QUESTION 1 (12 marks)

(a)	By considering the expansion of $tan(45^0 - 30^0)$, find the exact value of $tan 15^0$.	Marks 2
(b)	Solve the inequality $x^2 + 2x \le 3$.	2
(c)	Given that A is the point (-3,1) and B is the point (4,2), find the co-ordinates of the point that divides AB externally in the ratio 3:4.	3
(d)	Using the substitution $u = e^x$ find the exact value of the definite integral $\int_{0}^{\log_e 3} \frac{e^x dx}{\sqrt{1 + e^x}}.$	3

(e) Find the indefinite integral $\int \frac{4dx}{\sqrt{1-4x^2}}$ 2

QUESTION 2 (12 marks) **Use a SEPARATE writing booklet**

(a) The polynomial $P(x) = ax^3 + bx^2 - 8x + 3$ has a factor of (x - 1) and leaves a remainder of 15 when divided by (x + 2). Find the values of a and b.

(b) Solve for
$$0 \le \theta \le 2\pi$$
, $\sin 2\theta = \cos \theta$

(c) Solve
$$\frac{1-t}{1+2t} \le 1$$
 3

(d) If
$$\cos A = \frac{7}{9}$$
 and $\sin B = \frac{1}{3}$, where A and B are acute angles, prove that **3**
A = 2B without finding the angles A and B.

/Q3...Page 2

3

QUESTION 3 (12 marks) **Use a SEPARATE writing booklet**

(a)		Find the equation of the concave upwards parabola with vertex (-1,-1) which passes through the origin and whose axis is parallel to the y axis.	Marks 2
(b)	(i)	Show that the equation $e^{-x} = \sin 2x$ has a root lying between 1 and 2.	2
	(ii)	By taking 1.5 as a first approximation, use Newton's Method <u>once</u> to obtain a better approximation to this root correct to two decimal places.	2
(c)		Find the term independent of x in the expansion of $(2x + \frac{1}{x^2})^6$.	3
(d)		The area between the curve $y = \sin x$ and the x axis, for $0 \le x \le \pi$, is rotated about the x axis. Find the volume of the solid obtained.	3

QUESTION 4 (12 marks) **Use a SEPARATE writing booklet**

(a)

(i) Show that the equation of the tangent to this parabola at the point P (t, t^2) is $y = 2tx - t^2$.

/Q4 cont...Page 3

QUESTION 4 Continued

(iii)	Show that F, the foot of the perpendicular from the focus to the tangent at P has co-ordinates $(\frac{t}{2}, 0)$.	2
(iv)	Find the cartesian equation of the locus of M, the mid-point of PF.	2
	The velocity v ms ⁻¹ of a particle moving along the x axis in simple harmonic motion is given by $v^2 = 21 - 4x - x^2$ where x is the position of the particle.	
(i)	Between which two points on the x axis does the particle oscillate?	2
(ii)	What is the maximum velocity of the particle?	2

QUESTION 5 (12 marks) **Use a SEPARATE writing booklet**

(b)

			Marks
(a)		The acceleration of a particle moving in a straight line is given by	
		$\frac{d^2x}{dt^2} = -\frac{72}{x^2}$	
		where x metres is the displacement from the origin after t seconds. When $t = 0$,	
		the particle is 9 metres to the right of the origin with a velocity of 4 metres per second.	
		12	4
	(i)	Show that the velocity v of the particle in terms of x is given by $v = \frac{12}{\sqrt{x}}$	
	(ii)	Find an expression for t in terms of x.	3
(b)	(i)	Express $\cos \theta - \sin \theta$ in the form $A \cos (\theta + \alpha)$ where $A > 0$.	3
	(ii)	Hence or otherwise solve the equation $\cos \theta - \sin \theta = 1$ for $0 \le \theta \le \pi$.	2

/Q6...Page 4

QUESTION 6 (12 marks) **Use a SEPARATE writing booklet**

Page 3

- In each of the following questions leave your answers as factorials.
 Let each different arrangement of all of the letters of DEMAMD be called a word.
 - (i) How many words are possible? 1
 - (ii) In how many of these words will the D's be separated? 2
- (b) (i) Use the Principle of Mathematical Induction to prove that for all integer $n \ge 1$, 4

$$6(1^{2}+2^{2}+3^{2}+\ldots+n^{2}) = n(n+1)(2n+1)$$

(ii) Hence evaluate $\lim_{n \to \infty} \left[\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^3} \right]$ 1

(c) A projectile is fired at an angle of 30° to the horizontal with velocity 10 m/sec from a platform 30 metres above ground level. If g is taken as 10 m/sec², the displacement of the particle at any time t secs is given by the equations $x = 5\sqrt{3}t$ and $y = -5t^2 + 5t + 30$

$$x = 5\sqrt{5t}$$
 and $y = -5t + 5t + 50$

- (i) Find the speed of the projectile as it hits the ground. 3
- (ii) Also find the tangent of the acute angle at which it strikes the ground. 1

QUESTION 7 (12 marks) **Use a SEPARATE writing booklet**

Marks

4

(a) (i) Differentiate
$$y = \tan^{-1}(\frac{1}{x})$$
, $x \neq 0$, and hence show that $\frac{d}{dx}(\tan^{-1}x + \tan^{-1}(\frac{1}{x})) = 0$.

(ii) Hence or otherwise, find the value(s) of $\tan^{-1}x + \tan^{-1}(\frac{1}{x})$. 2

- (b) (i) When $(3 + 2x)^n$ is written as a polynomial in x, the coefficients of x^5 and x^6 3 have the same value. Find the value of n.
 - (ii) By considering n to have a value of 10 prove that

$$1 + {\binom{10}{2}}{3^2} + {\binom{10}{4}}{3^4} + {\binom{10}{6}}{3^6} + {\binom{10}{8}}{3^8} + {3^{10}} = 2^9(2^{10} + 1)$$

END OF PAPER