

NORTHERN BEACHES SECONDARY COLLEGE

MANLY SELECTIVE CAMPUS

HIGHER SCHOOL CERTIFICATE

Trial Examination

2015

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using black or blue pen
- Write your Student Number at the top of each page
- Answer Section I- Multiple Choice on Answer Sheet provided
- Answer Section II - Free Response in a separate booklet for each question.
- Board approved calculators and templates may be used.

Section I Multiple Choice

- 10 marks
- Attempt all questions
$\underline{\text { Section II - Free Response }}$
- 60 marks
- Each question is of equal value
- All necessary working should be shown in every question.

Weighting: 40\%

Manly Selective Campus
 2015 HSC Mathematics Extension 1 Trial

Multiple Choice: Answer questions on provided answer sheet.

Q1. The diagram shows a circle with centre O. The line $P T$ is tangent to the circle at the point $T . \angle T O P=4 x^{\circ}$ and $\angle T P O=x^{\circ}$.

What is the value of x ?
(A) 9
(B) 18
(C) 36
(D) 72

Q2. Which of the following is a simplified expression for $\frac{\sin 2 x}{1-\cos 2 x}$
(A) $\sin x$
(B) $\cos x$
(C) $\tan x$
(D) $\cot x$

Q3. The point P divides the interval AB in the ratio 3:7. In what external ratio does the A divide the interval PB
(A) $3: 10$
(B) $3: 4$
(C) 7:3
(D) $10: 3$

Manly Selective Campus 2015 HSC Mathematics Extension 1 Trial

Q4. What is the obtuse angle between lines $y=-x$ and $\sqrt{3} y=x$?
(A) 15°
(B) 75°
(C) 105°
(D) 165°

Q5. What is the value of $\int_{1}^{2} \frac{1}{\sqrt{4-x^{2}}} d x$?
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{2}$

Q6. In how many ways can 5 people be selected from a group of 6 and then arranged in a line so that the two oldest people in the selected group are at either end of the line? (NB. No two people are the same age.)
(A) 720
(B) 144
(C) 72
(D) 36

Q7. The remainder of the division $\frac{x^{5}+1}{x^{2}-1}$ is equal to
(A) 1
(B) 2
(C) $x+2$
(D) $x+1$

Q8. The power of x in the $7^{\text {th }}$ term of the expansion of $\left(\frac{4 x}{5}-\frac{8}{5 x}\right)^{9}$ is
(A) 3
(B) -3
(C) 5
(D) -5

Q9. The velocity of a particle is given by the equation $v=\sqrt{4+4 x}$. If the particle is initially located at the origin, what displacement at $t=3$?
(A) 3
(B) 8
(C) 15
(D) 16

Q10. The diagram show the graph of a cubic function $y=f(x)$.

Which is a possible equation of this function?
(A) $\quad f(x)=-x(x-2)(x+2)$
(B) $\quad f(x)=x^{2}(x-2)$
(C) $\quad f(x)=-x^{2}(x+2)$
(D) $\quad f(x)=-x^{2}(x-2)$

End of Multiple Choice

Question 11: Start A New Booklet

(a) Evaluate $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 2 \sin ^{2} x+\cos ^{2} x d x$.
(b) (i) Verify that $(\alpha \beta+\alpha \gamma+\beta \gamma)^{2}=\alpha^{2} \beta^{2}+\alpha^{2} \gamma^{2}+\beta^{2} \gamma^{2}+2 \alpha \beta \gamma(\alpha+\beta+\gamma)$.
(ii) Hence, or otherwise, if α, β and γ are the roots of $x^{3}-3 x^{2}-x+3=0$, evaluate $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}+\frac{1}{\gamma^{2}}$
(c) (i) Determine the vertical asymptotes for $y=\frac{x+1}{x^{2}-16}$
(ii) Hence sketch the curve $y=\frac{x+1}{x^{2}-16}$
(d) Find the general solution of the equation

$$
\begin{equation*}
\cot \theta \sec ^{2} \theta-\cot \theta-\sqrt{3} \sec ^{2} \theta+\sqrt{3}=0 \tag{4}
\end{equation*}
$$

Manly Selective Campus

Question 12 Start A New Booklet

(a) Use the substitution $x=2 \sin \theta$ to show $\frac{\pi}{3}+\frac{\sqrt{3}}{2}=\int_{0}^{1} \sqrt{4-x^{2}} d x$
(b) A particle moves with acceleration $\ddot{x}=-\frac{1}{4 \sqrt{x}}$. Initially, the particle is one metre to the right of the origin and its velocity is $4 \mathrm{~m} / \mathrm{s}$.

Find the displacement of the particle when it is at rest.
(c) $A B C D$ is a cyclic quadrilateral. The tangents from Q touch the circle at A and B.

The diagonal $D B$ is parallel to the tangent $A Q$, and $Q A$ produced intersects $C D$ produced at P.

Let $<Q A B=\alpha$.

(i) Prove that $\triangle B A D$ is isosceles, giving reasons.
(ii) Find $<D C B$ in terms of α, stating reasons.
(iii) Show that P,C, B and Q are concyclic points
(d) (i) Show that $x=1.8$ is a reasonable approximation for the x value of the point of intersection of $y=2 \sin x$ and $y=x$ in the domain $0.78<x<2.35$.
(ii) Use Newton's method with one application to find a better approximation to the x value of this point on intersection.

Question 13 Start A New Booklet

(a) The diagram shows the parabola $x^{2}=4 a y$

The tangent to the parabola at $P\left(2 a p, a p^{2}\right)$ cuts the x-axis at T and the normal at P cuts the y-axis at N.

The equation to the tangent is given by $y=p x-a p^{2}$
(i) Show the coordinates of N are $\left(0, a\left(p^{2}+2\right)\right)$
(ii) Let M be the midpoint of $N T$. Find the Cartesian equation of the locus.
(b) Use mathematical induction to prove that $(n+1)^{2}+n-1$ is divisible by 2 for all integers $n \geq 1$.
(c) A school band is to be formed with a brass section containing 8 students and a percussion section containing 4 students.
(i) In how many ways can the band be formed if 12 students audition for the brass section and 10 students audition for the percussion section?
(ii) In how many ways can the band be formed if it is certain that Maria will be successful for the brass audition and Marcus will be successful for the percussion audition?

Question 13 continues on next page

Question 13 continued

(d) At time t years the number N of individuals is given by $N=\frac{a}{1+b e^{-t}}$ for some constants $a>0, b>0$. The initial population size is 20 and the limiting population size is 100 .
(i) Show that $\frac{d N}{d t}=N\left(1-\frac{N}{a}\right)$
(ii) Find the values of a and b.

Manly Selective Campus
 2015 HSC Mathematics Extension 1 Trial

Question 14

(a) Warehouse A has 100 computers and the probability that of selecting a computer which is defective is 0.02 .

Warehouse B has 100 computers, two of which only, are defective.

Joe buys three computers from Warehouse A and three computers from
Warehouse B. What is the probability that exactly one of the computers he has bought is defective?
(b) Two towers T_{1} and T_{2} have heights h metres and $2 h$ metres respectively. The second tower is due south of the first tower. The bearing of tower T_{1} from a surveyor is 292°. The bearing of the tower T_{2} from the surveyor is 232°. The angle of elevation from the surveyor to the top of tower T_{1} is 30° while the angle of elevation from the surveyor to the top of tower T_{2} is 60°.

Show that the distance d between the two towers is given by $d=\frac{\sqrt{21} h}{3}$ metres.

Question 14 continues on next page

Manly Selective Campus
 2015 HSC Mathematics Extension 1 Trial

Question 14 continued.

(c) A ball is projected vertically from the ground with a speed of $49 \mathrm{~m} / \mathrm{s}$. The height y of the ball at time t is given by $y=-4.9 t^{2}+49 t$. (Do NOT show this.)

At the same time, a second ball is projected from the ground into the air with an angle of projection θ. Its horizontal displacement is given by $x=98 t \cos \theta$ and its height is given by $y=-4.9 t^{2}+98 t \sin \theta$. (Do NOT show this.)
(i) Find the maximum height of the ball that was projected vertically.
(ii) Find the value of θ at which the second ball should be projected if it is to hit the first ball when the first ball reaches its maximum height.
(iii) Find the horizontal distance between the two balls when they are first projected into the air. Give your answer in exact form.
(e) Consider the binomial expansion

$$
1+\binom{n}{1} x+\binom{n}{2} x^{2}+\binom{n}{3} x^{3}+\ldots+\binom{n}{n} x^{n}=(1+x)^{\prime \prime}
$$

Show that, if n is even:

$$
\begin{equation*}
4 \times 1 \times\binom{ n}{2}+8 \times 3 \times\binom{ n}{4}+12 \times 5 \times\binom{ n}{6}+\ldots+2 n(n-1)\binom{n}{n}=n(n-1)(2)^{n-2} \tag{4}
\end{equation*}
$$

End of Examination

Q1	$O T \perp T P \quad$ radii \perp to tangent at point of contact $\begin{aligned} 5 x^{\circ}+90^{\circ} & =180^{\circ} \\ x & =18 \end{aligned}$	B
Q2	$\begin{aligned} & \frac{\sin 2 x}{1-\cos 2 x} \\ = & \frac{2 \sin x \cos x}{1-\left(1-2 \sin ^{2} x\right)} \\ = & \frac{\sin x \cos x}{\sin ^{2} x} \\ = & \frac{\cos x}{\sin x} \\ = & \cot x \end{aligned}$	D
Q3		A
Q4	$\begin{aligned} & \int_{1}^{2} \frac{1}{\sqrt{4-x^{2}}} d x \\ & =\left[\sin ^{-1} \frac{x}{2}\right]_{1}^{2} \\ & =\frac{\pi}{2}-\frac{\pi}{6} \\ & =\frac{\pi}{3} \end{aligned}$	C

Q5	$\begin{aligned} m_{1} & =-1 \quad m_{2}=\frac{1}{\sqrt{3}} \\ \tan \theta & =\left\|\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}\right\| \\ & =\left\|\frac{\frac{1}{\sqrt{3}}+1}{1-\frac{1}{\sqrt{3}}}\right\|=\left\|\frac{1+\sqrt{3}}{\sqrt{3}-1}\right\| \\ & =\|2+\sqrt{3}\| \\ \theta & =\tan ^{-1}(2+\sqrt{3})=75^{\circ} \\ \therefore \text { Obtuse angle } & =180^{\circ}-75^{\circ}=105^{\circ} \end{aligned}$	C
Q6	${ }^{6} \mathbf{C}_{5} \times{ }^{2} \mathbf{P}_{1} \times{ }^{3} \mathbf{P}_{3}=72$	C
Q7	$\begin{aligned} & \frac{x^{5}+1}{x^{2}-1} \\ & \begin{aligned} \left(x^{5}+1\right) & =\left(x^{2}-1\right) Q(x)+(a x+b) \\ & =(x+1)(x-1) Q(x)+(a x+b) \\ x & =1 \Rightarrow \quad 2=a+b \\ \therefore \quad x & =-1=0=b-a \\ \therefore \quad a & =1 \quad b=1 \\ R(x) & =x+1 \end{aligned} \end{aligned}$	D
Q8	$\begin{aligned} & { }^{9} \mathbf{C}_{6}\left(\frac{4 x}{5}\right)^{3}\left(-\frac{8}{5 x}\right)^{6} \\ = & { }^{9} \mathbf{C}_{6}\left(\frac{4}{5}\right)^{3}\left(-\frac{8}{5}\right)^{6} x^{3} x^{-6} \\ = & { }^{9} \mathbf{C}_{6}\left(\frac{4}{5}\right)^{3}\left(-\frac{8}{5}\right)^{6} x^{-3} \end{aligned}$	B

Q9	$\begin{aligned} v & =\sqrt{4+4 x}=2 \sqrt{1+x} \\ \frac{d x}{d t} & =2 \sqrt{1+x} \\ \frac{d t}{d x} & =\frac{1}{2 \sqrt{1+x}} \\ t & =\frac{1}{2} \int(1+x)^{-\frac{1}{2}} d x \\ t & =\frac{1}{2} \times 2 \times \sqrt{1+x}+C \\ t & =0 \Rightarrow x=0 \\ \therefore \quad C & =-1 \\ t & =\sqrt{1+x}-1 \\ 1+x & =(t+1)^{2} \\ x & =(t+1)^{2}-1 \\ t & =3 \\ x & =(1+3)^{2}-1=15 \end{aligned}$	C
Q10	Cubic of form $\begin{aligned} y & =-a x^{2}(x-b) \\ \therefore y & =-x^{2}(x+2) \end{aligned}$	C

Q11

Q12

	$\begin{aligned} \ddot{x} & =-\frac{1}{4 \sqrt{x}}=-\frac{1}{4} x^{-\frac{1}{2}} \\ \frac{d\left(\frac{1}{2} v^{2}\right)}{d x} & =-\frac{1}{4} x^{-\frac{1}{2}} \\ \frac{1}{2} v^{2} & =-\frac{1}{4} \times 2 \times \sqrt{x}+C_{1} \\ v^{2} & =-\sqrt{x}+C_{2} \\ t & =0 v=-4 \\ 16 & =0+C_{2} \\ C_{2} & =15 \\ v^{2} & =-(\sqrt{x})+15 \\ v & =0 \\ \sqrt{x} & =15 \\ x & =15^{2}=225 m \end{aligned}$	3 marks - correct solution 2 marks - attaining constant correctly 1 mark - use of $\frac{d\left(\frac{1}{2} v^{2}\right)}{d x}=\ddot{x}$	
c-i	$\angle B A Q=\angle D B A=\alpha \quad$ (alt angles on $\\|$ lines are equal) $\angle B D A=\angle B A Q-\alpha \quad$ (angle between tangent and chord is equal to \angle in alternate segment) $\therefore \quad \triangle B A D$ is isosceles (two equal angles)	2 correct solution 1 mark - one correct use of geometrical principle.	
c-ii	$\begin{array}{rlrl} \angle D A B= & & 180^{\circ}-2 \alpha(\angle \text { sum of } \Delta) \\ & \angle D C B+\angle D A B= & 180^{\circ}(\text { opp } \angle \text { of cylic quad } \\ & \quad \text { are supplementary }) \\ \therefore \quad \angle D C B=2 \alpha \end{array}$	1 - correct solution	

c-iii		2 marks correct solution 1 mark determination of size of $\angle B Q A$
d-i	$\begin{aligned} y & =2 \sin (1.8)=1.947 \\ 2 \sin x-x & =1.947-1.8=0.147 \end{aligned}$ The solution is close to zero therefore reasonable approximation.	1mark - correct solution
d-ii	$\begin{aligned} x_{a} & =x_{0}-\frac{f(x)}{f^{\prime}(x)} \\ & =x_{0}-\frac{2 \sin x-x}{2 \cos x-1} \\ & =1.8-\frac{2 \sin 1.8-1.8}{(2 \cos 1.8-1)} \\ & =1.9 \end{aligned}$	3 marks correct solution 2 marks correct expression for x_{a} 1 mark incorrect substitution into initial formula

Q13

a)i)	eqn normal: $\begin{aligned} y-a p^{2} & =-\frac{1}{p}(x-2 a p) \\ y p-a p^{3} & =-x+2 a p y \\ y & =\frac{-x+2 a p+a p^{3}}{p} \end{aligned}$ N lies on normal and $\quad y$ axis $\quad(x=0)$ $\begin{aligned} & \begin{aligned} y= & \frac{-0+2 a p+a p^{3}}{p} \\ & =2 a+a p^{2} \\ & =a\left(p^{2}+2\right) \end{aligned} \\ & \therefore N\left(0, a\left(p^{2}+2\right)\right) \end{aligned}$	2 marks-correct solution showing all steps 1 mark- correct equation of normal
ii)	T lies on tangent and x-axis $\begin{aligned} & 0=p x-a p^{2} \\ & x=\frac{a p^{2}}{p} \\ & =a p \end{aligned}$ $\begin{aligned} & \text { midpoint NT } \\ & =\left[\frac{0+a p}{2},\left(0+\frac{a\left(p^{2}+2\right)}{2}\right)\right] \\ & =\left(\frac{a p}{2}, \frac{a\left(p^{2}+2\right)}{2}\right) \end{aligned}$ now $\begin{aligned} x & =\frac{a p}{2} \\ p & =\frac{2 x}{a} \\ y & =\frac{a}{2}\left(\left(\frac{2 x}{a}\right)^{2}+2\right) \\ =\frac{4 x^{2}}{a}+2 a & \end{aligned}$	3 marks- correct equation showing all steps 2 marks-correct values for midpoint 1 mark- correct x value for T

b)	```prove true for \((n+1)^{2}+n-1=(2)^{2}+1-1\) \(=4\) which is divisible by 2 \(\therefore\) true for \(\mathrm{n}=1\) assume true for \(n=k\) \((k+1)^{2}+k-1=2 M\) for some integer \(M\) prove true for \(\mathrm{n}=\mathrm{k}+1\) \(i e(k=2)^{2}+(k+1)-1=2 N\) LHS \(=(k+2)^{2}+k\) \(=\left[(k+1)^{2}+2 k+3\right]+k\) \(=(k+1)^{2}+3 k+3\) \(=2 M+1-k+3 k+3 u\) sing assumption \((k+1)^{2}=2 M+1-k\) \(=2 M+4-2 k\) \(=2(M+2-k)\) \(=2 N\) where N is the integer \(\quad M+2-k\) since \(k \geq 1\) and \(\quad M\) \(\therefore\) true for \(\mathrm{n}=\mathrm{k}+1\) \(\therefore\) statement true as shown by mathematical induction```	3 marks- correct solution showing all steps 2 marks-partial correct with insertion of assumption into $\mathrm{S}(\mathrm{k}+1)$ 1 mark- correct for $\mathrm{n}=1$
c)i)	$\begin{aligned} { }^{12} \mathbf{C}_{8} \times{ }^{10} \mathbf{C}_{4} & =495 \times 210 \\ & =103950 \\ & =10 \end{aligned}$	1 mark- correct solution
ii)	${ }^{11} \mathbf{C}_{7} \times{ }^{9} \mathbf{C}_{3}=27720$	2 marks- correct solution 1 mark- correct selections for brass/percussion only
d)i)	$\begin{aligned} N & =\frac{a}{1+b e^{-t}} \\ \frac{d N}{d t} & =\frac{\left(1+b e^{-i}\right)^{80}-a\left(-b e^{-1}\right)}{\left(1+b e^{-t}\right)^{2}} \\ & =\frac{a\left(b e^{-t}\right)}{\left(1+b e^{-t}\right)^{2}} \end{aligned}$ Now $N=\frac{a}{1+b e^{-i}}$ $\begin{aligned} \frac{N}{a} & =\frac{1}{1+b e^{-t}} \\ \therefore \frac{d N}{d t} & =N\left(\frac{b e^{-t}}{1+b e^{-t}}\right) \\ & =N\left(\frac{1+b e^{-t}-1}{1=b e^{-t}}\right) \\ & =N\left(1-\frac{N}{a}\right) \end{aligned}$	2 marks -correct solution 1 mark- correct initial expression for $\mathrm{dN} / \mathrm{dt}$

ii)	$\begin{aligned} & t \rightarrow \infty N=100 \\ & b e^{-1} \rightarrow 0 \\ & \therefore \quad 100=\frac{a}{1+0} \\ & a=100 \\ & t=0 N=20 \\ & \therefore \quad 20=\frac{a}{1+b e^{0}} \\ & 20=\frac{a}{1+b} \\ & 20=\frac{100}{1+b} \\ & 20+20 b=100 \\ & b=4 \end{aligned}$	2 marks- correct solution 1 mark- only one correct value

Question 14

a	$\begin{aligned} & \mathrm{P}(\text { exactly one computer defective }) \\ & =\mathrm{P}(1 \text { defective from A, } 0 \text { from } \mathrm{B})+\mathrm{P}(0 \text { from A, } 1 \text { from B) } \\ & { }^{3} \mathbf{C}_{1}(0.02)^{1}(0.98)^{2} \times \frac{98}{100} \times \frac{97}{99} \times \frac{96}{98}+{ }^{3} \mathbf{C}_{0}(0.98)^{3} \times \frac{2}{100} \times \frac{98}{99} \times \frac{97}{98} \times 3 \\ & =0.1095 \end{aligned}$	3 marks: correct solution 2 marks: obtaining a correct binomial prob. 1 mark: 1st line - showing understanding of options required.
b		
	$\begin{aligned} \text { In } \Delta \mathrm{AT}_{1} S, \tan 30^{\circ} & =\frac{h}{\left(T_{1} S\right)} \\ \frac{1}{\sqrt{3}} & =\frac{h}{T_{1} S} \\ T_{1} S & =\sqrt{3} h \\ \text { In } \Delta B T_{2} S, \tan 60 & =\frac{2 h}{T_{2} S} \\ T_{2} S & =\frac{2 h}{\sqrt{3}} \end{aligned}$	3 marks: correct solution 2 marks:correct expressions for triangles, attempting to use them in cos rule 1 mark: correct expressions for triangles

	$\begin{aligned} \operatorname{In} \Delta T_{1} T_{2} S \quad d^{2} & =(\sqrt{3} h)^{2}+\left(\frac{2 h}{\sqrt{3}}\right)^{2}-2 \times \sqrt{3} h \times \frac{2 h}{\sqrt{3}} \cos 60^{\circ} \\ & =3 h^{2}+\frac{4 h^{2}}{3}-2 h^{2} \\ & =\frac{7 h^{2}}{3} \\ d & =\frac{\sqrt{7} h}{\sqrt{3}} \\ & =\frac{\sqrt{7} h}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\ & =\frac{\sqrt{21} h}{3} \text { as required } \end{aligned}$	
i	$\begin{aligned} & y=-4.9 t^{2}+49 t \\ & \dot{y}=-9.8 t+49 \\ & \text { max ht occurs when } \dot{y}=0 \text { i.e. } \quad 0=-9.8 t+49 \\ & 9.8 t=49 \\ & t=5 \\ & \text { when } \mathrm{t}=5, \quad y=-4.9 \times 5^{2}+49 \times 5 \\ &=122.5 \\ & \max \text { ht is } 122.5 \mathrm{~m} \end{aligned}$	2 marks: correct solution 1 mark: finding \dot{y} and solving $\dot{y}=0$
11	For 2nd ball $x=98 t \cos \theta$ $y=-4.9 t^{2}+98 t \sin \theta$ At $t=5, y=122.5$ $\begin{aligned} \therefore \quad 122.5 & =-4.9 \times 5^{2}+98 \times 5 \sin \theta \\ 245 & =490 \sin \theta \\ \sin \theta & =\frac{1}{2} \\ \theta & =30^{\circ} \end{aligned}$ 2 nd ball should be projected at angle of 30° to hit first ball	2 marks: correct solution 1 mark: substituting $\mathrm{t}=5$ and $y=122.5$ into2nd equation
iii	$x=98 t \cos \theta$ when $t=5 \theta=30^{\circ}$ $\begin{aligned} x & =98 \times 5 \times \cos 30^{\circ} \\ & =490 \times \frac{\sqrt{3}}{2}=245 \sqrt{3} \end{aligned}$ \therefore Balls are $245 \sqrt{3} m$ apart when projected	1 mark: correct solution

d	$1+\binom{n}{1} x+\binom{n}{2} x^{2}+\binom{n}{3} x^{3}+\ldots+\binom{n}{n} x^{n}$ $=(1+x)^{\prime \prime}$ differentiate both sides wrt x $\begin{aligned} &\binom{n}{1}+2\binom{n}{2} x+3\binom{n}{3} x^{2}+4\binom{n}{4} x^{3}+\ldots+n\binom{n}{n} x^{n-1} \\ &=n(1+x)^{n-1} \end{aligned}$ differentiate both sides wrt x $\begin{aligned} & \begin{aligned} & 2\binom{n}{2}+2 \times 3\binom{n}{3} x+3 \times 4\binom{n}{3} x^{2}+\ldots .+(n-1) n\binom{n}{n} x^{n-2} \\ &=(n-1) n(1+x)^{n-2} \\ & \text { let } \mathrm{x}=1 \\ & \therefore 2\binom{n}{2}+2 \times 3\binom{n}{3}+3 \times 4\binom{n}{4}+\ldots+(n-1) n\binom{n}{n} \\ &=(n-1) n \times 2^{n-2} \end{aligned} \\ & \text { let } \mathrm{x}=-1 \end{aligned}$ $\begin{array}{r} 2\binom{n}{2}-2 \times 3\binom{n}{3}+3 \times 4\binom{n}{4}-\ldots+(-1)^{n-2}(n-1) n\binom{n}{n} \\ =0 \end{array}$ $(-1)^{n-2}=1 \text { since } n \text { is even }$ $\therefore 2\binom{n}{2}-3 \times 2\binom{n}{3}+3 \times 4\binom{n}{4}-\ldots+(n-1) n\binom{n}{n}=0$ adding these 2 equations $4 \times\binom{ n}{2}+8 \times 3\binom{n}{4}+\ldots+2 n(n-1)\binom{n}{n}=(n-1) n \times 2^{n-2}$	4 marks: correct solution incl. explanation of $(-1)^{n-2}=1$ for n even 3 marks: correct solution without justifying sign of last term 2 marks: differentiating twice and substituting either $\mathrm{x}=1$ or $\mathrm{x}=-1$ 1 mark: differentiating twice

