

Year 12 Student Number

2020 HSC Trial Examination

Year 12 Mathematics Extension 1

Examiner: AC

Reading time - 10 minutes

Writing time - 2 hours

General Instructions

- Write using black or blue pen.
- Read the instructions carefully you are required to answer the questions in the space provided.
- If you use booklets, start each question in a separate writing booklet.
- Write your student name clearly on each page.
- Board-approved calculators may be used, unless stated otherwise.
- All diagrams must be drawn in pencil.
- Do not remove this question paper from the examination room.

Section	Guidance	Marks Available	Your Score
SECTION I	 Type of Questions – Multiple Choice Attempt Questions 1 - 10 Timing 15 minutes 	10	
SECTION II	 Type of Questions – Multiple Choice Attempt Questions 11 - 14 Timing 1hour 45 minutes 	60	
	Totals	70	

Final Mark	/ 70	%
------------	------	---

Your examination paper begins overleaf.

Page Intentionally Left Blank

Section 1: 10 marks

Attempt Questions 1 – 10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 10.

- 1 Given (x-2) is a factor of $x^3 8x^2 + 21x A$, which of the following is the value of A?
 - (A) A = -82
 - (B) A = -2
 - (C) A = 2
 - (D) A = 18

2 Which of the following is the derivative of $\tan^{-1}(3x)$?

- (A) $3 \tan^{-1} x$
- (B) $\frac{3}{1+x^2}$

(C)
$$\frac{3}{1+9x^2}$$

(D)
$$3 \sec^2 3x$$

3 *PQRS* is a trapezium where $\overrightarrow{PS} = \overrightarrow{p}$, $\overrightarrow{SR} = \overrightarrow{s}$ and $\overrightarrow{PQ} = 2\overrightarrow{SR}$.

Which of the following is equivalent to \overrightarrow{QS} ?

- (A) $2\vec{s}+\vec{p}$
- (B) $2\vec{s}-\vec{p}$
- (C) $\vec{p} 2\vec{s}$
- (D) $-\vec{p}-2\vec{s}$

4 Which of the following is the coefficient of x^4 in the expansion $\left(x + \frac{3}{x}\right)^8$?

- (A) 28
- (B) 56
- (C) 84
- (D) 252

5

The graph above shows $y = \frac{1}{f(x)}$.

Which of the equations below best represents f(x)?

 $(A) \qquad f(x) = x^2 - 1$

(B)
$$f(x) = x(x^2 - 1)$$

(C)
$$f(x) = x^2(x^2 - 1)$$

(D)
$$f(x) = x^2 (x^2 - 1)^2$$

6 The slope field for a first order differential equation is shown below.

Which of the following could be the differential equation represented?

(A)
$$\frac{dy}{dx} = \frac{x}{y}$$

(B)
$$\frac{dy}{dx} = \frac{-x}{y}$$

(C)
$$\frac{dy}{dx} = xy$$

(D)
$$\frac{dy}{dx} = -xy$$

Four female and four male students are to be seated around a circular table.In how many ways can this be done if the males and females must alternate?

- (A) 4!×4!
- (B) 3!×4!
- (C) 3!×3!
- (D) $2 \times 3! \times 3!$

9 Which of the following expressions represents the area of the region bounded by the curve $y = \sin^3 x$ and the *x*-axis from $x = -\pi$ to $x = 2\pi$? Use the substitution $u = \cos x$.

(A)
$$-\int_{-\pi}^{2\pi} (1-u^2) du$$

$$(B) \qquad -3\int_0^\pi (1-u^2)du$$

(C) $-\int_{-1}^{1}(1-u^2)du$

(D)
$$3\int_{-1}^{1}(1-u^2)du$$

10 Emma made an error proving that $2^n + (-1)^{n+1}$ is divisible by 3 for all integers $n \ge 1$ using mathematical induction. The proof is shown below.

<u>Step 1:</u> To prove $2^n + (-1)^{n+1}$ is divisible by 3 (*n* is an integer)

To prove true for n = 1

 $2^{1} + (-1)^{1+1} = 2 + 1$ = 3 × 1 Line 1

- Result is true for n = 1
- <u>Step 2:</u> Assume true for n = k

ie. $2^k + (-1)^{k+1} = 3m$ (*m* is an integer) Line 2

<u>Step 3:</u> To prove true for n = k + 1

$$2^{k+1} + (-1)^{k+1+1} = 2(2^{k}) + (-1)^{k+2}$$
 Line 3
= $2[3m + (-1)^{k+1}] + (-1)^{k+2}$ Line 4
= $2 \times 3m + 2 \times (-1)^{k+2} + (-1)^{k+2}$
= $3[2m + (-1)^{k+2}]$

Which is a multiple of 3 since m and k are integers.

Step 4: True by induction

In which line did Emma make an error?

- (A) Line 1
- (B) Line 2
- (C) Line 3
- (D) Line 4

Section II: 60 marks

Attempt Questions 11 – 14

Allow about 1 hour and 45 minutes for this section

Answer each question in a separate writing booklet.

Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a new writing booklet

- (a) Consider the function $f(x) = x^2 4x + 6$.
 - (i) Explain why the domain of f(x) must be restricted if f(x) is to have an inverse function.
 - (ii) Given that the domain of f(x) is restricted to $x \le 2$, find an expression for $f^{-1}(x)$.

1

2

1

- (iii) Given the restriction in part (ii), sketch $y = f^{-1}(x)$.
- (iv) The curve y = f(x) with its restricted domain and the curve y = f⁻¹(x) intersect at point *P*.
 Find the coordinates of *P*.
- (b) Use the substitution $u = 1 + 2 \tan x$ to evaluate $\int_{0}^{\frac{\pi}{4}} \frac{1}{(1 + 2 \tan x)^{2} \cos^{2} x} dx$. 3

(Q11 continues on the next page)

3

- (c) Solve the equation $\cos x \sin x = 1$, where $0 \le x \le 2\pi$.
- (d) The column (position) vector notation of 4 vectors is shown below.

$$P = \begin{pmatrix} -8 \\ -8 \end{pmatrix} \quad Q = \begin{pmatrix} 3 \\ 6 \end{pmatrix} \quad R = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \quad S = \begin{pmatrix} -5 \\ 7 \end{pmatrix}$$

Find the column (position) vector notation of:

(i) \overrightarrow{PQ} 1 (ii) \overrightarrow{RS} 1

(iii)
$$-\overrightarrow{PQ} - \overrightarrow{RS}$$
 1

Question 12 (15 marks) Start a new writing booklet

(i)

(a) A particle is moving in a straight line such that its displacement (x metres) from a fixed point O after t seconds is given by $x = \cos 2t + \sqrt{3} \sin 2t$.

(ii) When is the particle first at the origin?

(b) A heated metal ball is dropped into a liquid. As the ball cools, its temperature, $T \circ C$, t minutes after it enters the liquid, is given by:

$$T = 400e^{-0.05t} + 25, \qquad t \ge 0$$

1

(ii)	Find the value of t if $T = 300$. Answer correct to 3 significant figures.	1
(iii)	Find the rate at which the temperature of the ball is decreasing at the instant	
	when $t = 50$. Give your answer in °C per minute to 3 significant figures.	2

Find the temperature of the ball as it enters the liquid.

(iv) Using the equation for temperature *T* in terms of *t*, given above, to explain why the temperature of the ball can never fall to 20°C.

(c) Find
$$\int_{0}^{\pi} \frac{4}{\sqrt{16-x^2}} dx$$
. 2

(d) (i) Use the substitution
$$t = \tan \frac{x}{2}$$
 to show that $\cos \sec x + \cot x = \cot \frac{x}{2}$. 2

(ii) Hence evaluate
$$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} (\cos ecx + \cot x) dx$$
. Answer in simplest exact form. 3

End of Question 12. Start a New Booklet.

(a) The diagram below is the sketch of the graph of the function $f(x) = -\frac{x}{x+1}$.

- (i) Sketch the graph of $y = (f(x))^2$, showing all asymptotes and intercepts. 2
- (ii) Solve the equation $(f(x))^2 = f(x)$.

(b) *ABCD* is a rhombus with $\overrightarrow{AB} = \mathbf{a}$ and $\overrightarrow{AD} = \mathbf{d}$.

Use vector methods to prove that the diagonals of the rhombus are perpendicular to each other.

2

1

(Q13 continues on the next page)

(Q13 continued)

(c) The diagram shows the graph of $y = \frac{1}{x^2 + 1}$ and the graph of $y = 1 - \frac{x}{2}$ for $0 \le x \le 1$.

- (i) Find the exact volume of the solid of revolution formed when the region bounded by the graph of $y = \frac{1}{x^2 + 1}$, the y-axis and the line $y = \frac{1}{2}$ is rotated about the y-axis. 2
- (ii) Find the exact volume of the solid of revolution formed when the region bounded by the graph of $y = 1 - \frac{x}{2}$, the y-axis and the line $y = \frac{1}{2}$ is rotated about the y-axis.
- (iii) Use the results from parts (c)(i) and (c)(ii) to show that $\frac{2}{3} < \ln 2$. 1

2

2

- (d) A multiple-choice test contains ten questions. Each question has four choices for the correct answer. Only one of the choices is correct.
 - (i) What is the probability of getting 70% correct with random guessing?
 - (ii) What is the probability of getting at most 70% correct with random guessing? 2
- (e) A binomial random variable *X* has a mean of 15 and a variance of 10.What are the parameters *n* and *p*?

End of Question 13. Start a New Booklet.

Question 14 (15 marks) Start a new writing booklet

(a) Prove by mathematical induction that, for all integers $n \ge 1$,

$$\frac{2}{1\times3} + \frac{2}{2\times4} + \frac{2}{3\times5} + \dots + \frac{2}{n(n+2)} = \frac{3}{2} - \frac{2n+3}{(n+1)(n+2)}.$$
3

2

3

1

- (b) A bag contains *n* red marbles and one blue marble. Three marbles are drawn (without replacement). The probability that the three marbles are red is $\frac{5}{8}$. Find the value of *n*.
- (c) A golfer hits a golf ball from a point θ with speed $V \text{ ms}^{-1}$ at an angle θ° above the horizontal, where $0 < \theta < \frac{\pi}{2}$. The ball just passes over a 2.25 m high tree after 1.5 seconds. The tree is 60 metres away from the point from which the ball was hit. Assume $g = 10 \text{ ms}^{-1}$.

- (i) What is the angle of projection of the golf ball to the nearest minute? Assume the horizontal and vertical displacements of the golf ball are given by the vector $\underline{r}(t) = (Vt \cos \theta)i + (-5t^2 + Vt \sin \theta)j$.
- (ii) What is the initial speed $(V \text{ ms}^{-1})$ of the golf ball, correct to the nearest whole number?

(Q14 continues on the next page)

(Q14 continued)

(d) The population, P, of animals in an environment in which there are scarce resources is increasing such that $\frac{dP}{dt} = P(100 - P)$, where t is time. When t = 0, P = 10.

(i) Show that
$$\frac{1}{100} \left(\frac{1}{P} + \frac{1}{100 - P} \right) = \frac{1}{P(100 - P)}.$$
 1

- (ii) Find an expression for P in terms of t.
- (e) The table shows selected values of a one-to-one differentiable function g(x) and its derivative g'(x).

x	-1	0
g(x)	-5	-1
g'(x)	3	$\frac{1}{2}$

Let f(x) be a function such that $f(x) = g^{-1}(x)$. Find the value of f'(-1).

-		
	۰.	

3

End of Question 14. End of Examination. 13

NGS Trial Examination 2020 Year 12 Mathematics Extension 1 Worked solutions and marking guidelines

Section 1		
10 marks		
Question 1 (1 mark)		
Solution	Answer	Mark
(x-2) is a factor of		
$r^{3} - 8r^{2} + 21r - 4$	D	1
$\therefore 8 - 32 + 42 - 4 = 0$		
A = 18		
Ouestion 2 (1 mark)		
Solution	Answer	Mark
If $y = \tan^{-1}(3x)$		
dy = 1	С	1
$\int \frac{dx}{dx} - \frac{1}{1 + (3x)^2} \times 3$		-
3		
$=\frac{1+9r^2}{1+9r^2}$		
Ouestion 3 (1 mark)		
Solution	Answer	Mark
\overrightarrow{OS} \overrightarrow{DS} \overrightarrow{DO}		
QS = PS - PQ	С	1
$= \vec{p} - 2\vec{s}$		-
1		
Ouestion 4 (1 mark)	I	
Solution	Answer	Mark
$T_{k+1} = {}^{8}C_{k} \left(x\right)^{8-k} \left(\frac{3}{x}\right)^{k}$		
$= {}^{8}C_{k} x^{8-k} \left(3^{k} x^{-k} \right)$		
$= {}^{8}C_{k} (3)^{k} x^{8-2k}$	D	1
$x^4 \Longrightarrow 8 - 2k = 4$		

k = 2the term is ${}^{8}C_{2} \times (3)^{2} = 252$ Question 5 (1 mark)

Solution	Answer	Mark
By inspection and properties of $y = \frac{1}{f(x)}$	В	1

Question 6 (1 mark)

Solution	Answer	Mark
By considering slopes at		
different points of cartesian	В	1
plane and testing with each		
differential equation		

Question 7 (1 mark)

Solution	Answer	Mark
Seat females in $(4-1)!$ ways.	_	
Then seat males in 4!ways	В	1
\therefore number of ways = 3!×4!		

Question 8 (1 mark)

Solution	Answer	Mark
For $y = 2\cos^{-1}\left(\frac{x}{2}-1\right)$		
Range $0 \le y \le 2\pi$	Α	1
Domain is $D:-1 \le \frac{x}{2}-1 \le 1$		
$0 \le x \le 4$		

Question 9 (1 mark)

Solution	Answer	Mark
y y $y = \sin^3 x$ $y = \sin^3 x$	D	1
There are 3 equivalent areas from $x = -\pi$ to $x = 2\pi$		
$u = \cos x$ $\frac{du}{dx} = -\sin x$		
$du = -\sin x dx$		
$x = 0, u = 1 \text{ and } x = \pi, u = -1$		
$A = 3 \times \int_0^{\pi} \sin^3 x dx$		
$= -3 \int_{0}^{\pi} (1 - \cos^{2} x) \times -\sin x dx$		
$= -3\int_{1}^{1} (1-u^2) du$		
$=3\int_{-1}^{1}(1-u^{2})du$		

Question 10 (1 mark)

Solution	Answer	Mark
Step 3: To prove true for $n = k + 1$		
$2^{k+1} + (-1)^{k+1+1} = 2(2^k) + (-1)^{k+2}$		
$= 2[3m - (-1)^{k+1}] + (-1)^{k+2}$ Error Line 4		
$= 2 \times 3m - 2 \times (-1)^{k+1} - (-1)^{k+1}$	D	1
$= 3[2m - (-1)^{k+1}]$		
Which is a multiple of 3 since <i>m</i> and <i>k</i> are integers.		
Step 4: True by induction		

Q11 (15 mark)

Solution	Mark (Guide only)
(a) (i) $f(x) = x^2 - 4x + 6$ is a parabola. Excluding the turning point at (2, 2), for each value of $f(x)$ in the range there are two <i>x</i> -values. Geometrically, this corresponds to a horizontal line intersecting the graph twice. If <i>x</i> and <i>y</i> are swapped, each <i>x</i> -value in the domain will have two <i>y</i> -values. Hence the inverse will not be a function	1 Mark: Explains using the horizontal line test or equivalent merit.
(ii) Use the completing the square method to express $f(x)$ in turning point form: $f(x) = x^2 - 4x + 6$ $= (x-2)^2 + 2$ ($x \le 2$) Swap x and y, then make y the subject. $x = (y-2)^2 + 2$ $x-2 = (y-2)^2$ $y-2 = -\sqrt{x-2}$ ($\sqrt{x-2}$ is discarded as $y \le 2$) $y = -\sqrt{x-2} + 2$ $f^{-1}(x) = -\sqrt{x-2} + 2$ ($x \ge 2$)	2 Marks: Correct Answer 1 Mark: Swaps x and y OR equivalent merit.
	2 Marks: Correct shape and start at (2,2) 1 Mark: Correct shape OR starting point.
(iv) The curves $y = f(x)$ and $y = f^{-1}(x)$ have a common intersection with the line $y = x$. For example, attempting to solve $f(x) = x$ for x : $x^2 - 4x + 6 = x$ $x^2 - 5x + 6 = 0$ x = 2, 3 When $x = 2, y = 2$ and so (2, 2) lies on the line $y = x$. When $x = 3, y = 1$ and so (3, 1) does not lie on the line y = x. Therefore the coordinates of <i>P</i> are (2, 2).	1 Mark: Correct solution

(b) Let $u = 1 + 2\tan x$. $\frac{du}{dx} = 2\sec^2 x = \frac{2}{\cos^2 x} \Rightarrow dx = \frac{\cos^2 x}{2} du$ When $x = 0$, $u = 1$ and when $x = \frac{\pi}{4}$, $u = 3$.	 3 Marks: Correct solution 2 Marks: Finds expression for integral in terms of u, or equivalent merit. 1 Mark: Derives u=1+2tanx correctly
$\int_{0}^{1} \frac{1}{(1+2\tan x)^{2}\cos^{2}x} dx = \int_{1}^{1} \frac{1}{2u^{2}} du$ $= -\left[\frac{1}{2u}\right]_{1}^{3}$ $= -\left(\frac{1}{6} - \frac{1}{2}\right)$	
$=\frac{1}{3}$	3 Marks: Correct solution
(c) Substituting $\cos x = \frac{1-t}{1+t^2}$, $\sin x = \frac{2t}{1+t^2}$ where $t = \tan \frac{1}{2}x$	2 Marks: Determines that $tan(\frac{1}{2}x) = -1, 0$
into $\cos x - \sin x = 1$ and expressing $1 = \frac{1 + t^2}{1 + t^2}$ gives:	1 Mark: Attempts to form a quadratic equation in t with some correct working OR equivalent merit.
$\frac{1-t^2}{1-t^2} - \frac{2t}{1-t^2} = \frac{1+t^2}{1-t^2}$	
$\frac{1-t^2-2t-1-t^2}{1-t^2} = 0$	
$1 + t^2$ -2($t^2 + t$)	
$\frac{-2(t+t)}{1+t^2} = 0$	
$t^2 + t = 0$ $t(t+1) = 0$	
t = -1, 0	
$\tan\frac{1}{2}x = -1, 0$	
$\tan\frac{1}{2}x = 0 \Longrightarrow \frac{1}{2}x = 0, \ \pi$	
$\tan \frac{1}{2}x = -1$	
is $\frac{\pi}{4}$.	
$\tan\frac{1}{2}x = -1 \Longrightarrow \frac{x}{2} = \frac{3\pi}{4}$	
So $x = 0, \frac{3\pi}{2}, 2\pi$.	

Q12 (15 mark)	
(a) (i) Using auxiliary angle: $x = \cos 2t + \sqrt{3} \sin 2t = 2\cos\left(2t - \frac{\pi}{3}\right)$ \therefore maximum distance from $O = 2$ metres	2 marks: Correct Answer 1 Mark: Some attempt at Auxiliary Angle with some correct working OR equivalent merit
(ii) $2\cos\left(2t - \frac{\pi}{3}\right) = 0$ $2t - \frac{\pi}{3} = \frac{\pi}{2}$ $t = \frac{5\pi}{12}$ seconds	1 Mark: Correct answer.
(b) (i) Ball enters the liquid when $t = 0$ $T = 400e^{-0.05t} + 25$ $= 400e^{-0.05 \times 0} + 25 = 425 \text{ °C}$	1 Mark: Correct answer.
(ii) $300 = 400e^{-0.05t} + 25$ $e^{-0.05t} = \frac{275}{400}$ $-0.05t = \ln\left(\frac{11}{16}\right)$ $t = 7.4938 \approx 7.49 \text{ min (3 sig. fig.)}$	1 Mark: Correct answer.
(iii) $T = 400e^{-0.05t} + 25$ $\frac{dT}{dt} = -20e^{-0.05t}$ $= -20e^{-0.05 \times 50}$ $= -1.6416 \approx -1.64^{\circ}C/min$ ∴ Rate of decrease is 1.64°C per minute.	2 Marks: Correct answer. 1.5 marks: Only giving -1.64/min 1 Mark: Differentiates correctly to find the rate of change.
(iv) When <i>t</i> approaches infinity then $e^{-0.05t} \rightarrow 0$ $\therefore T > 25$ and can never fall to 20°C.	1 Mark: Correct answer. (Must <u>use the equation</u> to show correctly)

$\int_{0}^{\pi} \frac{4}{\sqrt{16 - x^{2}}} dx = 4 \left[\sin^{-1} \left(\frac{x}{4} \right) \right]_{0}^{\pi}$ $= 4 \left[\sin^{-1} \left(\frac{\pi}{4} \right) - \sin^{-1}(0) \right]$ $= 4 \left[\frac{1}{\sqrt{2}} - 0 \right]$ $= \frac{4}{\sqrt{2}} = 2\sqrt{2}$ (d) (i) LHS = cosecx + cotx $= \frac{1 + t^{2}}{2t} + \frac{1 - t^{2}}{2t}$ $= \frac{1 + t^{2} + 1 - t^{2}}{2t}$ $= \frac{1}{t}$ $= \cot \frac{x}{2}$ $= RHS$	 2 Marks: Correct answer. 1 Mark: Finds the correct integration. 2 Marks: Correct answer. 1 Mark: Writes cosecx and cotx in terms of t.
$(ii) \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} (\csc x + \cot x) dx = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cot \frac{x}{2} dx$ $= 2 \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{0.5 \cos \frac{x}{2}}{\sin \frac{x}{2}} dx$ $= 2 \left[\ln \left(\sin \frac{x}{2} \right) \right]_{\frac{\pi}{3}}^{\frac{\pi}{2}}$ $= 2 \left[\ln \left(\sin \frac{\pi}{4} \right) - \ln \left(\sin \frac{\pi}{6} \right) \right]$ $= 2 \left[\ln \left(\sin \frac{\pi}{4} \right) - \ln \left(\sin \frac{\pi}{6} \right) \right]$ $= 2 \left[\ln \left(2^{-\frac{1}{2}} \div 2^{-1} \right) \right]$ $= 2 \ln \left(2^{-\frac{1}{2}} \div 2^{-1} \right)$ $= 2 \ln 2^{\frac{1}{2}}$ $= \ln 2$	3 Marks: Correct answer. 2 Marks: Makes significant progress. <u>OR</u> uses logs correctly 1 Mark: Finds the primitive function.

(i) Rearranging $y = \frac{1}{x^2 + 1}$ to express x^2 in terms	
of y gives $x^2 = \frac{1}{y} - 1$.	
$V = \pi \int_{\frac{1}{2}}^{1} \left(\frac{1}{y} - 1\right) dy$	
$=\pi \left[\ln y - y \right]_{\frac{1}{2}}^{1}$	
$=\pi\left(\ln 1 - 1 - \left(\ln \frac{1}{2} - \frac{1}{2}\right)\right)$	
$=\pi\left(\ln 2 - \frac{1}{2}\right)$	
(ii) Rearranging $y = 1 - \frac{x}{2}$ to express x in terms of y gives x = 2(1 - y)	2 marks: Correct Answer. 1 mark: Gives correct integral for
$V = \pi \int_{-1}^{1} (4(1-y)^2) dy$	volume of revolution
$J_{\frac{1}{2}}$	
$= -\frac{4\pi}{3} \left[(1-y)^3 \right]_{\frac{1}{2}}$	
$=-\frac{4\pi}{3}\left(0-\frac{1}{8}\right)$	
$=\frac{\pi}{6}$	
Alternatively:	
The solid formed is a cone of radius 1 and height $\frac{1}{2}$.	
Substituting these values into $V = \frac{1}{3}\pi r^2 h$ gives:	
$V = \frac{1}{3} \times \pi \times 1^2 \times \frac{1}{2}$	
$=\frac{\pi}{6}$	
(iii) From the diagram, it can be reasoned that	1 Mark: Correct
$\pi \left(\ln 2 - \frac{1}{2} \right) > \frac{\pi}{6}.$	answer.
So $\ln 2 - \frac{1}{2} > \frac{1}{6} \Rightarrow \ln 2 > \frac{2}{3}$.	
(d) (i)	1 Mark: Correct
$p = \frac{1}{4}, n = 10$	answer.
$P(X = x) = {}^{10}C_x \left(\frac{1}{x}\right)^x \left(\frac{3}{x}\right)^{10-x}$	
$P(X = 7) = {}^{10}C_{7} \left(\frac{1}{2}\right)^{7} \left(\frac{3}{2}\right)^{10-7}$	
$= \frac{405}{405}$	
131072	

(ii) $P(X \le 7) = 1 - \left(P(8) + P(9) + P(10)\right)$ $= 1 - \left({}^{10}C_8\left(\frac{1}{4}\right)^8\left(\frac{3}{4}\right)^{10-8} + {}^{10}C_9\left(\frac{1}{4}\right)^9\left(\frac{3}{4}\right)^{10-9} + {}^{10}C_{10}\left(\frac{1}{4}\right)^{10}\left(\frac{3}{4}\right)^{10-10}\right)$ $= 0.99958$	2 Marks: Correct answer. 1 Mark: Uses the complementary event or shows some understanding.
(e) E(X) = np = 15 (1) $Var(X) = np(1-p) = 10 (2)$ Substituting equation (1) into (2) $15 \times (1-p) = 10$ $1-p = \frac{10}{15} = \frac{2}{3} \text{ or } p = \frac{1}{3}$ Substituting $p = \frac{1}{3}$ into equation (1) $n \times \frac{1}{3} = 15$ $n = 45$ $\therefore \text{ Parameters are } n = 45 \text{ and } p = \frac{1}{3}$	2 Marks: Correct answer. 1 Mark: Finds one of the parameters or shows some understanding.

Q14 (15 mark)	
(a)	3 Marks: Correct proof
Consider $n = 1$.	2 Marks: Establishes the induictive step
LHS = $\frac{2}{1 \times 3} = \frac{2}{3}$ and	OR equivalent merit. 1 Mark: Establishes the n=1 case or
RHS = $\frac{3}{2} - \frac{2(1)+3}{(1+1)(1+2)} = \frac{4}{6} = \frac{2}{3} = LHS.$	equivalent merit.
The statement is true when $n = 1$.	
Suppose true for $n = k$.	
So $\frac{2}{1\times3} + \frac{2}{2\times4} + \frac{2}{3\times5} + \dots + \frac{2}{k(k+2)} = \frac{3}{2} - \frac{2k+3}{(k+1)(k+2)}$.	
Show it is true for $n = k + 1$; that is,	
$\frac{2}{1\times3} + \frac{2}{2\times4} + \frac{2}{3\times5} + \dots + \frac{2}{k(k+2)} + \frac{2}{(k+1)(k+3)} =$	
$\frac{3}{2} - \frac{2(k+1)+3}{2}$	
2 ((k+1)+1)((k+1)+2)	
LHS = $\frac{2}{1 \times 3} + \frac{2}{2 \times 4} + \frac{2}{3 \times 5} + \dots + \frac{2}{k(k+2)} + \frac{2}{(k+1)(k+3)}$	
$=\frac{3}{2} - \frac{2k+3}{(k+1)(k+2)} + \frac{2}{(k+1)(k+3)}$	
$=\frac{3}{2} - \frac{(2k+3)(k+3) - 2(k+2)}{(k+1)(k+2)(k+3)}$	
$=\frac{3}{2}-\frac{2k^2+7k+5}{(k+1)(k+2)(k+3)}$	
$= \frac{3}{2} - \frac{(2k+5)(k+1)}{(2k+5)(k+1)}$	
2 (k+1)(k+2)(k+3) 3 2k+5	
$=\frac{1}{2}-\frac{1}{(k+2)(k+3)}$	
$=\frac{3}{2} - \frac{2(k+1)+3}{((k+1)+1)((k+1)+2)}$	
= RHS	
If true for $n = k$, then true for $n = k + 1$.	
Hence, by mathematical induction, true for $n \ge 1$.	
(b)	
Prob(3 red marbles drawn) = $\frac{{}^{n}C_{3}}{{}^{n+1}C}$	2 marks: Correct Answer
Д 1	I mark: Writes correct answer for probability
	probability
$\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{2} = \frac{5}{2}$ $\frac{C_3}{n+1} = \frac{5}{8}$	
$n+1$ n $n-1$ 8 C_3 8	
$\frac{n-2}{2} = \frac{5}{2}$ $\left(\frac{n(n-1)(n-2)}{2}\right)$	
$n+1 8 \qquad \qquad$	
n = / $(n+1)(n)(n-1) = 8$	
$3 \times 2 \times 1$	
$\frac{n-2}{n+1} = \frac{5}{2}$	
n+1 = 8 $8n-16 - 5n \pm 5$	
6n - 10 - 5n + 5	

(c)(i)After 1.5 seconds x = 60 and y = 2.253 marks: Correct $60 = 1.5V\cos\theta$ answer. $V\cos\theta = 40(1)$ $2.25 = -5 \times 1.5^2 + 1.5V \sin\theta$ 2 marks: Makes $13.5 = 1.5V \sin\theta$ $V\sin\theta = 9(2)$ significant Dividing the two equations progress. $\frac{V\sin\theta}{V\cos\theta} = \frac{9}{40}$ 1 mark: Sets up $\tan\theta = \frac{1}{40}$ the two equations $\theta = \tan^{-1}\frac{9}{40} = 12^{\circ}41'$ or shows some understanding. \therefore Golf ball has an angle of projection of 12°41'. (ii) Using equations (1) and (2)1 Mark: Correct answer. $(V\sin\theta)^2 + (V\cos\theta)^2 = 9^2 + 40^2$ $V^2(\sin^2\theta + \cos^2\theta) = 9^2 + 40^2$ $V = \sqrt{9^2 + 40^2}$ $V = 41 \text{ ms}^{-1}$ ∴ Speed of the gold ball is 41 ms⁻¹ (d) (i) $\frac{1}{100} \left(\frac{1}{P} + \frac{1}{100 - P} \right) = \frac{1}{100} \left(\frac{100 - P + P}{P(100 - P)} \right) = \frac{1}{P(100 - P)}$ 1 mark: Correctly shows the result

(ii)	3 marks: Correct answer
$\frac{dP}{dt} = P(100 - P)$ $\frac{1}{P(100 - P)}dP = dt$	2 marks: Integrates correctly without finding the constant <u>OR</u> Integrates correctly, finds c, but leaves as $t = f(P)$.
$\int \frac{1}{P(100-P)} dP = \int dt$ $\int \frac{1}{100} \left(\frac{1}{P} + \frac{1}{100-P}\right) dP = \int dt$	1 mark: Makes some progress. Ie. seperates the differential equation and attempts to integrate.
$\int \left(\frac{1}{P} + \frac{1}{100 - P}\right) dP = 100 \int dt$	
$\log_e P - \log_e (100 - P) = 100t + c$	
$t = 0, P = 10 \Longrightarrow \log_e 10 - \log_e 90 = c$	
$c = \log_e \frac{1}{9}$	
$\log_e\left(\frac{P}{100-P}\right) = 100t + \log_e\frac{1}{9}$	
$\left(\frac{P}{100-P}\right) = e^{100t + \log_e \frac{1}{9}}$	
$\frac{P}{100-P} = \frac{1}{9}e^{100t} \qquad \frac{100-P}{P} = 9e^{-100t}$	
$9P = 100e^{100t} - Pe^{100t} \qquad \frac{100}{1} - 1 = 9e^{-100t}$	
$9P + Pe^{100t} = 100e^{100t} \qquad \qquad P$	
$\frac{100}{P} = 1 + 9e^{-100t}$	
$P = \frac{100}{9 + e^{100t}}$	
$P = \frac{100}{1 + 9e^{-100t}}$	
(e) -1 -1 -1 -1 -1	3 marks: Gives the correct solution 2 marks:
From the table, $f(x) = g^{-1}(x)$ and so $f(-1) = g^{-1}(-1) = 0$.	Determines $f(-1) = a^{-1}(-1) = 0$ AND
$f'(-1) = \frac{1}{\alpha'(f(-1))}$	Determines $f(-1) = g^{-1}(-1) = 0$ AND
1	$f'(-1) = \frac{1}{g'(f(-1))}$
$=\frac{1}{g'(0)}$	1 mark:
$=\frac{1}{2}$	Determines $f(-1) = g^{-1}(-1) = 0$ OR
$\frac{1}{2}$	
- 2	$f'(-1) = \frac{1}{g'(f(-1))}$
- 2	