

Year 12

2020 HSC Trial Examination

Year 12 Mathematics Extension 1

Examiner: AC

Reading time - 10 minutes

Writing time - 2 hours

General Instructions

- Write using black or blue pen.
- Read the instructions carefully - you are required to answer the questions in the space provided.
- If you use booklets, start each question in a separate writing booklet.
- Write your student name clearly on each page.
- Board-approved calculators may be used, unless stated otherwise.
- All diagrams must be drawn in pencil.
- Do not remove this question paper from the examination room.

Section	Guidance	Marks Available	Your Score
Section I	- Type of Questions - Multiple Choice - Attempt Questions 1-10 - Timing 15 minutes	10	
Section II	- Type of Questions - Multiple Choice - Attempt Questions 11-14 - Timing 1 hour 45 minutes	60	
		70	

FINAL MARK	$/ 70$	$\%$

Your examination paper begins overleaf.

Page Intentionally Left Blank

Section 1: 10 marks

Attempt Questions 1 - 10

Allow about $\mathbf{1 5}$ minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 10 .

1 Given $(x-2)$ is a factor of $x^{3}-8 x^{2}+21 x-A$, which of the following is the value of A ?
(A) $A=-82$
(B) $\quad A=-2$
(C) $A=2$
(D) $A=18$

2 Which of the following is the derivative of $\tan ^{-1}(3 x)$?
(A) $3 \tan ^{-1} x$
(B) $\frac{3}{1+x^{2}}$
(C) $\frac{3}{1+9 x^{2}}$
(D) $3 \sec ^{2} 3 x$
$3 P Q R S$ is a trapezium where $\overrightarrow{P S}=\vec{p}, \overrightarrow{S R}=\vec{s}$ and $\overrightarrow{P Q}=2 \overrightarrow{S R}$.

Which of the following is equivalent to $\overrightarrow{Q S}$?
(A) $2 \vec{s}+\vec{p}$
(B) $2 \vec{s}-\vec{p}$
(C) $\vec{p}-2 \vec{s}$
(D) $-\vec{p}-2 \vec{s}$

4 Which of the following is the coefficient of x^{4} in the expansion $\left(x+\frac{3}{x}\right)^{8}$?
(A) 28
(B) 56
(C) 84
(D) 252

The graph above shows $y=\frac{1}{f(x)}$.
Which of the equations below best represents $f(x)$?
(A) $\quad f(x)=x^{2}-1$
(B) $\quad f(x)=x\left(x^{2}-1\right)$
(C) $\quad f(x)=x^{2}\left(x^{2}-1\right)$
(D) $\quad f(x)=x^{2}\left(x^{2}-1\right)^{2}$

The slope field for a first order differential equation is shown below.

Which of the following could be the differential equation represented?
(A) $\frac{d y}{d x}=\frac{x}{y}$
(B) $\frac{d y}{d x}=\frac{-x}{y}$
(C) $\frac{d y}{d x}=x y$
(D) $\frac{d y}{d x}=-x y$

Four female and four male students are to be seated around a circular table.
In how many ways can this be done if the males and females must alternate?
(A) $4!\times 4$!
(B) $3!\times 4$!
(C) $3!\times 3$!
(D) $2 \times 3!\times 3$!
$8 \quad$ Which of the graphs below shows $y=2 \cos ^{-1}\left(\frac{x}{2}-1\right)$?
(A)

(C)

(B)

(D)

9 Which of the following expressions represents the area of the region bounded by the curve $y=\sin ^{3} x$ and the x-axis from $x=-\pi$ to $x=2 \pi$? Use the substitution $u=\cos x$.
(A) $\quad-\int_{-\pi}^{2 \pi}\left(1-u^{2}\right) d u$
(B) $-3 \int_{0}^{\pi}\left(1-u^{2}\right) d u$
(C) $\quad-\int_{-1}^{1}\left(1-u^{2}\right) d u$
(D) $\quad 3 \int_{-1}^{1}\left(1-u^{2}\right) d u$

Emma made an error proving that $2^{n}+(-1)^{n+1}$ is divisible by 3 for all integers $n \geq 1$ using mathematical induction. The proof is shown below.

Step 1: To prove $2^{n}+(-1)^{n+1}$ is divisible by 3 (n is an integer)

To prove true for $n=1$
$2^{1}+(-1)^{1+1}=2+1$
$=3 \times 1 \quad$ Line 1

Result is true for $n=1$

Step 2: Assume true for $n=k$
ie. $2^{k}+(-1)^{k+1}=3 m(m$ is an integer $) \quad$ Line 2
Step 3: To prove true for $n=k+1$

$$
\begin{array}{ll}
2^{k+1}+(-1)^{k+1+1}=2\left(2^{k}\right)+(-1)^{k+2} & \text { Line 3 } \\
=2\left[3 m+(-1)^{k+1}\right]+(-1)^{k+2} & \text { Line 4 } \\
=2 \times 3 m+2 \times(-1)^{k+2}+(-1)^{k+2} & \\
=3\left[2 m+(-1)^{k+2}\right] &
\end{array}
$$

Which is a multiple of 3 since m and k are integers.
Step 4: True by induction

In which line did Emma make an error?
(A) Line 1
(B) Line 2
(C) Line 3
(D) Line 4

Section II: 60 marks

Attempt Questions 11 - 14

Allow about 1 hour and 45 minutes for this section

Answer each question in a separate writing booklet.
Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a new writing booklet
(a) Consider the function $f(x)=x^{2}-4 x+6$.
(i) Explain why the domain of $f(x)$ must be restricted if $f(x)$ is to have an inverse function.
(ii) Given that the domain of $f(x)$ is restricted to $x \leq 2$, find an expression for $f^{-1}(x)$.
(iii) Given the restriction in part (ii), sketch $y=f^{-1}(x)$.
(iv) The curve $y=f(x)$ with its restricted domain and the curve $y=f^{-1}(x)$ intersect at point P.

Find the coordinates of P.
(b) Use the substitution $u=1+2 \tan x$ to evaluate $\int_{0}^{\frac{\pi}{4}} \frac{1}{(1+2 \tan x)^{2} \cos ^{2} x} d x$.
(c) Solve the equation $\cos x-\sin x=1$, where $0 \leq x \leq 2 \pi$.
(d) The column (position) vector notation of 4 vectors is shown below.

$$
P=\binom{-8}{-8} \quad Q=\binom{3}{6} \quad R=\binom{1}{5} \quad S=\binom{-5}{7}
$$

Find the column (position) vector notation of:
(i) $\overrightarrow{P Q}$
(ii) $\overrightarrow{R S}$
(iii) $-\overrightarrow{P Q}-\overrightarrow{R S}$
(a) A particle is moving in a straight line such that its displacement (x metres) from a fixed point O after t seconds is given by $x=\cos 2 t+\sqrt{3} \sin 2 t$.
(i) What is the maximum distance of the particle from O ?
(ii) When is the particle first at the origin?
(b) A heated metal ball is dropped into a liquid. As the ball cools, its temperature, $T^{\circ} \mathrm{C}, t$ minutes after it enters the liquid, is given by:

$$
T=400 e^{-0.05 t}+25, \quad t \geq 0
$$

(i) Find the temperature of the ball as it enters the liquid.
(ii) Find the value of t if $T=300$. Answer correct to 3 significant figures.
(iii) Find the rate at which the temperature of the ball is decreasing at the instant when $t=50$. Give your answer in ${ }^{\circ} \mathrm{C}$ per minute to 3 significant figures.
(iv) Using the equation for temperature T in terms of t, given above, to explain why the temperature of the ball can never fall to $20^{\circ} \mathrm{C}$.
(c) Find $\int_{0}^{\pi} \frac{4}{\sqrt{16-x^{2}}} d x$.
(d) (i) Use the substitution $t=\tan \frac{x}{2}$ to show that $\operatorname{cosec} x+\cot x=\cot \frac{x}{2}$.
(ii) Hence evaluate $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}(\operatorname{cosec} x+\cot x) d x$. Answer in simplest exact form.
(a) The diagram below is the sketch of the graph of the function $f(x)=-\frac{x}{x+1}$.

(i) Sketch the graph of $y=(f(x))^{2}$, showing all asymptotes and intercepts.
(ii) Solve the equation $(f(x))^{2}=f(x)$.
(b) $A B C D$ is a rhombus with $\overrightarrow{A B}=\mathbf{a}$ and $\overrightarrow{A D}=\mathbf{d}$.

Use vector methods to prove that the diagonals of the rhombus are perpendicular to each other.
(c) The diagram shows the graph of $y=\frac{1}{x^{2}+1}$ and the graph of $y=1-\frac{x}{2}$ for $0 \leq x \leq 1$.

(i) Find the exact volume of the solid of revolution formed when the region bounded by the graph of $y=\frac{1}{x^{2}+1}$, the y-axis and the line $y=\frac{1}{2}$ is rotated about the y-axis.
(ii) Find the exact volume of the solid of revolution formed when the region bounded by the graph of $y=1-\frac{x}{2}$, the y-axis and the line $y=\frac{1}{2}$ is rotated about the y-axis.
(iii) Use the results from parts (c)(i) and (c)(ii) to show that $\frac{2}{3}<\ln 2$.
(d) A multiple-choice test contains ten questions. Each question has four choices for the correct answer. Only one of the choices is correct.
(i) What is the probability of getting 70% correct with random guessing?
(ii) What is the probability of getting at most 70% correct with random guessing?
(e) A binomial random variable X has a mean of 15 and a variance of 10 . What are the parameters n and p ?
(a) Prove by mathematical induction that, for all integers $n \geq 1$,

$$
\frac{2}{1 \times 3}+\frac{2}{2 \times 4}+\frac{2}{3 \times 5}+\ldots+\frac{2}{n(n+2)}=\frac{3}{2}-\frac{2 n+3}{(n+1)(n+2)} .
$$

(b) A bag contains n red marbles and one blue marble. Three marbles are drawn (without replacement). The probability that the three marbles are red is $\frac{5}{8}$.

Find the value of n.
(c) A golfer hits a golf ball from a point 0 with speed $V \mathrm{~ms}^{-1}$ at an angle θ° above the horizontal, where $0<\theta<\frac{\pi}{2}$. The ball just passes over a 2.25 m high tree after 1.5 seconds. The tree is 60 metres away from the point from which the ball was hit. Assume $g=10 \mathrm{~ms}^{-1}$.

(i) What is the angle of projection of the golf ball to the nearest minute?

Assume the horizontal and vertical displacements of the golf ball are given by the vector $\underset{\sim}{r}(t)=(V t \cos \theta) i+\left(-5 t^{2}+V t \sin \theta\right) j$.
(ii) What is the initial speed $\left(V \mathrm{~ms}^{-1}\right)$ of the golf ball, correct to the nearest whole number?
(d) The population, P, of animals in an environment in which there are scarce resources is increasing such that $\frac{d P}{d t}=P(100-P)$, where t is time.
When $t=0, P=10$.
(i) Show that $\frac{1}{100}\left(\frac{1}{P}+\frac{1}{100-P}\right)=\frac{1}{P(100-P)}$.
(ii) Find an expression for P in terms of t.
(e) The table shows selected values of a one-to-one differentiable function $g(x)$ and its derivative $g^{\prime}(x)$.

x	-1	0
$g(x)$	-5	-1
$g^{\prime}(x)$	3	$\frac{1}{2}$

Let $f(x)$ be a function such that $f(x)=g^{-1}(x)$.
Find the value of $f^{\prime}(-1)$.

End of Question 14.

End of Examination.

NGS Trial Examination 2020
Year 12 Mathematics Extension 1
Worked solutions and marking guidelines

Section 1

10 marks
Question 1 (1 mark)

Solution	Answer	Mark
$(x-2)$ is a factor of		
$x^{3}-8 x^{2}+21 x-A$	D	1
$\therefore 8-32+42-A=0$		
$A=18$		

Question 2 (1 mark)

Solution	Answer	Mark
If $y=\tan ^{-1}(3 x)$		
$\frac{d y}{d x}$ $=\frac{1}{1+(3 x)^{2}} \times 3$ C		
$=\frac{3}{1+9 x^{2}}$		$\mathbf{1}$

Question 3 (1 mark)

Solution	Answer	Mark
$\overrightarrow{Q S}$	$=\overrightarrow{P S}-\overrightarrow{P Q}$	
	$=\vec{p}-2 \vec{s}$	

Question 4 (1 mark)

Solution	Answer	Mark
$T_{k+1}={ }^{8} C_{k}(x)^{8-k}\left(\frac{3}{x}\right)^{k}$		
$\quad={ }^{8} C_{k} x^{8-k}\left(3^{k} x^{-k}\right)$		
$\quad={ }^{8} C_{k}(3)^{k} x^{8-2 k}$	D	$\mathbf{1}$
$x^{4} \Rightarrow 8-2 k=4$		
$k=2$		
the term is ${ }^{8} C_{2} \times(3)^{2}=252$		

Question 5 (1 mark)

Solution	Answer	Mark
By inspection and properties of $y=\frac{1}{f(x)}$	B	

Question 6 (1 mark)

| Solution | Answer | Mark | |
| :--- | :--- | :--- | :--- | :--- |
| By considering slopes at
 different points of cartesian
 plane and testing with each
 differential equation | B | | $\mathbf{1}$ |

Question 7 (1 mark)

Solution	Answer	Mark
Seat females in $(4-1)!$ ways.		B
Then seat males in 4!ways		
\therefore number of ways $=3!\times 4!$		$\mathbf{1}$

Question 8 (1 mark)

Solution	Answer	Mark
For $y=2 \cos ^{-1}\left(\frac{x}{2}-1\right)$		
Range $0 \leq y \leq 2 \pi$	A	
Domain is $D:-1 \leq \frac{x}{2}-1 \leq 1$		$\mathbf{1}$
$0 \leq x \leq 4$		

Question 9 (1 mark)

| Solution | Answer | Mark |
| :--- | :--- | :--- | :--- |
| | | |

Question 10 (1 mark)

Solution	Answer	Mark
Step 3: To prove true for $n=k+1$		
$2^{k+1}+(-1)^{k+1+1}$ $=2\left(2^{k}\right)+(-1)^{k+2}$ $=2\left[3 m-(-1)^{k+1}\right]+(-1)^{k+2} \quad$ Error Line 4 $=2 \times 3 m-2 \times(-1)^{k+1}-(-1)^{k+1}$ $=3\left[2 m-(-1)^{k+1}\right]$		
Which is a multiple of 3 since m and k are integers. Step 4: True by induction		D

Q11 (15 mark)

Solution	Mark (Guide only)
(a) (i) $f(x)=x^{2}-4 x+6$ is a parabola. Excluding the turning point at $(2,2)$, for each value of $f(x)$ in the range there are two x-values. Geometrically, this corresponds to a horizontal line intersecting the graph twice. If x and y are swapped, each x-value in the domain will have two y-values. Hence the inverse will not be a function.	1 Mark: Explains using the horizontal line test or equivalent merit.
(ii) Use the completing the square method to express $f(x)$ in turning point form: $\begin{aligned} f(x) & =x^{2}-4 x+6 \\ & =(x-2)^{2}+2 \quad(x \leq 2) \end{aligned}$ Swap x and y, then make y the subject. $\begin{aligned} x & =(y-2)^{2}+2 \\ x-2 & =(y-2)^{2} \\ y-2 & =-\sqrt{x-2} \quad(\sqrt{x-2} \text { is discarded as } y \leq 2) \\ y & =-\sqrt{x-2}+2 \\ f^{-1}(x) & =-\sqrt{x-2}+2 \quad(x \geq 2) \end{aligned}$	2 Marks: Correct Answer 1 Mark: Swaps x and y OR equivalent merit.
	2 Marks: Correct shape and start at $(2,2)$ 1 Mark: Correct shape OR starting point.
(iv) The curves $y=f(x)$ and $y=f^{-1}(x)$ have a common intersection with the line $y=x$. For example, attempting to solve $f(x)=x$ for x : $\begin{aligned} x^{2}-4 x+6 & =x \\ x^{2}-5 x+6 & =0 \\ x & =2,3 \end{aligned}$ When $x=2, y=2$ and so $(2,2)$ lies on the line $y=x$. When $x=3, y=1$ and so $(3,1)$ does not lie on the line $y=x$. Therefore the coordinates of P are (2,2).	1 Mark: Correct solution

(b) Let $u=1+2 \tan x$.

$$
\frac{d u}{d x}=2 \sec ^{2} x=\frac{2}{\cos ^{2} x} \Rightarrow d x=\frac{\cos ^{2} x}{2} d u
$$

When $x=0, u=1$ and when $x=\frac{\pi}{4}, u=3$.

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{4}} \frac{1}{(1+2 \tan x)^{2} \cos ^{2} x} d x & =\int_{1}^{3} \frac{1}{2 u^{2}} d u \\
& =-\left[\frac{1}{2 u}\right]_{1}^{3} \\
& =-\left(\frac{1}{6}-\frac{1}{2}\right) \\
& =\frac{1}{3}
\end{aligned}
$$

(c) Substituting $\cos x=\frac{1-t^{2}}{1+t^{2}}, \sin x=\frac{2 t}{1+t^{2}}$ where $t=\tan \frac{1}{2} x$
into $\cos x-\sin x=1$ and expressing
$1=\frac{1+t^{2}}{1+t^{2}}$ gives:

$$
\frac{1-t^{2}}{1+t^{2}}-\frac{2 t}{1+t^{2}}=\frac{1+t^{2}}{1+t^{2}}
$$

$$
\frac{1-t^{2}-2 t-1-t^{2}}{1+t^{2}}=0
$$

$$
\frac{-2\left(t^{2}+t\right)}{1+t^{2}}=0
$$

$$
t^{2}+t=0
$$

$$
t(t+1)=0
$$

$$
t=-1,0
$$

$\tan \frac{1}{2} x=-1,0$
$\tan \frac{1}{2} x=0 \Rightarrow \frac{1}{2} x=0, \pi$
$\tan \frac{1}{2} x=-1$
tan is negative in the second quadrant and the related angle
is $\frac{\pi}{4}$.
$\tan \frac{1}{2} x=-1 \Rightarrow \frac{x}{2}=\frac{3 \pi}{4}$
So $x=0, \frac{3 \pi}{2}, 2 \pi$.

(d) (i)	1 Mark: Correct answer.
$\overrightarrow{P Q}=\binom{11}{14}$	
(ii) $\overrightarrow{R S}=\binom{-6}{2}$	1 Mark: Correct answer.
(iii) $-\overrightarrow{P Q}-\overrightarrow{R S}=\binom{-5}{-16}$	1 Mark: Correct answer.

Q12 (15 mark)
(a) (i) Using auxiliary angle:

$$
x=\cos 2 t+\sqrt{3} \sin 2 t=2 \cos \left(2 t-\frac{\pi}{3}\right)
$$

\therefore maximum distance from $O=2$ metres

(ii)	1 Mark: Correct
$\begin{aligned} & 2 \cos \left(2 t-\frac{\pi}{3}\right)=0 \\ & 2 t-\frac{\pi}{3}=\frac{\pi}{2} \\ & t=\frac{5 \pi}{12} \text { seconds } \end{aligned}$	answer.
(b) (i) Ball enters the liquid when $t=0$ $\begin{aligned} T & =400 e^{-0.05 t}+25 \\ & =400 e^{-0.05 \times 0}+25=425^{\circ} \mathrm{C} \end{aligned}$	1 Mark: Correct answer.
(ii) $\begin{aligned} 300 & =400 e^{-0.05 t}+25 \\ e^{-0.05 t} & =\frac{275}{400} \\ -0.05 t & =\ln \left(\frac{11}{16}\right) \\ t & =7.4938 \ldots \approx 7.49 \mathrm{~min}(3 \text { sig. fig. }) \end{aligned}$	1 Mark: Correct answer.
(iii) $\begin{aligned} T & =400 e^{-0.05 t}+25 \\ \frac{d T}{d t} & =-20 e^{-0.05 t} \\ & =-20 e^{-0.05 \times 50} \\ & =-1.6416 \ldots \approx-1.64^{\circ} \mathrm{C} / \mathrm{min} \end{aligned}$ \therefore Rate of decrease is $1.64^{\circ} \mathrm{C}$ per minute.	2 Marks: Correct answer. 1.5 marks: Only giving -1.64/min 1 Mark: Differentiates correctly to find the rate of change.
(iv) When t approaches infinity then $e^{-0.05 t} \rightarrow 0$ $\therefore T>25$ and can never fall to $20^{\circ} \mathrm{C}$.	1 Mark: Correct answer. (Must use the equation to show correctly)
(c)	

$\begin{aligned} \int_{0}^{\pi} \frac{4}{\sqrt{16-x^{2}}} d x & =4\left[\sin ^{-1}\left(\frac{x}{4}\right)\right]_{0}^{\pi} \\ & =4\left[\sin ^{-1}\left(\frac{\pi}{4}\right)-\sin ^{-1}(0)\right] \\ & =4\left[\frac{1}{\sqrt{2}}-0\right] \\ & =\frac{4}{\sqrt{2}}=2 \sqrt{2} \end{aligned}$	2 Marks: Correct answer. 1 Mark: Finds the correct integration.
(d) (i) $\begin{aligned} \text { LHS } & =\operatorname{cosec} x+\cot x \\ & =\frac{1+t^{2}}{2 t}+\frac{1-t^{2}}{2 t} \\ & =\frac{1+t^{2}+1-t^{2}}{2 t} \\ & =\frac{1}{t} \\ & =\cot \frac{x}{2} \\ & =\text { RHS } \end{aligned}$	2 Marks: Correct answer. 1 Mark: Writes $\operatorname{cosec} x$ and $\cot x$ in terms of t.
(ii) $\begin{aligned} & \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}(\operatorname{cosec} x+\cot x) d x=\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cot \frac{x}{2} d x \\ & =2 \int_{\frac{\pi}{3}}^{\frac{\pi}{2} 0.5 \cos \frac{x}{2}} \underset{\sin \frac{x}{2}}{2} d x \\ & =2\left[\ln \left(\sin \frac{x}{2}\right)\right]_{\frac{\pi}{3}}^{\frac{\pi}{2}} \\ & =2\left[\ln \left(\sin \frac{\pi}{4}\right)-\ln \left(\sin \frac{\pi}{6}\right)\right] \\ & \left.=2\left(\ln \frac{1}{\sqrt{2}}-\ln \frac{1}{2}\right) \right\rvert\, \\ & =2 \ln \left(2^{-\frac{1}{2}} \div 2^{-1}\right) \\ & =2 \ln 2^{\frac{1}{2}} \\ & =\ln 2 \end{aligned}$	3 Marks: Correct answer. 2 Marks: Makes significant progress. OR uses logs correctly 1 Mark: Finds the primitive function.

Q13 (15 mark)	
(a) (i)	2 Marks: Sketches correct graph with asymptotes at $\mathbf{x}=-1$ and $\mathbf{y}=1$ 1 Mark: Shows min turning point at origin OR equivalent merit.

(i) Rearranging $y=\frac{1}{x^{2}+1}$ to express x^{2} in terms of y gives $x^{2}=\frac{1}{y}-1$. $\begin{aligned} V & =\pi \int_{\frac{1}{2}}^{1}\left(\frac{1}{y}-1\right) d y \\ & =\pi[\ln \|y\|-y]_{\frac{1}{2}}^{1} \\ & =\pi\left(\ln 1-1-\left(\ln \frac{1}{2}-\frac{1}{2}\right)\right) \\ & =\pi\left(\ln 2-\frac{1}{2}\right) \end{aligned}$	
(ii) Rearranging $y=1-\frac{x}{2}$ to express x in terms of y gives $\begin{aligned} x & =2(1-y) . \\ V & =\pi \int_{\frac{1}{2}}^{1}\left(4(1-y)^{2}\right) d y \\ & =-\frac{4 \pi}{3}\left[(1-y)^{3}\right] \frac{1}{2} \\ & =-\frac{4 \pi}{3}\left(0-\frac{1}{8}\right) \\ & =\frac{\pi}{6} \end{aligned}$ Alternatively: The solid formed is a cone of radius 1 and height $\frac{1}{2}$. Substituting these values into $V=\frac{1}{3} \pi r^{2} h$ gives: $\begin{aligned} V & =\frac{1}{3} \times \pi \times 1^{2} \times \frac{1}{2} \\ & =\frac{\pi}{6} \end{aligned}$	2 marks: Correct Answer. 1 mark: Gives correct integral for volume of revolution
(iii) From the diagram, it can be reasoned that $\pi\left(\ln 2-\frac{1}{2}\right)>\frac{\pi}{6} .$ So $\ln 2-\frac{1}{2}>\frac{1}{6} \Rightarrow \ln 2>\frac{2}{3}$.	1 Mark: Correct answer.
(d) (i) Let p be the probability of getting the correct answer. $\begin{aligned} & p=\frac{1}{4}, n=10 \\ & P(X=x)={ }^{10} C_{x}\left(\frac{1}{4}\right)^{x}\left(\frac{3}{4}\right)^{10-x} \\ & \begin{aligned} P(X=7) & ={ }^{10} C_{7}\left(\frac{1}{4}\right)^{7}\left(\frac{3}{4}\right)^{10-7} \\ & =\frac{405}{{ }^{131072}} \end{aligned} \end{aligned}$	1 Mark: Correct answer.

(ii) $\begin{aligned} & P(X \leq 7)=1-(P(8)+P(9)+P(10)) \\ & =1-\left({ }^{10} C_{8}\left(\frac{1}{4}\right)^{8}\left(\frac{3}{4}\right)^{10-8}+{ }^{10} C_{9}\left(\frac{1}{4}\right)^{9}\left(\frac{3}{4}\right)^{10-9}+{ }^{10} C_{10}\left(\frac{1}{4}\right)^{10}\left(\frac{3}{4}\right)^{10-10}\right) \\ & =0.99958 \ldots \end{aligned}$	2 Marks: Correct answer. 1 Mark: Uses the complementary event or shows some understanding.
(e) $\begin{aligned} & E(X)=n p=15 \\ & \operatorname{Var}(X)=n p(1-p)=10 \end{aligned}$ Substituting equation (1) into (2) $\begin{aligned} 15 \times(1-p) & =10 \\ 1-p & =\frac{10}{15}=\frac{2}{3} \text { or } p=\frac{1}{3} \end{aligned}$ Substituting $p=\frac{1}{3}$ into equation (1) $\begin{aligned} n \times \frac{1}{3} & =15 \\ n & =45 \end{aligned}$ \therefore Parameters are $n=45$ and $p=\frac{1}{3}$	2 Marks: Correct answer. 1 Mark: Finds one of the parameters or shows some understanding.

Q14 (15 mark)

(a)

Consider $n=1$.
LHS $=\frac{2}{1 \times 3}=\frac{2}{3}$ and
RHS $=\frac{3}{2}-\frac{2(1)+3}{(1+1)(1+2)}=\frac{4}{6}=\frac{2}{3}=$ LHS.
The statement is true when $n=1$.
Suppose true for $n=k$.
So $\frac{2}{1 \times 3}+\frac{2}{2 \times 4}+\frac{2}{3 \times 5}+\ldots+\frac{2}{k(k+2)}=\frac{3}{2}-\frac{2 k+3}{(k+1)(k+2)}$.
Show it is true for $n=k+1$; that is,
$\frac{2}{1 \times 3}+\frac{2}{2 \times 4}+\frac{2}{3 \times 5}+\ldots+\frac{2}{k(k+2)}+\frac{2}{(k+1)(k+3)}=$

$$
\frac{3}{2}-\frac{2(k+1)+3}{((k+1)+1)((k+1)+2)}
$$

LHS $=\frac{2}{1 \times 3}+\frac{2}{2 \times 4}+\frac{2}{3 \times 5}+\ldots+\frac{2}{k(k+2)}+\frac{2}{(k+1)(k+3)}$

$$
=\frac{3}{2}-\frac{2 k+3}{(k+1)(k+2)}+\frac{2}{(k+1)(k+3)}
$$

$$
=\frac{3}{2}-\frac{(2 k+3)(k+3)-2(k+2)}{(k+1)(k+2)(k+3)}
$$

$$
=\frac{3}{2}-\frac{2 k^{2}+7 k+5}{(k+1)(k+2)(k+3)}
$$

$$
=\frac{3}{2}-\frac{(2 k+5)(k+1)}{(k+1)(k+2)(k+3)}
$$

$$
=\frac{3}{2}-\frac{2 k+5}{(k+2)(k+3)}
$$

$$
=\frac{3}{2}-\frac{2(k+1)+3}{((k+1)+1)((k+1)+2)}
$$

= RHS

If true for $n=k$, then true for $n=k+1$.
Hence, by mathematical induction, true for $n \geq 1$.
(b)

$$
\begin{array}{l|l}
\operatorname{Prob}(3 \text { red marbles drawn })= & \begin{array}{l}
{ }^{n} C_{3} \\
{ }^{n+1} C_{3} \\
n+1 \\
n+2 \\
n+1 \\
n=7
\end{array} \\
\frac{n-1}{n} \times \frac{n-2}{n-1}=\frac{5}{8} & \begin{array}{l}
\frac{{ }^{n} C_{3}}{{ }^{n+1} C_{3}}=\frac{5}{8} \\
\frac{n}{n}
\end{array} \\
\frac{\left(\frac{n(n-1)(n-2)}{3 \times 2 \times 1}\right)}{\frac{(n+1)(n)(n-1)}{3 \times 2 \times 1}}=\frac{5}{8} \\
\frac{n-2}{n+1}=\frac{5}{8} \\
8 n-16=5 n+5 \\
n=7
\end{array}
$$

3 Marks: Correct proof
2 Marks: Establishes the induictive step OR equivalent merit.
1 Mark: Establishes the $\mathrm{n}=1$ case or equivalent merit.

2 marks: Correct Answer

1 mark: Writes correct answer for probability

(c) (i)	
$\begin{aligned} & \text { After } 1.5 \text { seconds } x=60 \text { and } y=2.25 \\ & \quad 60=1.5 V \cos \theta \end{aligned}$	3 marks: Correct
$V \cos \theta=40$ (1)	
$\begin{aligned} & 2.25=-5 \times 1.5^{2}+1.5 V \sin \theta \\ & 13.5=1.5 V \sin \theta \end{aligned}$	2 marks: Makes
$V \sin \theta=9$ (2)	significant
Dividing the two equations	progress.
$\underline{V \sin \theta}=\frac{9}{V}$	
$\overline{V \cos \theta}=\frac{\overline{40}}{9}$	1 mark: Sets up
$\tan \theta=\frac{\bar{x}}{40}$	the two equations
$\theta=\tan ^{-1} \frac{9}{40}=12^{\circ} 41^{\prime}$	or shows some
\therefore Golf ball has an angle of projection of $12^{\circ} 41^{\prime}$.	understanding.
(ii)	
Using equations (1) and (2)	1 Mark: Correct
$(V \sin \theta)^{2}+(V \cos \theta)^{2}=9^{2}+40^{2}$	answer.
$V^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=9^{2}+40^{2}$	
$V=\sqrt{9^{2}+40^{2}}$	
$V=41 \mathrm{~ms}^{-1}$	
\therefore Speed of the gold ball is $41 \mathrm{~ms}^{-1}$	
(d) (i)	
$\frac{1}{100}\left(\frac{1}{P}+\frac{1}{100-P}\right)=\frac{1}{100}\left(\frac{100-P+P}{P(100-P)}\right)=\frac{1}{P(100-P)}$	1 mark: Correctly shows the result

(ii)

$$
\begin{aligned}
& \frac{d P}{d t}=P(100-P) \\
& \frac{1}{P(100-P)} d P=d t \\
& \int \frac{1}{P(100-P)} d P=\int d t \\
& \int \frac{1}{100}\left(\frac{1}{P}+\frac{1}{100-P}\right) d P=\int d t \\
& \int\left(\frac{1}{P}+\frac{1}{100-P}\right) d P=100 \int d t \\
& \log _{e} P-\log _{e}(100-P)=100 t+c \\
& t=0, P=10 \Rightarrow \log _{e} 10-\log _{e} 90=c \\
& c=\log _{e} \frac{1}{9} \\
& \log _{e}\left(\frac{P}{100-P}\right)=100 t+\log _{e} \frac{1}{9}
\end{aligned}
$$

$$
\left(\frac{P}{100-P}\right)=e^{100 t+\log _{e} \frac{1}{9}}
$$

$$
\frac{P}{100-P}=\frac{1}{9} e^{100 t} \square \frac{100-P}{P}=9 e^{-100 t}
$$

$$
9 P=100 e^{100 t}-P e^{100 t}
$$

$$
9 P+P e^{100 t}=100 e^{100 t}
$$

$$
\frac{100}{P}-1=9 e^{-100 t}
$$

$$
P=\frac{100}{1+9 e^{-100 t}}
$$

(e)

From the table, $f(x)=g^{-1}(x)$ and so $f(-1)=g^{-1}(-1)=0$.

$$
\begin{aligned}
f^{\prime}(-1) & =\frac{1}{g^{\prime}(f(-1))} \\
& =\frac{1}{g^{\prime}(0)} \\
& =\frac{1}{\frac{1}{2}} \\
& =2
\end{aligned}
$$

3 marks: Correct answer

2 marks: Integrates correctly without finding the constant OR Integrates correctly, finds c, but leaves as $t=f(P)$.

1 mark: Makes some progress. Ie. seperates the differential equation and attempts to integrate.

$$
P=\frac{100 e^{100 t}}{9+e^{100 t}}
$$

$$
\frac{100}{P}=1+9 e^{-100 t}
$$

3 marks: Gives the correct solution 2 marks:
Determines $f(-1)=g^{-1}(-1)=0$ AND
$f^{\prime}(-1)=\frac{1}{g^{\prime}(f(-1))}$
1 mark:
Determines $f(-1)=g^{-1}(-1)=0$ OR
$f^{\prime}(-1)=\frac{1}{g^{\prime}(f(-1))}$

