\qquad

2011
 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

Examination Date: Friday 19th August

Examiner: Mr. M. Brain

General Instructions

- Reading Time - 5 minutes
- Working Time - 2 hours
- Write using a blue or black pen
- Write your student number on every booklet
- Board-approved calculators may be used
- A table of standard integrals is provided in this paper
- All necessary working should be shown in every question
- Each question attempted is to be returned in a separate Writing Booklet clearly marked Questions 1 etc.
- If required, additional booklets may be requested

Total marks - 84

- Attempt Questions 1-7
- All questions are of equal value
a) If $y=\left(\tan ^{-1} x\right)^{2}$ find $\frac{d y}{d x} \quad \mathbf{2}$
b) Find the value of $\sum_{n=2}^{5}{ }^{n} C_{2}$
c) Solve $\frac{2 x-3}{x-2} \geq 1$
d) Find $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}$

1
e) Evaluate $\int_{0}^{3} \frac{x}{\sqrt{1+x}} d x$ using the substitution $x=u^{2}-1$, where $u>0$
a) Find the size of the acute angle between the two lines with equations $x+2 y+1=0$ and $2 x-3 y+6=0$, correct to the nearest degree
b) A spherical balloon is expanding so that its volume, $V \mathrm{~cm}^{3}$, increases at a constant rate of $72 \mathrm{~cm}^{3}$ per second. What is the rate of increase of the surface area when the radius is 12 cm ?
c) Find
(i) $\int \sin ^{2} x d x$
(ii) $\int \frac{d x}{\sqrt{9+4 x^{2}}}$
a) The rate of growth of a bacteria colony is proportional to the excess of the colony's population over 5000 and is given by

$$
\frac{d N}{d t}=k(N-5000)
$$

(i) Show that $N=5000+A e^{k t}$ is a solution to the differential equation above
(ii) Given that the initial population was 15000 and had risen to 20000 after 2 days find the value of A and k
(iii) Hence calculate the expected population after 7 days
b) The polynomial $P(x)=x^{5}+m x^{3}+n x$ has a remainder of 5 when divided by $(x-2)$, where m and n are constants.
(i) Prove that $P(x)$ is an odd function
(ii) Hence find the remainder when $P(x)$ is divided by $(x+2)$
c) If α, β and γ are the roots of the equation $x^{3}-2 x^{2}+3 x+7=0$ find the value of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
a) $\quad A B C$ is a triangle inscribed in a circle. M is a point on the tangent to the circle at B and N is a point on $A C$ produced so that $M N$ is parallel to $B A$

Copy the diagram into your answer booklet
(i) State why $\angle M B C=\angle B A C$
(ii) Prove that $M N C B$ is a cyclic quadrilateral
b) Prove by mathematical induction that, for all integers $n \geq 1$

$$
1 \times 2^{0}+2 \times 2^{1}+3 \times 2^{2}+\ldots+n \times 2^{n-1}=1+(n-1) 2^{n}
$$

c) (i) Prove that the equation $\frac{\log _{e} x}{x}+2=0$ has a solution between $x=0.4$ and $x=0.5$
(ii) Use one application of Newton's method to find a closer approximation to the solution $x=0 \cdot 4$, correct to three decimal places
a) In Group A there are 5 men and 3 women. In Group B there are 4 men and 6 women.
(i) If one person is chosen at random from each group what is the probability that the two people chosen are of opposite sexes?
(ii) If a group and then one person from that group is chosen at random what is the probability that the person chosen is a man?
b) Using $\tan \frac{\theta}{2}=t$ show that $\frac{1-\cos \theta}{\sin \theta}=t$

3
c) A particle moves in a straight line such that its acceleration, a, 5 is given by $a=3 x^{2}$, where x is displacement, v is velocity and t is time. Given that $v=-\sqrt{2}$ and $x=1$ when $t=0$ find x as a function of time, t
a) Consider the function $f(x)=3 \sin ^{-1}\left(\frac{x}{2}\right)$

5
(i) State the domain and range of this function
(ii) Sketch the graph of $y=f(x)$
(iii) Find the slope of the graph at $x=0$
b) The displacement, x metres, of a particle, at t seconds is given by:

$$
x=5 \cos (4 \pi t)
$$

(i) Show that the acceleration of the particle can be expressed in the form:

$$
\ddot{x}=-n^{2} x
$$

(ii) State the period, P, of the motion
(iii) Determine the maximum velocity of the particle
(iv) Determine the maximum acceleration of the particle
(v) Express v^{2} in terms of x, where v is the velocity of the particle
a) A vertical building stands with its base O on horizontal ground. A and B 7 are two points on the building vertically above each other such that A is $4 h$ metres above O and B is h metres above O. A particle is projected horizontally with speed U metres per second from A and 10 seconds later a second particle is projected horizontally with speed V metres per second from B. The two particles hit the ground at the same point and at the same time.

(i) Show that the horizontal and vertical displacements of particles A and B, t seconds after the first particle is projected, are given by $x_{A}=U t, y_{A}=4 h-\frac{1}{2} g t^{2}$ and $x_{B}=V(t-10), y_{B}=h-\frac{1}{2} g(t-10)^{2}$, respectively
(ii) Find the time of flight of each particle
(iii) Prove that $V=2 U$
b) The point $P\left(2 t, t^{2}\right)$ is on the parabola with equation $x^{2}=4 y$, having its focus at F. The point M divides the interval $F P$ externally in the ratio 3:1.
(i) Show that the co-ordinates of M are $x=3 t$ and $y=\frac{1}{2}\left(3 t^{2}-1\right)$
(ii) Hence prove that the locus of M is also a parabola and determine the focal length of the locus of M

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \\
& =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \\
& =\ln x, \quad x>0 \\
& \int e^{a x} d x \\
& =\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{\mathrm{e}} x, \quad x>0$

Year 12 Ext. 1 TRIAL solutions 2011
(1)

$$
\text { a) } \begin{align*}
y & =\left(\tan ^{-1} x\right)^{2} \\
\therefore \frac{d y}{d x} & =2\left(\tan ^{-1} x\right)^{1} \times d / d x\left(\tan ^{-1} x\right) \\
& =2 \tan ^{-1} x \times \frac{1}{1+x^{2}} \\
& =\frac{2 \tan ^{-1} x}{1+x^{2}} \tag{1}
\end{align*}
$$

(2)
b)

$$
\begin{aligned}
\sum_{n=2}^{5}{ }^{n} C_{2}= & { }^{2} C_{2}+{ }^{3} C_{2}+{ }^{4} C_{2}+{ }^{5} C_{2} \\
= & 1+3+6+10 \\
& \text { (using icalculator) } \\
= & 20
\end{aligned}
$$

$$
\begin{align*}
& \quad \frac{2 x-3}{x-2} \geqslant 1 \times \text { B.S. by (denom) }{ }^{2} \\
& \therefore \frac{2 x-3}{x-2} \times(x-2)^{2} \geqslant 1 \times(x-2)^{2} \\
& \therefore(2 x-3)(x-2) \geqslant x^{2}-4 x+4 \\
& \therefore 2 x^{2}-4 x-3 x+6 \geqslant x^{2}-4 x+4 \\
& \therefore x^{2}-3 x+2 \geqslant 0
\end{align*}
$$

Cousider graph of $y=x^{2}-3 x+2$

$$
\begin{equation*}
=(x-1)(x-2) \tag{x-1}
\end{equation*}
$$

but $x \neq 2: x \leqslant 1$ or $x>2$
(2)
c)
d)

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin 3 x}{x} & =\lim _{x \rightarrow 0} 3 \times \frac{\sin 3 x}{3 x} \\
& \left.=3 \times \lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x}\right\} \begin{array}{l}
\text { as } x \rightarrow 0 \\
3 x \rightarrow 0
\end{array} \\
& =3 \times 1 \\
& =3
\end{aligned}
$$

$$
\text { e) } \begin{aligned}
\int_{0}^{3} \frac{x}{\sqrt{1+x}} d x \quad & x=u^{2}-1 \\
& \therefore d x=2 u d u
\end{aligned}
$$

$$
\begin{aligned}
&=\int_{1}^{2} \frac{u^{2}-1}{\sqrt{1+u^{2}-1}} \times 2 u d u \text { at } x=3: u^{2} \\
&=4 \\
& u=2(>0) \\
&=\int_{1}^{2} \frac{u^{2}-1}{u} \times 2 u d u x=0: u^{2}
\end{aligned}=1 .
$$

$$
\begin{aligned}
& =2 \int_{1}^{2} u^{2}-1 d u \\
& =2\left[u^{3} / 3-u\right]_{1}^{2} \\
& =2\left(\left(\frac{8}{3}-2\right)-\left(\frac{1}{3}-1\right)\right) \\
& =8 / 3
\end{aligned}
$$

(2) a) $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$

$$
\begin{align*}
m_{1}: 2 y & =-x-1 \quad \therefore y=-\frac{1}{2} x-\frac{1}{2}: m_{1}=-\frac{1}{2} \\
m_{2}: 3 y & =2 x+6 \quad \therefore y=\frac{2}{3} x+2: m_{2}=2 / 3 \\
\therefore \tan \theta & =\left|\frac{-\frac{1}{2}-2 / 3}{1-\frac{1}{2} \times 2 / 3}\right| \\
& =\left|\frac{-7}{4}\right| \\
& =\frac{7}{4} \\
\therefore \theta & =\tan ^{-1}(7 / 4) \\
& =60.25 \ldots \\
\theta & =60^{\circ} \quad \text { (nearest deg.) } \tag{4}
\end{align*}
$$

(2) b) $S . A .=A$, Volume $=V$

$$
\therefore \frac{d A}{d t}=\frac{d A}{d V} \times \frac{d V}{d t} \cdots \cdots \text { (1) }
$$

where $\frac{d V}{d t}=72 \mathrm{~cm}^{3} / \mathrm{s} . \cdots(2)$
Now: $\quad \frac{d A}{d V}=\frac{d A}{d r} \times \frac{d r}{d V}$
where: $A=4 \pi r^{2} \therefore \frac{d A}{d r}=8 \pi r \cdots(3)$

$$
\begin{aligned}
V=\frac{4}{3} \pi r^{3} & \therefore \frac{d V}{d r}
\end{aligned}=4 \pi r^{2} .
$$

$$
8
$$

$\therefore(2),(3),(4)$ into (1):

$$
\begin{aligned}
\frac{d A}{d t} & =8 \pi r \times \frac{1}{4 \pi r^{2}} \times 72 \\
& =\frac{144}{r}
\end{aligned}
$$

\therefore when $r=12$

$$
\begin{align*}
\frac{d A}{d r} & =144 / 12 \\
& =12 \mathrm{~cm}^{2} / \mathrm{s} \tag{4}
\end{align*}
$$

c) (i)

$$
\begin{aligned}
\int \sin ^{2} x d x & =\frac{1}{2} \int 1-\cos 2 x d x \\
& =\frac{1}{2}\left(x-\frac{1}{2} \sin 2 x\right)+c \\
\text { or } & =\frac{1}{2} x-\frac{1}{4} \sin 2 x+c
\end{aligned}
$$

(ii) $\int \frac{d x}{\sqrt{9+4 x^{2}}}=\int \frac{1}{\sqrt{4\left(9 / 4+x^{2}\right)}} d x$

Using Standard $=\frac{1}{2} \int \frac{1}{\sqrt{\left(\frac{3}{2}\right)^{2}+x^{2}}} d x$ Integrals sheet

$$
\xrightarrow{\text { Sheet }}=\frac{1}{2} \ln \left(x+\sqrt{9 / 4+x^{2}}\right)(12)
$$

(3) a) (i)

If $N=5000+A e^{k t}$
then $d N / d t=k \times A e^{k t}$
but from (1): $A e^{k t}=N-5000$

$$
\therefore d N / d t=k(N-5000)
$$

$\therefore N=5000+A e^{k t}$ is a solution

$$
\begin{equation*}
\text { to } d N / d t=k(N-5000) \quad(Q E D) \tag{1}
\end{equation*}
$$

(ii) At $t=0, N=15000$

$$
\begin{aligned}
\therefore 15000 & =5000+A e^{k x} \\
& =5000+A \\
\therefore A & =10000
\end{aligned}
$$

At $t=2, N=20000$

$$
\begin{align*}
& \therefore 20000=5000+10000 e^{2 k} \\
& \therefore \quad 10000 e^{2 k}=15000 \\
& e^{2 k}=1.5 \\
& \ln \left(e^{2 k}\right)=\ln 1.5 \\
& \therefore 2 k=\ln 1.5 \\
& k=\ln 1.5 \div 2 \\
&=0.20273 \ldots \\
& k=0.2027
\end{align*}
$$

(iii) \therefore At $t=7$:

$$
\begin{align*}
& N=5000+10000 e \\
&=46325.7 \cdots \\
&\therefore N=46300 \quad \text { (nearest } 100) \tag{1}
\end{align*}
$$

b) $\quad P(x)=x^{5}+m x^{3}+n x$
(i)

$$
\begin{aligned}
\therefore P(a) & =a^{5}+m a^{3}+n a \\
P(-a) & =(-a)^{5}+m(-a)^{3}+n(-a) \\
& =-a^{5}-m a^{3}-n a \\
& =-\left(a^{5}+m a^{3}+n\right) \\
\therefore-P(-a) & =-\left\{-\left(a^{5}+m a^{3}+n\right)\right\} \\
& =a^{5}+m a^{3}+n
\end{aligned}
$$

ie. $P(a)=-P(-a) \quad \therefore$ odd (QED)
(ii) When $P(x)$ divided by $x+2$ remainder is $P(-2)$
AMD when divided by $x-2$ remainder is $P(2)=5$ (given)

Now, from (i) $P(a)=-P(-a)$

$$
\begin{align*}
\therefore \quad P(-2) & =-P(-(-2)) \\
& =-P(2) \\
& =-5 \tag{2}
\end{align*}
$$

c) $\alpha, \beta, y:$ roots of $x^{3}-2 x^{2}+3 x+7=0$ and: $\frac{1}{\alpha \times \beta \gamma}+\frac{1 \times \alpha \gamma}{\beta \times \alpha \gamma}+\frac{1}{\gamma} \times \alpha \beta \alpha \beta$

$$
=\frac{\alpha \beta+\alpha \gamma+\beta \gamma}{\alpha \beta \gamma}
$$

Now: $\begin{aligned} \alpha \beta+\alpha \gamma+\beta \gamma & =c / a \\ & =3 / 1\end{aligned}$

$$
\begin{aligned}
& =3 / 1 \\
& =3 \\
\alpha \beta \gamma & =-\alpha / a \\
& =-7 / 1 \\
& =-7
\end{aligned}
$$

$$
\therefore \frac{1}{2}+\frac{1}{\beta}+\frac{1}{\gamma}=3 /-7 \text { or }-3 / 7
$$

(4) a) (i) $\angle M B C=\angle B A C$
\because angle between tangent and chord equals angle in alternate segment
(ii) $\angle B A C+\angle C N M=180^{\circ}$ (co-int. L's in I ll lines)
and $\angle B A C=\angle M B C$ (from (i))

$$
\therefore \angle M B C+\angle C M M=180^{\circ}
$$

$\therefore M N C B$ is cyclic quadrilateral
(opp. L's add to 180°)
b) Prove: $1 \times 2^{0}+2 \times 2^{1}+3 \times 2^{2}+\cdots+n \times 2^{n-1}=1+(n-1) 2^{n}$ for $n \geqslant 1$

- Prove true for $n=1$

$$
\text { ie. LHS } \begin{align*}
& =1 \times 2^{\circ} & \text { RUS } & =1+(1-1) \times 2^{1} \\
& =1 \times 1 & & =1+0 \\
& =1 & & =1
\end{align*}
$$

\therefore true for $n=1$

- Assume true for $n=k$
ie. assume: $1 \times 2^{0}+2 \times 2^{1}+\cdots+k \times 2^{k-1}=1+(k-1) 2^{k}$
\therefore prove true for $n=k+1$
ie. prove: $1 \times 2^{0}+2 \times 2^{1}+\cdots+k \times 2^{k-1}+(k+1) 2^{k}=1+k \times 2^{k+1}$
Now: LHS $=1+(k-1) 2^{k}+(k+1) 2^{k}\left\{\begin{array}{l}\text { from } \\ \text { assumption. }\end{array}\right.$

$$
\begin{align*}
& =1+k \times 2^{k}-2^{k}+k \times 2^{k}+2^{k} \\
& =1+2 k \times 2^{k} \\
& =1+k \times 2^{1} \times 2^{k} \\
& =1+k \times 2^{k+1} \\
& =\text { RUS } \tag{3}
\end{align*}
$$

\therefore LAS $=$ RHS
(4) . \therefore True for $n=1$ and true for $n=k+1$ when true for $n \neq k$
\therefore True for $n=1,2,3, \ldots \quad($ all $n \geqslant 1)$
(QED)
(4)c) (i) Solution to $\frac{\log _{e} x}{x}+2=0$ corresponds to $y=\frac{\log _{e} x}{x}+2$ crossing x-axis $(y=0)$

Now: when $x=0.4$:

$$
\begin{aligned}
\log _{\frac{e}{} x}^{x}+2 & =\frac{\log _{e} 0.4}{0.4}+2 \\
& =-0.29 \ldots(\text { below } x \text {-axis) }
\end{aligned}
$$

when $x=0.5$:
$\frac{\log _{e} x}{x}+2=+0.61 \cdots$ (above x-axis
\therefore Sign change \Rightarrow solution between (1) $x=0.4$ and $x=0.5$ (QED)
(ii) For $f(x)=\frac{\log _{e} x}{x}+2$:

$$
\begin{align*}
& x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
& \text { where } f^{\prime}(x)=\frac{x \times \frac{1}{x}-\log _{e} x \times 1}{x^{2}} \\
&=\frac{1-\frac{\log _{e} x}{x^{2}}}{\therefore x_{2}}= \\
& \therefore=0.4-\frac{\left(\log _{e} \frac{0.4}{0.4}+2\right)}{1-\log _{e} 0.4}(0.4)^{2} \\
&=0.4242 \ldots \\
& \therefore x_{2}=0.42 .4 \quad(3 \mathrm{dp})
\end{align*}
$$

(ii)

$$
\begin{aligned}
& P(\text { man })=P(\operatorname{Group} A, M \text { or } G r o u p \\
&B, M) \\
&=P(G r o u p A, M)+P(G r o u p \\
&B, M) \\
&=\frac{1}{2} \times \frac{5}{8}+\frac{1}{2} \times \frac{4}{10} \\
&=\frac{41}{80}
\end{aligned}
$$

b) $\tan \frac{\theta}{2}=t$

$$
\begin{aligned}
\therefore \tan (2 \times \theta / 2) & =\tan a \\
& =\frac{2 \tan \theta / 2}{1-\tan ^{2} \theta / 2}
\end{aligned}
$$

$$
=\frac{2 t}{1-t^{2}}
$$

$$
\begin{aligned}
& \sin \theta=2 t / 1+t^{2} \\
& \cos \theta=1-t^{2} / 1+t^{2}
\end{aligned}
$$

$$
\begin{align*}
\therefore \frac{1-\cos \theta}{\sin \theta} & =\frac{1-\frac{1-t^{2}}{1+t^{2}}}{\frac{2 t}{1+t^{2}}} \times 1+t^{2} \\
& =\frac{1+t^{2}-1+t^{2}}{2 t} \\
& =\frac{2 t^{2}}{2 t} \\
& =t \\
\text { if. LHS } & =\text { RHS (QED) } \tag{QED}
\end{align*}
$$

(5) C) $d / d x\left(\frac{1}{2} v^{2}\right)=a=3 x^{2}$

$$
\begin{aligned}
\therefore \frac{1}{2} v^{2} & =\int 3 x^{2} d x \\
& =x^{3}+c^{2} \quad\left(c_{1}=2 \times c\right) \\
\therefore v^{2} & =2 x^{3}+c_{1}
\end{aligned}
$$

$$
\text { and at: } v=-\sqrt{2}, x=1
$$

$$
\begin{aligned}
\therefore \quad 2 & =2+c_{1} \\
\therefore c_{1} & =0
\end{aligned}
$$

$$
\text { ie. } v^{2}=2 x^{3}
$$

$$
\therefore v= \pm \sqrt{2 x^{3}}
$$

But initially $v=-\sqrt{2}$
\therefore select: $v=-\sqrt{2 x^{3}}$
ie $\frac{d x}{d t}=-\sqrt{2} x^{3 / 2}$

$$
\begin{aligned}
\therefore \frac{d t}{d x} & =-\frac{1}{\sqrt{2}} x^{-3 / 2} \\
\therefore t & =-\frac{1}{\sqrt{2}} \int x^{-3 / 2} d x \\
& =-\frac{1}{\sqrt{2}} \times \frac{x^{-1 / 2}}{-\frac{1}{2}}+c_{2} \\
& =\frac{2}{\sqrt{2}} x^{-\frac{1}{2}}+c_{2} \\
i e t & =\sqrt{2} x^{-\frac{1}{2}}+c_{2}
\end{aligned}
$$

and at: $t=0, x=1$

$$
\begin{align*}
& \therefore 0=\sqrt{2}+c_{2} \\
& \therefore c_{2}=-\sqrt{2} \\
& \therefore t=\frac{\sqrt{2}}{\sqrt{x}}-\sqrt{2} \\
& \therefore \sqrt{x}=\frac{\sqrt{2}}{t+\sqrt{2}} \\
& \therefore x=\frac{2}{(t+\sqrt{2})^{2}} \tag{7}
\end{align*}
$$

(b) a) (i) Domain:

$$
\begin{gather*}
y=\sin ^{-1} x: \quad-1 \leqslant x \leqslant 1 \\
\therefore y=\sin ^{-1}\left(\frac{x}{2}\right): \quad-1 \leqslant \frac{x}{2} \leqslant 1 \tag{2}\\
\therefore \quad-2 \leqslant x \leqslant 2
\end{gather*}
$$

Range:

$$
\begin{array}{ll}
y=\sin ^{-1} x: & -\pi / 2 \leq y \leq \frac{\pi}{2} \\
y=3 \sin ^{-1} x & \\
\text { ie } \frac{y}{3}=\sin ^{-1} x: & -\frac{\pi}{2} \leq \frac{y}{3} \leq \frac{\pi}{2} \\
& -\frac{3 \pi}{2} \leq y \leq \frac{3 \pi}{2} \tag{2}
\end{array}
$$

(ii)

(iii)

$$
\begin{aligned}
f(x) & =3 \sin ^{-1}\left(\frac{x}{2}\right) \\
\therefore f^{\prime}(x) & =3 \times \frac{1}{\sqrt{2^{2}-x^{2}}} \\
& =\frac{3}{\sqrt{4-x^{2}}}
\end{aligned}
$$

using Standard Integrals!
\therefore Slope at $x=0$ is $f^{\prime}(0)$
and $f^{\prime}(0)=\frac{3}{\sqrt{4-0^{2}}}$

$$
\begin{equation*}
=\frac{3}{2} \tag{12}
\end{equation*}
$$

(6) b) $x=5 \cos (4 \pi t) \cdots(1)$
(i) Express as $\ddot{x}=-n^{2} x$ from (1):

$$
\begin{aligned}
: \dot{x} & =5 x-\sin (4 \pi t) \times 4 \pi \\
& =-20 \pi \sin (4 \pi t) \\
\therefore \ddot{x} & =-20 \pi \times \cos (4 \pi t) \times 4 \pi \\
& =-80 \pi^{2} \cos (4 \pi t) \\
& =-16 \pi^{2}(5 \cos (4 \pi t))
\end{aligned}
$$

$$
\text { ie. } \ddot{x}=-(4 \pi)^{2} x=-n^{2} x
$$

$$
(Q \in D)
$$

(ii) Period $=2 \pi / n$

$$
\begin{aligned}
& =2 \pi / 4 \pi \\
& =\frac{1}{2}(\text { second })
\end{aligned}
$$

(iii) Max Velocity at centre ie. at $x=0$

$$
v^{2}=n^{2}\left(a^{2}-x^{2}\right)
$$

where $n=4 \pi, a=5, x=0$

$$
\begin{align*}
& \therefore v^{2}=(4 \pi)^{2}\left(5^{2}-0\right) \\
& \therefore v= \pm 4 \pi \times 5 \\
& \therefore v_{\text {max }}=20 \pi \mathrm{~m} / \mathrm{s} \tag{2}
\end{align*}
$$

(iv) Max. acceleration at amplitude (lett) ie. at $x=-5$

$$
\begin{align*}
\therefore \ddot{x}_{\text {max }} & =-(4 \pi)^{2} \times-5 \\
& =80 \pi^{2} \mathrm{~m} / \mathrm{s}^{2} \tag{1}
\end{align*}
$$

(v) from(iii) $v^{2}=(4 \pi)^{2}\left(5^{2}-x^{2}\right)$

$$
\begin{equation*}
v^{2}=16 \pi^{2}\left(25-x^{2}\right) \tag{1}
\end{equation*}
$$

(7) a)
(i) For 'any' projectile motion; fired from $(0,0)$:

Horizontal
$\ddot{x}=0$
Vertical
$\therefore \dot{x}=c_{1}$

$$
\begin{aligned}
\ddot{y} & =-g \\
\therefore \dot{y} & =-g t+c_{2}
\end{aligned}
$$

but at $t=0, v_{x}=V \cos \theta$ but at $t=0, v_{y}=V \sin \theta$

$$
\begin{aligned}
& \therefore c_{1}=V \cos \theta \\
& \therefore c_{2}=V \sin \theta \\
& \therefore \dot{x}=V \cos \theta_{\ddots(1)} \quad \therefore \dot{y}=V \sin \theta-g t \\
& \therefore \quad x=V t \cos \theta+C_{3} \quad \therefore \quad y=V t \sin \theta-\frac{1}{2} g t^{2}+C_{4}
\end{aligned}
$$

but at $t=0, x=0$
but at $t=0, y=0$

$$
\begin{align*}
& \therefore C_{3}=0 \\
& \therefore x=V t \cos \theta \quad \therefore c_{4}=0 \\
& \quad \therefore y=V t \sin \theta-\frac{1}{2} g t^{2}
\end{align*}
$$

\therefore in this question $\theta=0$ for both projectiles

$$
\therefore \sin \theta=0, \cos \theta=1
$$

- for projectile A, time $=t$
\therefore for projectile B, time $=t-10$
(roseconds later)
- AND for projectile A :
equation (2) gives: $y=V t \sin \theta-\frac{1}{2} g t^{2}+c_{4}$
but at $t=0, y=4 \mathrm{~h} \therefore C_{4}=4 \mathrm{~h}$
for projectile B
at $t=0, y=h \quad \therefore C_{4}=h$
\therefore For $A:$ (3) gives: $x_{A}=U t$
'(4)'gives: $y_{A}=4 h-\frac{1}{2} g t^{2}$
For B : (3) gives: $x_{B}=V(t-10)$

$$
y_{B}=h-\frac{1}{2} g(t-10)^{2}
$$

(7)(a) (ii) Time of flight: when $y=0$
ie. $\quad y(A)=0$

$$
y(B)=0
$$

ie. $\quad 4 h-\frac{1}{2} g t^{2}=0$

$$
\begin{equation*}
\therefore h=\frac{1}{8} g t^{2} \tag{1}
\end{equation*}
$$

and $h=\frac{1}{2} g(t-10)^{2}-(2)$
(1) into (2): $\frac{1}{8} g t^{2}=\frac{1}{2} g(t-10)^{2}$

$$
\begin{gathered}
\therefore t^{2}=4(t-10)^{2} \\
\therefore t=2(t-10) \text { or }-t=2(t-10) \\
\therefore t=2 t-20 \quad \therefore-t=2 t-20
\end{gathered}
$$

$$
\therefore t=20 \text { on } t=20 / 3
$$

($t=$ time of flight for A which must be >10 seconds, for B to be projected 10 seconds after A)
$\therefore t=20$ seconds
and $t-10=10$ seconds
\therefore Time of flight: $\begin{aligned} & A=20 \mathrm{Jec} \\ & B=10 \mathrm{sec}\end{aligned}$
(iii) When both particles hit ground:

$$
\begin{aligned}
x_{A} & =x_{B} \\
\therefore 20 U & =V(20-10) \\
20 U & =10 \mathrm{~V} \\
\therefore V & =2 U \quad \text { (QED) }
\end{aligned}
$$

b)(i) $x^{2}=4 a y \rightarrow x^{2}=4 y \quad \therefore a=1$
\therefore focus is $(0,1), P$ is $\left(2 t, t^{2}\right)$
$\left.\begin{array}{l}\text { Divide } \\ \text { externally } 3: 1\end{array}\right] \therefore x=\frac{m x_{2}+n x_{1}}{m+n}$

$$
\therefore m: n=3:-1\} \therefore x=\frac{3 \times 2 t-1 \times 0}{3-1}
$$

and $y=\frac{m y_{2}+n y_{1}}{m+n}$

$$
\begin{align*}
& \therefore y=\frac{3 \times t^{2}-1 \times 1}{3-1} \\
& y=\frac{3 t^{2}-1}{2}-(2)
\end{align*}
$$

(ii) from (1): $t=\pi / 3$
sub into (2): $y=3(x / 3)^{2}-1$

$$
\begin{aligned}
&=x^{2} / 3-1 \\
& 2 \\
& \therefore 2 y=x^{2} / 3-1 \\
& \therefore 6 y=x^{2}-3 \quad \text { (QED) }
\end{aligned}
$$

and $x^{2}=6\left(y+\frac{1}{2}\right)$

$$
=4 \times 12\left(y+\frac{1}{2}\right)
$$

\uparrow
\therefore focal length of

