QUESTION 1 (12 marks)

(a) By considering the expansion of $\tan \left(45^{0}-30^{0}\right)$, find the exact value of $\tan 15^{0}$.
(b) Solve the inequality $x^{2}+2 x \leq 3$.
(c) Given that A is the point $(-3,1)$ and B is the point $(4,2)$, find the co-ordinates of the point that divides AB externally in the ratio 3:4.
(d) Using the substitution $u=e^{x}$ find the exact value of the definite integral

$$
\int_{0}^{\log _{e} 3} \frac{e^{x} d x}{\sqrt{1+e^{x}}}
$$

(e) Find the indefinite integral $\int \frac{4 d x}{\sqrt{1-4 x^{2}}}$

QUESTION 2 (12 marks) Use a SEPARATE writing booklet

(a) The polynomial $P(x)=a x^{3}+b x^{2}-8 x+3$ has a factor of $(x-1)$ and leaves a remainder of 15 when divided by $(x+2)$. Find the values of a and b.
(b) Solve for $0 \leq \theta \leq 2 \pi, \sin 2 \theta=\cos \theta$
(c) Solve $\frac{1-t}{1+2 t} \leq 1$
(d) If $\cos \mathrm{A}=\frac{7}{9}$ and $\sin \mathrm{B}=\frac{1}{3}$, where A and B are acute angles, prove that
$A=2 B$ without finding the angles A and B.

QUESTION 3 (12 marks) Use a SEPARATE writing booklet

Marks
(a) Find the equation of the concave upwards parabola with vertex $(-1,-1)$ which passes through the origin and whose axis is parallel to the y axis.
(b) (i) Show that the equation $\mathrm{e}^{-x}=\sin 2 \mathrm{x}$ has a root lying between 1 and 2 .
(ii) By taking 1.5 as a first approximation, use Newton's Method once to obtain a better approximation to this root correct to two decimal places.
(c) Find the term independent of x in the expansion of $\left(2 x+\frac{1}{x^{2}}\right)^{6}$.
(d) The area between the curve $\mathrm{y}=\sin \mathrm{x}$ and the x axis, for $0 \leq \mathrm{x} \leq \pi$, is rotated about the x axis. Find the volume of the solid obtained.

QUESTION 4 (12 marks) Use a SEPARATE writing booklet

(a)

Consider the parabola $\mathrm{y}=\mathrm{x}^{2}$.

(i) Show that the equation of the tangent to this parabola at the point $\mathrm{P}\left(t, t^{2}\right)$ is $y=2 t x-t^{2}$.
(iii) Show that F , the foot of the perpendicular from the focus to the tangent at P has co-ordinates $\left(\frac{t}{2}, 0\right)$.
(iv) Find the cartesian equation of the locus of M , the mid-point of PF.
(b) The velocity $\mathrm{v} \mathrm{ms}^{-1}$ of a particle moving along the x axis in simple harmonic motion is given by $v^{2}=21-4 x-x^{2}$ where x is the position of the particle.
(i) Between which two points on the x axis does the particle oscillate?
(ii) What is the maximum velocity of the particle?

QUESTION 5 (12 marks) Use a SEPARATE writing booklet
(a) The acceleration of a particle moving in a straight line is given by

$$
\frac{d^{2} x}{d t^{2}}=-\frac{72}{x^{2}}
$$

where x metres is the displacement from the origin after t seconds. When $t=0$, the particle is 9 metres to the right of the origin with a velocity of 4 metres per second.
(i) Show that the velocity v of the particle in terms of x is given by $\mathrm{v}=\frac{12}{\sqrt{x}}$
(ii) Find an expression for t in terms of x .
(b) (i) Express $\cos \theta-\sin \theta$ in the form $\mathrm{A} \cos (\theta+\alpha)$ where $\mathrm{A}>0$.
(ii) Hence or otherwise solve the equation $\cos \theta-\sin \theta=1$ for $0 \leq \theta \leq \pi$.
(a) In each of the following questions leave your answers as factorials. Let each different arrangement of all of the letters of D E M A MD be called a word.
(i) How many words are possible?
(ii) In how many of these words will the D's be separated?
(b) (i) Use the Principle of Mathematical Induction to prove that for all integer $\mathrm{n} \geq 1$,

$$
6\left(1^{2}+2^{2}+3^{2}+\ldots \ldots \ldots .+n^{2}\right)=n(n+1)(2 n+1)
$$

(ii) Hence evaluate $\lim _{n \rightarrow \infty}\left[\frac{1^{2}+2^{2}+3^{2}+\ldots \ldots+n^{2}}{n^{3}}\right]$
(c) A projectile is fired at an angle of 30° to the horizontal with velocity $10 \mathrm{~m} / \mathrm{sec}$ from a platform 30 metres above ground level. If g is taken as $10 \mathrm{~m} / \mathrm{sec}^{2}$, the displacement of the particle at any time t secs is given by the equations

$$
x=5 \sqrt{3} t \quad \text { and } \quad y=-5 t^{2}+5 t+30
$$

(i) Find the speed of the projectile as it hits the ground.
(ii) Also find the tangent of the acute angle at which it strikes the ground.

QUESTION 7 (12 marks) Use a SEPARATE writing booklet

Marks

(a) (i) Differentiate $\mathrm{y}=\tan ^{-1}\left(\frac{1}{x}\right), \mathrm{x} \neq 0$, and hence show that

$$
\frac{d}{d x}\left(\tan ^{-1} \mathrm{x}+\tan ^{-1}\left(\frac{1}{x}\right)\right)=0 .
$$

(ii) Hence or otherwise, find the value(s) of $\tan ^{-1} x+\tan ^{-1}\left(\frac{1}{x}\right)$.
(b) (i) When $(3+2 x)^{n}$ is written as a polynomial in x, the coefficients of x^{5} and x^{6} have the same value. Find the value of n.
(ii) By considering n to have a value of 10 prove that
$1+\binom{10}{2} 3^{2}+\binom{10}{4} 3^{4}+\binom{10}{6} 3^{6}+\binom{10}{8} 3^{8}+3^{10}=2^{9}\left(2^{10}+1\right)$

