Total Marks - 84

Attempt Questions 1-7
All questions are of equal value
Answer each question in a SEPARATE writing booklet.
Question $1 \quad$ (12 marks)

Marks

a) Solve for x : $\frac{1}{2 x-1} \leq 2$.
c) Evaluate $\lim _{x \rightarrow 0} \frac{x}{\sin 3 x}$.
d) Use the substitution $u=1+x$ to evaluate $\int_{0}^{1} \frac{x}{\sqrt{1+x}} d x$.
e) A curve has the parametric equations $x=\frac{t}{3}, y=2 t^{2}$.

Find the Cartesian equation for this curve.

Question 2 (12 marks) Use a SEPARATE writing booklet.
a) (i) Differentiate $x \sin ^{-1} x+\sqrt{1-x^{2}}$
(ii) Hence evaluate $\int_{0}^{1} \sin ^{-1} x d x$.
b) A particle is moving in simple harmonic motion. Its displacement x at time t is given by $x=2 \sin (3 t), x$ in metres and t in seconds.
(i) Find the period of the motion.
(ii) Find the maximum acceleration of the particle.
(iii) Find the speed of the particle when $x=2$.
c) The volume, V of a spherical balloon of radius r mm is increasing at a constant rate of $100 \mathrm{~mm}^{3}$ per second.
Given $V=\frac{4}{3} \pi r^{3}$ and $S A=4 \pi r^{2}$.
(i) Find $\frac{d r}{d t}$ in terms of r.
(ii) Determine the rate of increase of the surface area, S, of the sphere when the radius is 20 mm .

Question 3 (12 marks) Use a SEPARATE writing booklet.
a) (i) Show that $f(x)=x-3+e^{x}$ has a root between $x=0.7$ and $x=0.9$.
(ii) Starting with $\mathrm{x}=0.8$, use one application of Newton's method to find a better approximation for this root. Write your answer correct to three significant figures.
b)

$A B$ is a tangent and $C E$ is a diameter to a circle, centre $\mathrm{O} . \angle B A E=35^{\circ}$ and D lies on the circumference as shown in the diagram.
(i) Find the size of $\angle A C E$, giving reasons.
(ii) Find the size of $\angle A D C$. Justify your answer.
c) Six backpackers arrive in a town with six hostels.
(i) How many different accommodation arrangements are there if there are no restrictions on which hostel each person can stay?
(ii) How many different accommodation arrangements are there if each person stays in a different hostel?
(iii) If three of the backpackers have been traveling together and 2 must stay in the same hostel. How many different arrangements are there if the other three can go to any of the other hostels?

Question 4 (12 marks) Use a SEPARATE writing booklet.
a)

The diagram shows the parabola $x^{2}=4 a y$ with focus $S(0, a)$ and directrix $y=-a$. The point $P\left(2 a t, a t^{2}\right)$ is an arbitrary point on the parabola and the line $R P$ is drawn parallel to the y axis, meeting the directrix at D. The tangent $Q P T$ to the parabola at P intersects $S D$ at Q.
(i) Explain why $S P=P D$.
(ii) Find the gradient m_{1} of the tangent at P.
(iii) Find the gradient m_{2} of the line $S D$.
(iv) Prove that $P Q$ is perpendicular to $S D$.
(v) Prove that $\angle R P T=\angle S P Q$.
b) Find the constant term in the expansion of $\left(x-\frac{1}{2 x^{3}}\right)^{20}$.
c) Show that $\int^{\frac{\pi}{2}} \cos ^{2} x d x=\frac{\pi}{8}-\frac{1}{4}$. 3

Question 5 (12 marks) Use a SEPARATE writing booklet.
a) The velocity, $v \mathrm{~m} / \mathrm{s}$, of a particle in Simple Harmonic Motion is given by $v^{2}=2 x(6-x)$.
(i) Find the acceleration of the particle in terms of x.
(ii) Prove that the particle always remains in the domain $0 \leq x \leq 6$.
b) A thermos container with a internal water temperature of $T^{0} \mathrm{C}$ loses heat when placed in a cooler environment, according to Newton's Law of Cooling, $\frac{d T}{d t}=k\left(T-T_{0}\right)$. Where t is the time elapsed in minutes and T_{0} is the temperature of the environment in degrees Celsius.
(i) The thermos with a internal water temperature of $95^{\circ} \mathrm{C}$ is placed in an environment of $-10^{\circ} \mathrm{C}$ for 25 minutes and cools to $85^{\circ} \mathrm{C}$. Find k.
(ii) How long would is take for the same thermos with initial temperature of $95^{\circ} \mathrm{C}$ to lose 25% of its temperature when placed in an environment of $20^{\circ} \mathrm{C}$? (Assume k remains the same and give your answer correct to the nearest minute.)
c) The polynomial $2 x^{3}+a x^{2}+b x+1$ has $x+1$ as a factor and leaves a remainder of -5 when divided by $x-2$. Find the values a and b.

Question 6 (12 marks) Use a SEPARATE writing booklet.
a) A biased coin has a probability of 0.6 of coming up heads. If this coin is tossed 7 times, find the probability of getting: (Give answers correct to 3 significant figures)
(i) 7 heads.
(ii) exactly 4 tails.
b) Use mathematical induction to prove that, for $n \geq 1$,
$3+7+11+\ldots .+(4 n-1)=n(2 n+1)$.
c) The polynomial $P(x)=2 x^{3}-11 x^{2}+k x-6$ has roots α, β, γ.
(i) Find the value of $\alpha+\beta+\gamma$.
(ii) Find the value of $\alpha \beta \gamma$.
(iii) If the sum of two of the roots is 5, find the third root and hence find the value of k.
d) For the function $f(x)=\operatorname{cosec} x, 0<x \leq \frac{\pi}{2}$, state the domain
and range of the inverse function $f^{-1}(x)$.

Question 7 (12 marks) Use a SEPARATE writing booklet.
a) In a Rugby game, a player kicks a ball so that it travels in a parabolic path with initial angle of elevation of 80°. He runs down the field and catches the ball 1 metre above the level at which the ball was initially projected. Five seconds elapses between the kick and the catch.

Given: $x=V t \cos 80, y=-5 t^{2}+V t \sin 80$, calculate the horizontal distance the ball travels to the nearest metre.
b) (i) Show that $x^{n}(1+x)^{n}\left(1+\frac{1}{x}\right)^{n}=(1+x)^{2 n}$.
(ii) Hence prove that

$$
1+\binom{n}{1}^{2}+\binom{n}{2}^{2}+\ldots+\binom{n}{n}^{2}=\binom{2 n}{n}
$$

c) On a large flat plane there is a communications tower and three huts, Hut A is due west of the tower, Hut C is due north of the tower and Hut B is on the line-of-sight from Hut A to Hut C. The angles of elevation to the top of the tower from Hut A, Hut B and Hut C are $52^{\circ}, 56^{\circ}$ and 60° respectively.

Determine the bearing of Hut B from the tower to the nearest degree.

End of paper

Question 1
a)

$$
\begin{aligned}
& \frac{1}{2 x-1} \times(2 x-1)^{2} \leq 2(2 x-1)^{2} \\
& 2 x-1 \leq 2\left(4 x^{2}-4 x+1\right) \\
& 0 \leq 8 x^{2}-10 x+3 \\
& 0 \leq(2 x-1)(4 x-3) \\
& \therefore \quad x<\frac{1}{2} \text { or } x \geq 3 / 4
\end{aligned}
$$

b) $\int_{0}^{1} \frac{1}{1+x^{2}} d x=\left[\tan ^{-1} x\right]_{0}^{1}=\tan ^{-1} 1-\tan ^{-1} 0$
c) $\frac{1}{3} \lim _{x \rightarrow 0} \frac{3 x^{\prime}}{\sin 3 x}=\frac{1}{3} \times 1=\frac{1}{3}$
d)

$$
\begin{array}{cc}
u=1+x & x=u-1 \\
\frac{d u}{d x}=1 & x=0 \quad u=1 \\
d u=d x & x=1 \quad u=2 \\
\int_{0}^{1} \frac{x}{\sqrt{1+x}} d x=\int_{1}^{2} \frac{u-1}{\sqrt{u}} d x
\end{array}
$$

$$
=\int_{1}^{2} u^{\frac{1}{2}}-u^{-\frac{1}{2}} d x
$$

$$
=\left[\frac{2}{3} u^{3 / 2}-2 u^{1 / 2}\right]_{1}^{2}
$$

$$
=\frac{2}{3} \times 2 \sqrt{2}-2 \sqrt{2}-(2 / 3-2)
$$

$$
\begin{aligned}
& =\frac{4 \sqrt{2}}{3}-2 \sqrt{2}+1 / 3 \\
& =1-2)
\end{aligned}
$$

$$
=\sqrt{2}\left(-\frac{2}{3}\right)+\frac{7}{3}
$$

$$
=\frac{4-2 \sqrt{2}}{3}
$$

≈ 0.4
e)

$$
\begin{array}{ll}
x=\frac{t}{3} \tag{1}\\
y=2 t^{2}
\end{array}
$$

From (1) $t=3 *$ $\operatorname{sub} t=3 x$ in (2)

Ext 1 trial 2005

Q2
(a)
(i)

$$
\begin{aligned}
& \frac{d}{d x}\left(x \sin ^{-1} x+\left(1-x^{2}\right)^{\frac{1}{2}}\right) \\
& =x \cdot \frac{1}{\sqrt{1-x^{2}}}+\sin ^{-1} x+\frac{1}{2}\left(1-x^{2}\right)^{-\frac{1}{2}} \cdot-2 x \\
& =\sin ^{-1} x
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \int_{0}^{1} \sin ^{-1} x d x \\
& =\left[x \sin ^{-1} x+\left(1-x^{2}\right)^{\frac{1}{2}}\right]_{0}^{1} \\
& =\frac{\pi}{2}-1
\end{aligned}
$$

(b)
(i) period $=\frac{2 \pi}{3}$
(ii) $\dot{x}=6 \cos 3 t$
(ii) $\ddot{x}=-18 \sin 3 t$

Max acceleration is $18 \mathrm{~m} / \mathrm{s}^{2}$
(iii) when $x=2$ particle is at extreme value, and given SHM it is stationary. Therefore $\dot{x}=0$
(c)
(i)

$$
\begin{aligned}
& \frac{d V}{d r}=4 \pi r^{2} \\
& \frac{d V}{d t}=\frac{d V}{d r} \times \frac{d r}{d t} \\
& 100=4 \pi r^{2} \times \frac{d r}{d t} \\
& \frac{d r}{d t}=\frac{25}{\pi r^{2}} \mathrm{~mm} / \mathrm{s}
\end{aligned}
$$

Ext 1 trial 2005
(ii)

$$
\begin{aligned}
& \frac{d S A}{d r}=8 \pi r \\
& \frac{d S A}{d t}=\frac{d S A}{d r} \times \frac{d r}{d t} \\
& \frac{d S A}{d t}=8 \pi r \times \frac{25}{\pi r^{2}} \\
& \frac{d S A}{d t}=\frac{200}{r} \\
& w h e n \quad r=20 \\
& \frac{d S A}{d t}=10 \mathrm{~mm}^{2} / \mathrm{s}
\end{aligned}
$$

Ext (1) Solutions io5 Q3.
(3) $(a$

$$
\left.\begin{array}{c}
(a y) f(0.7)<0 \\
f(0.9)>0
\end{array}\right]
$$

(i) both
(ii)

$$
\begin{array}{rlr}
x_{2} & =x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} & f(x)=x-3+e^{x} \\
& =0.8-\frac{0.8-3+e^{0.8}}{1+e^{0.8}} & f^{\prime}(x)=1+e^{x} \\
& =0.792
\end{array}
$$

(1) sub in correct expression.
(i) $f^{\prime}(0.8)$
(i) Correct answer
(t) (i) $\hat{A C E}=35^{\circ}$ (alternate segment theorem)
(1) reason
(ii) $\overline{C A E}=90^{\circ}$ (L in semi-circle)
(1) reason

$$
\begin{align*}
\hat{C E A} & =180^{\circ}-\left(90^{\circ}+35^{\circ}\right) \\
& =55^{\circ} \\
A \hat{D C} & =C \hat{E A} \quad(\angle \mathrm{~s} \text { in same segment }) \\
& =55^{\circ} \tag{1}
\end{align*}
$$

$$
\text { (1) } 90^{\circ} \text { and } 55^{\circ}
$$

(1) Ans freason.
(c) (i) 6^{6}
(ii) 6 !
(iii) $6 \times 5^{3}=750$
(1) $6 \times$ (some quantity)
(1) 5^{3}

04
a) i/ The porabolom is dafnod ars the sel of pountr equidstont from a pout (the focus, s) and fre a thine (the duectix). Thertone if it is ∞ parabola, them $S e=p 0$.

7

$$
\begin{gathered}
x^{2}=4 a y \\
y=\frac{x^{2}}{4 a} \\
\frac{d y}{d x}=\frac{2 x}{4 a} \\
\operatorname{den} x=2 a t \\
M=\frac{4 a t}{4 a} \\
M=t
\end{gathered}
$$

iiv $5(0, a) \quad 0(2 a t,-a)$

$$
\begin{aligned}
\mu & =\frac{-a-a}{2 a t-0} \\
& =-\frac{2 a}{2 a t} \\
& =-\frac{1}{t}
\end{aligned}
$$

$$
\begin{aligned}
& A_{P Q}=t \quad M_{10}=-\frac{1}{t} \\
& \therefore A_{P Q} \cdot A_{S O}=t \cdot-\frac{1}{t} \\
&=-1 \\
& \therefore P Q I S O
\end{aligned}
$$

iv/
v, $\theta \operatorname{la} \triangle \Delta p a$ and $\triangle A P d$,

$$
\begin{aligned}
& \angle P Q S=\angle P Q D=90^{\circ}(a d \operatorname{sen}) \\
& S A=p O \quad(\% \mathrm{mi}, \mathrm{D}) \\
& \therefore \angle P S a=\angle P O Q \quad(\angle 5 P Q \text { inoc.) } \\
& \therefore \quad \angle S P Q=\angle Q P Q \quad(\angle \sin \angle s) \\
& \text { \& Now } \angle A P Q=\text { LRPT (NCN (ape) }
\end{aligned}
$$

1-Uss defantion of a pordeda

1-cerred diferentana and substitution.

1-corred perint coned use of gradient farmula.

1 - correct reosoung

1-Svows \angle sper $=\angle 0 p Q$

$$
\operatorname{Or} \angle A P Q=L R P T
$$

2-swows bouth.
b) Comexd them of $\left(x-\frac{1}{2 x}\right)^{2}$

$$
\begin{aligned}
& =C_{r} x^{r}\left(-\frac{1}{2 x^{3}}\right)^{2 r} \\
& \left.=20 C_{r} x^{r} \cdot\left(-\frac{1}{2}\right)^{20-r} x^{-3(20-r}\right) \\
& =20 C_{r} x^{-60+4 r} \cdot\left(-\frac{1}{2}\right)^{20-r}
\end{aligned}
$$

For corstat term

$$
\begin{align*}
-60+4 r & =0 \\
4 r & =60 \tag{1}\\
r & =15
\end{align*}
$$

$$
\begin{aligned}
\text { Contat tem } & ={ }^{20} C_{15}\left(-\frac{1}{2}\right)^{5} \\
& =15504 .-\frac{1}{32} \\
& =484.5 .
\end{aligned}
$$

c)

$$
\begin{aligned}
\int_{\frac{\pi}{4}}^{\pi / 2} \cos ^{2} x d x & =\frac{1}{2} \int^{\pi / 2} \cos 2 x+1 d x \\
& =\frac{1}{2}\left[\frac{1}{2} \sin 2 x+x\right] \pi / 4 \\
& =\frac{1}{2}\left(0+\pi / 2-\left(\frac{1}{2}+\frac{\pi}{4}\right)\right) \\
& =\frac{\pi / 4}{4}-\frac{1}{4}-\frac{\pi}{8} \\
& =\frac{\pi}{8}-\frac{1}{4}
\end{aligned}
$$

$$
\therefore \int_{\pi / 4}^{\pi / 2} \cos ^{2} x \operatorname{cc} x=\frac{\pi}{8}-\frac{1}{4}
$$

Ext 1 trial 2005

Q5
(a)
(i)

$$
\begin{aligned}
& \frac{1}{2} v^{2}=6 x-x^{2} \\
& \ddot{x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=6-2 x
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \text { since } v^{2} \geq 0, \quad 2 x(x-6) \geq 0 \\
& \text { Therefore } 0 \leq x \leq 6
\end{aligned}
$$

(b) (i) If $\frac{d T}{d t}=k\left(T-T_{0}\right)$ then $T=T_{0}+A e^{k t}$

Since ambient temp is $-10, T_{0}=-10$
When $\mathrm{t}=0, \mathrm{~T}=95$
Therefore $\quad 95=-10+A$

$$
A=105
$$

i.e. $T=-10+105 \mathrm{e}^{\mathrm{kt}}$
when $t=25, T=85$
$85=-10+105 \mathrm{e}^{25 \mathrm{k}}$
$\mathrm{e}^{25 \mathrm{k}}=\frac{95}{100}$
$k=\frac{\ln \left(\frac{19}{21}\right)}{25}$
(ii) If ambient temp is $20, \mathrm{~T}=20+\mathrm{Be}^{\mathrm{kt}}$ when $t=0, T=95$, Therefore $B=75$
i.e. $T=20+75 \mathrm{e}^{\mathrm{kt}}$
when $\mathrm{T}=0.75 \times 95$
$71.25=20+75 \mathrm{e}^{\mathrm{kt}}$
$\mathrm{e}^{\mathrm{kt}}=\frac{51.25}{75}$
$t=\frac{\ln \left(\frac{51.25}{75}\right)}{k}$
$\mathrm{t}=95 \mathrm{mins}$ (nearest min)

Ext 1 trial 2005
(c)
$P(x)=2 x^{3}+a x^{2}+b x+1$
$P(-1)=-2+a-b+1=0$
i.e. $a-b=1 \quad 1$
$P(2)=16+4 a+2 b+1=-5$
i.e. $2 a+b=-11 \quad 2$

Solving 1 and 2 simultaneously
$3 a=-10$
$a=-\frac{10}{3}, \quad b=-\frac{13}{3}$

Q6
(a) (i)

$$
\begin{aligned}
& P(7 \text { heads })=(0.6)^{7} \\
& =0.280 \quad(3 \mathrm{s.f}) \\
& \text { (ii) } \mathrm{P}(4 \text { tails })={ }^{7} \mathrm{C}_{4}(0.4)^{4}(0.6)^{3} \\
& =0.194 \quad \text { (3s.f) }
\end{aligned}
$$

(b) Show true for $\mathrm{n}=1$

$$
\begin{aligned}
\mathrm{LHS}=3 \quad \mathrm{RHS} & =1(2 \times 1+1) \\
& =3
\end{aligned}
$$

If true for $n=k$, then

$$
3+7+\ldots
$$ $+(4 k-1)=k(2 k+1)$

Show true for $n=k+1$

$$
\begin{aligned}
\text { i.e. } 3 & +7+\ldots \ldots . .+(4 k-1)+4(k+1)-1=(k+1)(2(k+1)+1) \\
\text { LHS } & =3+7+\ldots \ldots . .+(4 k-1)+(4 k+3) \\
& =k(2 k+1)+(4 k+3) \text { using } \otimes \\
& =2 k^{2}+k+4 k+3 \\
& =(2 k+3)(k+1) \\
& =\text { RHS }
\end{aligned}
$$

Since it is true for $n=1$ and, if true for $n=k$, it is true for $n=k+1$, then by the Principle of Mathematical Induction it is true for all integer $n \geq 1$.
(c) (i) $\alpha+\beta+\gamma=\frac{11}{2}$
(ii) $\alpha \beta \gamma=3$
(iii) If $\alpha+\beta=5, \gamma=\frac{11}{2}-5$ from(i)
i.e. $\gamma=\frac{1}{2}$

Also $\alpha \beta+\alpha \gamma+\beta \gamma=\frac{\mathrm{k}}{2}$
Now $\alpha \beta \times \frac{1}{2}=3$ i.e. $\alpha \beta=6$
and $\gamma(\alpha+\beta)=\frac{1}{2} \times 5$
$\therefore \alpha \beta+\alpha \gamma+\beta \gamma=\frac{k}{2}=6+\frac{1}{2} \times 5$
i.e. $k=17$
(d) domain $x \geq 1$
range $0<y<\frac{\pi}{2}$
c)

$$
\begin{aligned}
& P(x)=2 x^{3}+a x^{2}+b x+1 \\
& P(-1)=-2+a-b+1=0 \\
& P(2)=16+4 a+2 b+1=-5 \\
& 2 a+b=-11 \text { (2) }
\end{aligned}
$$

Solving (1) 4 (2) jumiltaneasly.

$$
\begin{align*}
& 3 a=-10 \\
& a=-\frac{-10}{3} \\
& b=-\frac{-13}{3} \tag{4}
\end{align*}
$$

27
a)

$$
\begin{array}{rl}
y=-5 t^{2}+V t \sin 80 & x \\
t=5 \quad y=1 & \\
t=-125+5 v \sin 80 & \\
1=\frac{126}{5 \sin 80} \times \$ \cos 80 \\
v & \approx 22 \mathrm{~m}
\end{array}
$$

b) i)

$$
\begin{aligned}
\text { LHS } & =x^{n}(1+x)^{n}\left(1+\frac{1}{x}\right)^{n} \\
& =(1+x)^{n}\left(x\left(1+\frac{1}{x}\right)\right)^{n} \\
& =(1+x)^{n}(x+1)^{n} \\
& =(1+x)^{2 n}
\end{aligned}
$$

ii) By cansidering the coefficent of x^{n} for $(1+x)^{2 n}$ coeffiecent of $x^{n}={ }^{2 n} c_{n}$
for $x^{n}(1+x)^{n}\left(1+\frac{1}{x}\right)^{n}$ coefficet of x^{n} is the constant temm of $(1+x)^{n}\left(1+\frac{1}{x}\right)^{n}$

$$
\begin{aligned}
& =C_{0} \times{ }^{n} C_{0}+{ }^{n} C_{1} \times{ }^{n} C_{1}+\ldots+{ }^{n} C_{n} \times{ }^{n} C_{n} \\
& =\left({ }^{n} C_{0}\right)^{2}+\left({ }^{n} C_{1}\right)^{2}+\ldots+\left({ }^{n} C_{n}\right)^{2} \\
& =1+\binom{n}{1}^{2}+\binom{n}{2}^{2}+\left(n n^{2}\right.
\end{aligned}
$$

By. equating caefficent of x^{n}

$$
1+\binom{n}{1}^{2}+\binom{n}{2}^{2}+\cdots+\binom{n}{n}^{2}=\binom{2 n}{n}
$$

Question 7 cont
c)

In $\triangle A D T$

$$
\tan 52^{\circ}=\frac{h}{A \theta}
$$

$$
A D=\frac{h}{\tan 52}
$$

In $\triangle A D C$

In $\triangle B D T$

$$
\tan 56=\frac{\frac{h}{B D}}{B D}
$$

In $\triangle C D T$

$$
\tan 60=\frac{h}{D C}
$$

$$
D C=\frac{h}{\tan 60}
$$

\therefore Bearing is 277°

$$
\begin{aligned}
\sin \angle A B D & =\frac{A D \sin \left(\frac{\tan 52}{\tan 60}\right)}{B D} \\
& =\frac{\frac{h}{\tan 52} \sin \left(\frac{\tan 52}{\tan 60}\right)}{\frac{h}{\tan 56}} \\
& =\frac{\tan 56}{\tan 52} \sin \left(\frac{\tan 52}{\tan 60}\right)
\end{aligned}
$$

$\angle A B D=136.5^{\circ}$ (acute option) doesnotuah.

