2}\alpha^{2}\gamma^{2} + 2(\alpha^{2}\beta\gamma + \alpha\beta^{2}\gamma + \alpha\beta\gamma^{2}) \\ &= \alpha^{2}\beta^{2} + \beta^{2}\gamma^{2}\alpha^{2}\gamma^{2} + 2\alpha\beta\gamma(\alpha + \beta + \gamma) \end{aligned}$	1 mark – expansion demonstrated

$\frac{\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2}}{\alpha^2 \beta^2 \gamma^2} = \frac{\frac{\beta^2 \gamma^2 + \alpha^2 \gamma^2 + \alpha^2 \beta^2}{\alpha^2 \beta^2 \gamma^2}}{\alpha^2 \beta^2 \gamma^2}$ $= \frac{(\alpha\beta + \alpha\gamma + \beta\gamma)^2 - 2\alpha\beta\gamma(\alpha + \beta + \gamma)}{\alpha^2 \beta^2 \gamma^2}$ $\alpha + \beta + \gamma = -\frac{b}{a} = 3$ $\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a} = -1$ $\alpha\beta\gamma = -\frac{d}{a} = -3$ $\therefore \frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2} = \frac{(-1)^2 - 2 \times (-3) \times (-3)^2}{(-3)^2}$ $= \frac{19}{9}$	3 marks – correct solution 2 marks – correct rearrangement of initial term 1 mark – correct values for $\alpha + \beta + \gamma$ $\alpha\beta + \alpha\gamma + \beta\gamma$ $\alpha\beta\gamma$
Vert Asymtotes - denominator = 0 $x^{2} - 16 = 0$ $x = \pm 4$	2 marks – correct answer 1 mark – equating denominator to zero
Vertical Asymptote x = -4 Vertical Asymptote x = 4 Vertical Asymptote x = 4	2 marks - shape - x-intercept -

$\cot\theta \sec^2\theta - \cot\theta$	$t\theta - \sqrt{3} \sec^2 \theta + \sqrt{3} = 0$	
cotA(sec ² A -	$1) - \sqrt{3}(\sec^2 \theta - 1) = 0$	
condisee o	$(-1)^2 \sqrt{3(322 - 1)^2} = 0$	
	$(\cot \theta - \sqrt{3}) \tan \theta = 0$	
	$\cot \theta = \sqrt{3}$	
	$\tan\theta = \frac{1}{\sqrt{2}}$	
	ν3 π	4 marks
	$\theta = n\pi + \frac{1}{6}$	- correct solution
	$\tan \theta = 0$	
	but if $\tan \theta = 0$	3 marks
"then" cot θ is	undefined in original equation	-correct solution for
ie, no solution		reason for excluding
1.1.1		$\cot \Theta$
	$\theta = m + \frac{1}{6}$	
		2 marks – fully
		factorised and use of
		trig identity
		1 mark –first
		factorisation

$x = 2\cos\theta d\theta$
3 marks – correct solution
× $2\cos\theta d\theta$ 2 marks – final integral simplified to $\cos 2\theta$
1 mark – correct initial substitution including limits and dO
1 <i>d</i> θ
)
1 mark - correct initial substitution including limits and d

	$\ddot{x} = -\frac{1}{4\sqrt{x}} = -\frac{1}{4}x^{-\frac{1}{2}}$ $\frac{d\left(\frac{1}{2}v^{2}\right)}{dx} = -\frac{1}{4}x^{-\frac{1}{2}}$ $\frac{1}{2}v^{2} = -\frac{1}{4} \times 2 \times \sqrt{x} + C_{1}$ $v^{2} = -\sqrt{x} + C_{2}$ $t = 0 v = -4$ $16 = 0 + C_{2}$ $C_{2} = 15$ $v^{2} = -(\sqrt{x}) + 15$ $v = 0$ $\sqrt{x} = 15$ $x = 15^{2} = 225m$	3 marks – correct solution 2 marks – attaining constant correctly 1 mark – use of $\frac{d\left(\frac{1}{2}v^{2}\right)}{dx} = \ddot{x}$
c-i	$\angle BAQ = \angle DBA = \alpha \text{(alt angles on } \ \text{ lines are equal} \text{)}$ $\angle BDA = \angle BAQ - \alpha \text{(angle between tangent and chord}$ is equal to \angle in alternate segment) $\therefore \Delta BAD \text{ is isosceles} \text{(two equal angles)}$	2 correct solution 1 mark – one correct use of geometrical principle.
c-ii	$\angle DAB = 180^{\circ} - 2\alpha \ (\angle \text{ sum of } \Delta)$ $\angle DCB + \angle DAB = 180^{\circ} \ (\circ pp \ \angle \text{ of cylic quad}$ are supplementary) $\therefore \qquad \angle DCB = 2\alpha$	1 – correct solution

c-iii	$BQ = AQ \qquad (\text{common tangents from a point are equal})$ $\therefore \ \Delta BAQ \text{ is isosceles} \qquad (2 \text{ sides equal})$ $\therefore \ \angle ABQ = \angle BAQ = \alpha \qquad (\angle s \text{ opp equal sides in} \text{ isoc } \Delta \text{ are equal})$ $\therefore \ \angle BQA = 180^\circ - 2\alpha \qquad (\angle \text{ sum of } \Delta)$ $\therefore \ \angle BQA + \angle DCB = 180^\circ - 2\alpha + 2\alpha = 180^\circ$ $PCBQ \text{ form cyclic quad} \qquad (\circ pp \angle s \text{ supplementary})$ $\therefore PCBQ \text{ are concyclic}$	2 marks – correct solution 1 mark – determination of size of $\angle BQA$
d-i	$y = 2\sin(1 \cdot 8) = 1 \cdot 947$ $2\sin x - x = 1 \cdot 947 - 1 \cdot 8 = 0 \cdot 147$ The solution is close to zero therefore reasonable approximation.	1mark – correct solution
d-ii	$x_{a} = x_{0} - \frac{f(x)}{f'(x)}$ = $x_{0} - \frac{2\sin x - x}{2\cos x - 1}$ = $1 \cdot 8 - \frac{2\sin 1 \cdot 8 - 1 \cdot 8}{(2\cos 1 \cdot 8 - 1)}$ = $1 \cdot 9$	3 marks – correct solution 2 marks – correct expression for x_a 1 mark – incorrect substitution into initial formula

013		
	eqn normal:	2 marks-correct solution showing all steps
	$y - ap^{2} = -\frac{1}{p}(x - 2ap)$ $y = -ap^{3} = -x + 2apy$	1 mark- correct equation
	$y = \frac{-x + 2apy}{x + 2ap + ap^3}$	
a)i)	N lies on normal and v axis $(x = 0)$	
	$-0+2ap+ap^{3}$	
	y = p	
	$= 2a + ap^{-}$ $= a(n^{2} + 2)$	
	$\frac{-u\psi+2}{(n-1)}$	
	T lies on tangent and x-axis	3 marks- correct
	$0 = px - ap^2$	equation showing all steps
	$x = \frac{dp}{p}$	2 marks-correct values
	= ap	for midpoint
	$\begin{bmatrix} 0+ap & (p^2+2) \end{bmatrix}$	1 mark- correct x value for T
	$=\left[\frac{1}{2}, \left(0+\frac{1}{2}\right)\right]$	
	$=\left(\frac{ap}{2},\frac{a(p^2+2)}{2}\right)$	
ii)		
	now ap	
	$x = \frac{1}{2}$	
	$p = \frac{2x}{a}$	
	$a\left(\left(2x\right)^2\right)$	
	$y = \frac{1}{2} \left(\left(\frac{1}{a} \right)^{1} + 2 \right)$	
	$=\frac{4x^2}{a}+2a$	

prove true for n = 13 marks- correct solution $(n+1)^2 + n - 1 = (2)^2 + 1 - 1$ showing all steps = 4 which is divisible by 22 marks-partial correct ∴ true for n=1 b) with insertion of assume true for n = kassumption into S(k+1) $(k+1)^2 + k - 1 = 2M$ for some integer M 1 mark- correct for n=1 prove true for n=k+1 $ie(k=2)^{2}+(k+1)-1=2N$ LHS = $(k + 2)^2 + k$ = $[(k + 1)^2 + 2k + 3] + k$ $= (k+1)^{2} + 3k + 3$ = 2M + 1 - k + 3k + 3 using assumption $(k + 1)^2 = 2M + 1 - k$ = 2M + 4 - 2k= 2(M+2-k)= 2N where N is the integer M + 2 - k since $k \ge 1$ and M ∴ true for n=k+1 A statement true as shown by mathematical induction $^{12}C_8 \times {}^{10}C_4 = 495 \times 210$ 1 mark- correct solution c)i) = 103950¹¹C₇ × ⁹C₃ = 27720 2 marks- correct solution ii) 1 mark- correct selections for brass/percussion only $N = \frac{a}{1 + b e^{-t}}$ 2 marks -correct solution $\frac{dN}{dt} = \frac{\left(1+b\,e^{-i}\right)^{80} - a\left(-b\,e^{-i}\right)}{\left(1+b\,e^{-i}\right)^2}$ $= \frac{a\left(b\,e^{-i}\right)}{\left(1+b\,e^{-i}\right)^2}$ 1 mark- correct initial expression for dN/dt Now $N = \frac{a}{1+b e^{-t}}$ d)i) $\frac{N}{a} = \frac{1}{1 + b e^{-i}}$ $\therefore \frac{dN}{dt} = N \left(\frac{b e^{-t}}{1 + b e^{-t}} \right)$ $= N \left(\frac{1+b e^{-t} - 1}{1=b e^{-t}} \right)$ $= N \left[1 - \frac{N}{2} \right]$

2015 MSC HSC X1 Trial Solutions

	$t \rightarrow \infty N = 100$	2 marks- correct solution
	$b e^{-t} \rightarrow 0$	
	$\therefore \qquad 100 = \frac{a}{1+0}$	1 mark- only one correct value
	a = 100	
	t = 0 N = 20	
ii)	$\therefore \qquad 20 = \frac{a}{1+b e^0}$	
	$20 = \frac{a}{1+b}$	
	$20 = \frac{100}{20}$	
	1+b	
	20 + 20b = 100	
	b = 4	

	Question 14	
a	P(exactly one computer defective) =P(1 defective from A, 0 from B) +P(0 from A, 1 from B) ${}^{3}C_{1}(0.02)^{1}(0.98)^{2} \times \frac{98}{100} \times \frac{97}{99} \times \frac{96}{98} + {}^{3}C_{0}(0.98)^{3} \times \frac{2}{100} \times \frac{98}{99} \times \frac{97}{98} \times 3$ = 0.1095	 3 marks: correct solution 2 marks: obtaining a correct binomial prob. 1 mark: 1st line – showing understanding of options required.
b	h $2h$ 60° 1	d 60° 2332
	In Δ AT ₁ S, $\tan 30^\circ = \frac{h}{(T_1 S)}$ $\frac{1}{\sqrt{3}} = \frac{h}{T_1 S}$ $T_1 S = \sqrt{3} h$ In Δ B $T_2 S$, $\tan 60 = \frac{2h}{T_2 S}$ $T_2 S = \frac{2h}{\sqrt{3}}$	 3 marks: correct solution 2 marks:correct expressions for triangles, attempting to use them in cos rule 1 mark: correct expressions for triangles

	$\ln \Delta T_1 T_2 S \qquad d^2 = (\sqrt{3} h)^2 + \left(\frac{2h}{\sqrt{3}}\right)^2 - 2 \times \sqrt{3} h \times \frac{2h}{\sqrt{3}} \cos 60^\circ$ $= 3h^2 + \frac{4h^2}{3} - 2h^2$ $= \frac{7h^2}{3}$ $d = \frac{\sqrt{7} h}{\sqrt{3}}$ $= \frac{\sqrt{7} h}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$ $= \frac{\sqrt{21} h}{3} \text{ as required}$	
i	$y = -4.9 t^{2} + 49t$ $\dot{y} = -9.8t + 49$ max ht occurs when $\dot{y} = 0$ i.e. $0 = -9.8t + 49$ 9.8t = 49 t = 5 when t=5, $y = -4.9 \times 5^{2} + 49 \times 5$ = 122.5 max ht is 122.5 m	2 marks: correct solution 1 mark: finding \dot{y} and solving $\dot{y} = 0$
ii	For 2nd ball $x = 98t \cos \theta$ $y = -4.9 t^2 + 98t \sin \theta$ At t=5, y=122.5 \therefore 122.5 = -4.9 × 5 ² + 98 × 5 sin θ 245 = 490 sin θ sin $\theta = \frac{1}{2}$ $\theta = 30^{\circ}$ 2nd ball should be projected at angle of 30° to hit first ball	2 marks: correct solution 1 mark: substituting t=5 and y=122.5 into2nd equation
iii	$x = 98t\cos\theta$ when $t = 5 \ \theta = 30^{\circ}$ $x = 98 \times 5 \times \cos 30^{\circ}$ $= 490 \times \frac{\sqrt{3}}{2} = 245\sqrt{3}$ ∴ Balls are $245\sqrt{3} \ m$ apart when projected	1 mark: correct solution

d 4 marks: correct solution incl. explanation of $(-1)^{n-2} = 1$ for n even $1 + \binom{n}{1}x + \binom{n}{2}x^{2} + \binom{n}{3}x^{3} + \dots + \binom{n}{n}x^{n} = (1+x)^{n}$ 3 marks: correct solution without justifying sign of last term differentiate both sides wrt x $\binom{n}{1} + 2\binom{n}{2}x + 3\binom{n}{3}x^2 + 4\binom{n}{4}x^3 + \dots + n\binom{n}{n}x^{n-1} = n(1+x)^{n-1}$ 2 marks: differentiating twice and substituting either x=1 or x=-1 differentiate both sides wrt x $2\binom{n}{2} + 2 \times 3\binom{n}{3}x + 3 \times 4\binom{n}{3}x^2 + \dots + (n-1)n\binom{n}{n}x^{n-2}$ 1 mark: differentiating twice $= (n-1)n(1+x)^{n-2}$ let x=1 $= (n-1)n \times 2^{n-2}$ $\therefore 2\binom{n}{2} + 2 \times 3\binom{n}{3} + 3 \times 4\binom{n}{4} + \dots + (n-1)n\binom{n}{n}$ let x=-1 $2\binom{n}{2} - 2 \times 3\binom{n}{3} + 3 \times 4\binom{n}{4} - \dots + (-1)^{n-2}(n-1)n\binom{n}{n}$ = 0 $(-1)^{n-2} = 1 \text{ since } n \text{ is even}$ $\therefore 2\binom{n}{2} - 3 \times 2\binom{n}{3} + 3 \times 4\binom{n}{4} - \dots + (n-1)n\binom{n}{n} = 0$ adding these 2 equations $4 \times \binom{n}{2} + 8 \times 3\binom{n}{4} + \dots + 2n(n-1)\binom{n}{n}$ $= (n-1)n \times 2^{n-2}$