Total Marks - 84

Attempt Questions 1 - 7
All questions are equal value.
Answer each question in a SEPARATE writing booklet.

Question 1 (12 Marks) Use a SEPARATE writing booklet.
Marks
(a) Find the exact value of $\int_{0}^{\frac{\pi}{6}} \sec ^{2} 2 x d x$.
(b) Solve the inequation $\frac{x}{x-3} \geq 2, x \neq 3$.
(c) Find the acute angle between the lines $x-y+3=0$ and $2 x+y+1=0$

Give your answer correct to the nearest minute.
(d) Find the co-ordinates of P , the point which divides the interval $\mathrm{A}(-5,-3)$ and $B(4,-6) \quad$ externally in the ratio $2: 3$.
(e) When $P(x)=x^{3}+3 x^{2}-m x+n$ is divided by $(x+2)$ the remainder is 9 and when $P(x)$ is divided by $(x-3)$ the remainder is 49 .
Find the values of m and n.

Question 2 (12 Marks) Use a SEPARATE writing booklet.
(a) Sketch the graph of $\quad y=\cos ^{-1}\left(\frac{x}{2}\right)$

Your graph must indicate the domain and range.
(b) Find $\frac{d}{d x}\left(x \sin ^{-1} 5 x\right)$
(c) (i) Write $2 \cos \theta+\sin \theta$ in the form $A \cos (\theta-\alpha)$ where $A>0$ and $0 \leq \alpha \leq \frac{\pi}{2}$.
(ii) Hence, or otherwise solve the equation $2 \cos \theta+\sin \theta=\sqrt{5}$
for $0 \leq \theta \leq 2 \pi$.
Give your answer correct to 2 decimal places.

Question 2 Continued.

(d) Find the general solution for $\cos \theta=\frac{\sqrt{3}}{2}$.

2

2
(e) O is the centre of the circle. Find the value of the pronumerals, x and y, giving reasons.

Question 3 (12 Marks) Use a SEPARATE writing booklet.
(a) Use the Binomial Theorem to find the term independent of x in the expansion of $\left(x^{2}-\frac{1}{2 x}\right)^{18}$.
(b) Given $f(x)=\cos x-\ln x$
(i) Show that a root of $f(x)=0$ lies between 0.5 and1.5.
(ii) Use Newton's Method once to find an approximation to this root of the equation, correct to 2 decimal places, starting with $x=1$.
(c) Evaluate $\int_{0}^{0.4} \frac{3 d x}{4+25 x^{2}}$
(d) AOB is the diameter of a circle, centre $\mathrm{O} . \mathrm{C}$ is the point of contact of the tangent, TC such that AC bisects $\angle \mathrm{TAB}$. Prove that AT is perpendicular to TC.

Question 4 (12 Marks) Use a SEPARATE writing booklet.
(a) Show by Mathematical Induction that $9^{n}-7^{n}$ is divisible by 2 , for $n \geq 1$.
(b) How many different arrangements of the letters of the word NEWINGTON are possible?
(c) (i) A committee of eight people is to be formed from a group of twenty people. In how many different ways can the committee be formed?
(ii) This group consists of twelve men and eight women, how many ways 2 can committee of four men and four women be formed if Kate and Pete must be included?
(iii) In how many ways can these 8 committee members sit around a circular $\mathbf{1}$ table with no conditions restricting where anyone sits?
(iv) If the men and women alternate where they sit, how many arrangements are possible?

Question 5 (12 Marks) Use a SEPARATE writing booklet.
(a) $\mathrm{P}\left(2 a p, a p^{2}\right)$ and $\mathrm{Q}\left(2 a q, a q^{2}\right)$ are two points on the parabola $x^{2}=4 a y$. The tangents at P and Q meet at T which is always on the parabola $x^{2}=-4 a y$.
(i) Given the equation of the tangent at P is $y-p x+a p^{2}=0$.

Show that T is the point $(a(p+q), a p q)$.
(ii) Show that $p^{2}+q^{2}=-6 p q$.
(iii) Find M, the midpoint of PQ .
(iv) Find the equation of the locus of M .
(b) A casserole is cooling in a room that has a constant temperature of C. At a given time, t minutes the temperature decreases according to $\frac{d T}{d t}=-k(T-22)$ where k is a positive constant.
(i) Show that $T=22+A e^{-k t}$ is a solution to the equation.
(ii) Given that the initial temperature of the casserole is $80^{\circ} \mathrm{C}$ and it cools to $60^{\circ} \mathrm{C}$ after 10 minutes. Find A and k.
(iii) How long will it take for the casserole to cool to $30^{\circ} \mathrm{C}$?

Question 6 (12 Marks) Use a SEPARATE writing booklet.
(a) Ben fires an arrow horizontally with a speed of $60 \mathrm{~ms}^{-1}$ from the top of a 20 m high cliff. Use $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
(i) Show that the position of the arrow at time, t seconds is given by $x=60 t$ and $y=20-5 t^{2}$.
(ii) Find the time taken for the arrow to hit the ground.
(iii) Find the distance the arrow is from the base of the cliff when it hits the ground.
(iv) Find the acute angle to the horizontal at which the arrow hits the ground.
(b) A particle's motion is defined by the equation, $v^{2}=12+4 x-x^{2}$ where x is its displacement from the origin in metres and v is its velocity in ms^{-1}. Initially, it is 6 metres to the right of the origin.
(i) Show that the particle is moving in Simple Harmonic Motion.
(ii) Find the centre, the period and the amplitude of the motion.
(iii) The displacement of the particle at any time is given by the equation $x=a \sin (n t+\theta)+b$.

Find the values of, θ and b given $0 \leq \theta \leq 2 \pi$.

Question 7 (12 Marks) Use a SEPARATE writing booklet.
(a) Using the substitution $u=2 x+1$ find $\int_{0}^{1} \frac{4 x}{2 x+1} d x$.
(b) For $(a+b)^{n}$ the general term is $T_{k+1}={ }^{n} C_{k} a^{n-k} b^{k}$.

For the following expansion $(3+11 x)^{19}$:
(i) Show that $\frac{T_{k+1}}{T_{k}}=\frac{11 x(20-k)}{3 k}$.
(ii) Hence find the greatest coefficient of $(3+11 x)^{19}$.
(c) (i) Use the binomial theorem to obtain an expansion for $(1+x)^{2 n}+(1-x)^{2 n}$ where n is a positive integer.
(ii) Hence evaluate $1+{ }^{20} C_{2}+{ }^{20} C_{4}+\ldots \ldots \ldots+{ }^{20} C_{20}$.

END OF PAPER

(1) a) $\int_{0}^{\pi / 6} \sec ^{2} 2 x d x=\left[\frac{\tan 2 x}{2}\right]_{0}^{\pi / 6}=\frac{\tan \frac{\pi}{3}-\tan 0}{2}=\frac{\sqrt{3}}{2}$

$$
\text { b) } \frac{x}{x-3} \geqslant 2 \quad \times(x-3)^{2}(x-3) x \geqslant 2(x-3)^{2}
$$

$$
\begin{align*}
& x^{2}-3 x \geqslant 2 x^{2}-12 x+18 \tag{1}\\
& 0 \geqslant x^{2}-9 x+18 \\
& 0 \geqslant(x-6)(x-3) \tag{1}\\
& 3<x \leqslant 6
\end{align*}
$$

(1) Answer $\begin{aligned} & x \neq 3 . \\ & \end{aligned}$

c)

$$
\begin{aligned}
& \tan \alpha=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
& x-y+3=0 \quad y=x+3 \quad m_{1}=1 \\
& \tan \alpha=\left|\frac{1+2}{1-2}\right|^{(1)}=3 \\
& 2 x+y+1=0 \quad y=-2 x-1 \quad m_{2}=-2 \\
& \left.\alpha=71^{\circ} 33^{\prime} 54 \ldots=\frac{71^{\circ} 34^{\prime} \text { (neasest }}{} \text { minute }\right)
\end{aligned}
$$

d) $A(-5,-3)^{-} B(4,-6)$ Extemalbivion 2:-3

$$
\begin{aligned}
& A(-5,-3) \\
& x=\frac{m x_{2}+n x_{1}}{m+n}=\frac{8+15}{-1}=23 \text { (1) } y=\frac{m y_{2}+n y_{1}}{m+n}=\frac{(2 x-6)+(-3 x-3)}{2-3}=\frac{-3}{-1}=3
\end{aligned}
$$

P has co-ordinates $(-23,3)$ (1)
e)

$$
\begin{array}{lll}
P(x)=x^{3}+3 x^{2}-m x+n & \\
P(-2)=9 & -8+12+2 m+n=9 & 2 m+n=5 \text { (1) (1) } \\
P(3)=49 & 27+27-3 m+n=49 & -3 m+n=-5 \text { (3) } 1 \\
\text { (A)-(B) } 5 m=10 & \therefore m=2 \therefore n=1 .
\end{array}
$$

COMMENTS
a) Eenesally well done. Some gave coeffrenet of 2 not $\frac{1}{2}$
b) Mot stridents knew to muitiply bey squere of denominator. Mistakes came collecting temns, factowing $\&$ interpleting region. Students were not penalised for failuse tocognse $x \neq 3$.
c) Many recalled the formula incorsecth
d) Studants were poor at applying standend formula. Mot common enor was $m x_{1}+n x_{2}$ in numeratod.
e) Students lecoginsuing factor theorem generally completed thes questoon wel.
(a) sketch $y=\cos ^{-1}\left(\frac{x}{2}\right)$

Domain $-1 \leq \frac{x}{2} \leq 1$

$$
-2 \leq x \leq 2
$$

Range $0 \leq y \leq \pi$

$$
\begin{aligned}
& \text { (b) } \frac{d}{d x}\left(x \sin ^{-1} 5 x\right) \\
& =\sin ^{-1} 5 x+x \times \frac{5}{\sqrt{1-25 x^{2}}} \\
& =\sin ^{-1} 5 x+\frac{5 x}{\sqrt{1-25 x^{2}}}
\end{aligned}
$$

Imark correct curve I mark correct domain and range.

Imank correct different e of $\sin ^{-1} 5 x$

Imark correct answer from their working
(c)
(c) (11) $2 \cos \theta+\sin \theta=\sqrt{5}$

$$
\begin{aligned}
\therefore \quad \sqrt{5} \cos \left(\theta-0.46^{2}\right) & =\sqrt{5} \\
\therefore \cos \left(\theta-0.46^{2}\right) & =1
\end{aligned}
$$

I mark correct equat

$$
\therefore G-0 \cdot 46^{2}=0,2 \pi, 4 \pi, \ldots .
$$

But $0 \leqslant \theta \leqslant 2 \pi$
$\theta=0.4 b^{2}(2 a p) \quad$ I mark correct θ.
(d) $\cos \theta=\frac{\sqrt{3}}{2}$

$$
\cos \theta=\cos \frac{\pi}{6}
$$

I mark for $\frac{\pi}{6}$
general solution

$$
\begin{aligned}
& \theta=2 n \pi \pm \alpha \\
& \theta=2 n \pi \pm \frac{\pi}{6}
\end{aligned}
$$

OR $\theta=\frac{-\pi}{6}, \frac{\pi}{6}, \frac{13 \pi}{6}, \frac{23 \pi}{6}, \cdots$
I mark correct arower only.
(e)

$$
\begin{aligned}
& x=2 \times 56^{\circ} \quad \begin{array}{l}
\text { angle at the } \\
\text { centre and the } \\
\text { circumference }
\end{array} \\
& x=112^{\circ}
\end{aligned}
$$

$y=56^{\circ}$ (angles on the same arc) bangles on the same chore bangles in the same seg nit
I mark each correct valve wi correct reason.

Soluticus

Quertion 3
(a) Independect term $\Rightarrow \therefore x^{0}$

$$
\begin{aligned}
& \quad\left(x^{2}-\frac{1}{2} x^{-1}\right)^{18} \Rightarrow{ }^{18} C_{r}\left(x^{2}\right)^{18-r}\left(-\frac{1}{2}\right)^{r}\left(x^{-r}\right) \\
&={ }^{18} C_{r} \\
&={ }^{18} C_{r}\left(-\frac{1}{2}\right)^{36-2 r} x^{36-3 r}(-1 / 2)^{-r} \\
& \therefore \quad 36-3 r=0
\end{aligned}
$$

$$
\therefore \text { independeat tem }=1^{18} \mathrm{C} / 2\left(\frac{1}{2}\right)^{12}
$$

$\left[\begin{array}{l}3 \text { mos correct aus. } \\ 2 \text { miks correct method for fiding } r \\ (\mathrm{mk} \text { correct expousian }\end{array}\right.$

$$
=\frac{4641}{1024}
$$

(but correct expansion
(b) (i) For $f(x)=\cos x-\ln x$

$$
\begin{aligned}
& \text { (i) for } f(x)=\cos x-\ln x \\
& f(x) \text { in } 0 \text { for } 0.5 \leq x \leq 1.5[\operatorname{lnt}] \\
& f(0.5)<0 \text { ie } f(0.5)=1.57 \\
& \therefore f(1.5)<0 \text { ie } f(1.5) \leq-0.33 \\
& \therefore 100 \text { lies in the interal } 0.5 \leqslant x \leq 1.5
\end{aligned}
$$

(ii) By Newton's Mellod:

$$
x_{0}=x_{0}-\frac{f\left(x_{0}\right)}{f\left(x_{0}\right)} ; \text { if } x_{0}=1
$$

then

$$
x_{1}=1-\frac{f(1)}{f(1)}
$$

$$
\begin{aligned}
& f^{\prime}(x)=-\sin x-\frac{1}{x}^{f(1)} \quad \therefore f(1)=-\sin (1)-1 . \\
& f(x)=\cos x-\ln x \quad \therefore f(1)=\cos 1
\end{aligned}
$$

$$
\therefore \quad x_{1}=1+\frac{\cos 1}{\sin (1)+1}
$$

corlaik

$$
\therefore \quad x_{1} \div 1.29(2 d p)
$$

(c)

$$
\begin{aligned}
\int_{0}^{0.4} \frac{3 d x}{4+25 x^{2}} & =3 \int_{0}^{0.4} \frac{1}{4+25 x^{2}} d x \\
& =\frac{3}{255}\left[\frac{25}{2} \cdot \tan \frac{5 x}{2}\right]_{0}^{0.4}
\end{aligned}
$$

$$
\begin{gathered}
\text { Ink corvect infegratiol } \\
\text { mathod }
\end{gathered}=\frac{3 \pi}{40} \text {. }
$$

(d)

$7 C$ in a tangent $A L$ bisects $\angle T A B$. $A O B$ s x diamuter $\angle A C B=90^{\circ}$ (aygle in a

$$
\begin{aligned}
& \therefore \angle A B C=90-x \text { semi-curte) } \\
& \therefore \angle T C A=90-x \text { (ayyle in }
\end{aligned}
$$

\therefore alfemate segment)
$\therefore \angle A T C=90^{\circ}$ (ough sum of $\triangle A T C$
3 inks corret nethod enks (mk (angle in suri) Inge (ayle in alt seg). imbe (ayles in Δ).

Question 4
a) Step 1 Prove true for $n=1$

$$
9^{\prime}-7^{\prime}=2 \therefore \text { divisible by } 2
$$

Step 2 Assume true for $k=k$

$$
9^{k}-7^{k}=2 m \text { where } m_{13} \text { a positive integer }
$$

Step 3 Prove true for $n=k+1$

$$
\begin{aligned}
9^{k+1}-7^{k+1} & =9.9^{k}-7.9^{k} \\
& =7\left(9^{k}-7^{k}\right)+2.9^{k} \\
& =7(2 m)+2.9^{k}(\text { From step } 2) \\
& =2\left(7 m+9^{k}\right)
\end{aligned}
$$

$\therefore 9^{k+1}-7^{k+1}$ is divisible by 2
Step 4
b) $\frac{9!}{3!}=60480$
c) i) ${ }^{20} C_{8}=125970$
ii) $\quad{ }^{11} C_{3} \times{ }^{7} C_{3}=5775$
iii) $7!r=5040$
iv)

$$
4!\times 3!=149
$$

46
(i) Horigatally

$$
\ddot{x}=0
$$

$$
\therefore \dot{x}=t+c
$$

when $t=0, \dot{x}=60$

$$
\begin{aligned}
& \therefore x=60 \\
& \therefore x=60 t+c
\end{aligned}
$$

Vertiodly

$$
\begin{array}{rl}
\ddot{y} & =-9 \\
=10 \\
\ddot{y} & =-10 t+c \\
\text { when t } & =0, \dot{y}=0 \\
\therefore \dot{y}=-10 t \\
\therefore y & =-\frac{10 t^{2}}{2}+c \\
1=0 & y=20
\end{array}
$$

$$
\begin{aligned}
& \text { wien k } x=0, t=0 \\
& \therefore x=60 t
\end{aligned} \quad \therefore y=20-5 t^{2} \quad \text { wen } t=0^{2} y=20
$$

(ii) Arrow -hits the ground when $y=0$

$$
\therefore \quad \begin{aligned}
20-5 t^{2} & =0 \\
(2-t)(2+t) & =0
\end{aligned}
$$

\therefore after 2 seconds $[t \geqslant 0]$
(iii) when $t=2$

$$
\begin{aligned}
x & =60 \times 2 \\
& =120 \mathrm{~m}
\end{aligned}
$$

(iv) of $G \dot{x}=60 \mathrm{~m} / \mathrm{s}$

$$
\begin{gathered}
\dot{y}=-20 \mathrm{~m} / \mathrm{s} \\
\tan \theta=\frac{20}{60} \\
\theta=\tan ^{-1}\left(\frac{1}{3}\right) \\
\text { accent } \theta=88^{\circ} 26^{\prime}
\end{gathered}
$$

(b) $\quad v^{2}=12+4 x-x^{2}$
(i)

$$
\begin{align*}
& \frac{1}{2} v^{2}=6+2 x-\frac{1}{2} x^{2} \tag{1}\\
& \frac{d\left[\frac{1}{2} v^{2}\right]}{d x}=2-x \\
&=-1^{2}(x-2) \\
& n=1
\end{align*} .
$$

$\therefore S H M$ \ddot{x} is divethy. propostional to ito

$$
\begin{aligned}
& v^{2}=(6-x)(2+x) \\
& v= \pm \sqrt{(6-x)(2+x)}
\end{aligned}
$$

Conte fritain: $x=2$

$$
\text { Period }=2 \pi=I \pi \mathrm{sec}
$$

Amplitade $=4 \mathrm{~m}$
(iii)

$$
\begin{gathered}
x=a \sin (n+\theta)+b \\
x=6, a=4 \quad n=1, t=0 \\
6=4 \sin \theta+b \\
\dot{x}=\operatorname{an} \cos (n t+\theta) \\
\dot{x}=0 \text { whan } t=0 \\
\therefore \quad \cos \theta=0 \\
\theta=\frac{\pi}{2} \notin \\
\therefore \quad 6=4 \sin +b \quad \text { wlen } t=0, x=6
\end{gathered}
$$

yutoina.
(a) $\int_{0}^{1} \frac{4 x}{2 x+1} d x$

Let $\mu=2 x+1$

$$
\therefore \mu-1=2 x
$$

$$
\therefore \int_{0} \frac{2 x}{2 x+1} \cdot 2 d x
$$

$$
1 d u=2 d x
$$

$$
\text { when } x=1 \quad \mu=3
$$

$$
\begin{aligned}
& =\int_{1}^{3} \frac{\mu-1}{\mu} \cdot d \mu \\
& =\int_{1}^{3} \frac{\mu}{\mu}-\frac{1}{\mu} \cdot d \mu
\end{aligned}
$$

$$
x=0 \quad \mu=1
$$

$$
\begin{aligned}
& =\mu-\ln \mu]_{1}^{3} \\
& =(3-\ln 3)-(1-\ln 1) \\
& =3-\ln 3-1 \\
& =2-\ln 3 .
\end{aligned}
$$

(1) Show $\frac{T_{k+1}}{T_{k}}=\frac{11 x(20-k)}{31<}$
\rightarrow (1) mark correct substitution of Their variables

$$
=\int_{1}^{3} 1-\frac{1}{\mu} d u
$$

$\xrightarrow{\text { (1) mark }}$ mark answer only.
(b) $(3+11 x)^{19}=(a+b)^{n}$
then $T_{k+1}={ }^{n} C_{k} a^{n-k}, b^{k}$

Using the rule

$$
\begin{aligned}
\frac{T_{k+1}}{T_{k}} & =\frac{n-k+1}{k} \cdot \frac{b}{a} \\
& =\frac{19-k+1}{k} \cdot \frac{(11 x)}{3} \\
\therefore \quad \frac{T_{k+1}}{T_{k}} & =\frac{11 x(20-k)}{3 k}
\end{aligned}
$$

\Rightarrow (1) mark correct integration of their expression as. long as the expression is not easier.

Question 7
(1) mark correct answer in any form.

Evaluate

$$
\begin{aligned}
& 1+{ }^{20} c_{2}+{ }^{20} c_{4}+\cdots \cdot{ }^{20} c_{20} \\
= & 1\left(1^{2 n}+{ }^{2 n} c_{2} x^{2}+\cdots c_{2 n} x^{2 n}\right)
\end{aligned}
$$

where $n=10 \quad x=1$
(1) mark correct

$$
\begin{aligned}
& \text { where } n=10 \quad x=1 \\
= & 1\left(1^{20}+{ }^{20} c_{2} 1^{2}+{ }^{20} c_{4} 1^{4}+\cdots{ }^{20} c_{20} 1^{20}\right)^{20} \swarrow \\
= & 1\left(1+{ }^{20} c_{2}+{ }^{20} c_{4}+\cdots{ }^{20} c_{20}\right) \\
= & \frac{(1+x)^{2 n}+(1-x)^{2 n}}{19} \text { where } x=1 \quad n=10
\end{aligned}
$$

$$
=\frac{2^{20}+0^{20}}{2}=2^{19} \leftarrow \text { (1) mark correct answer } \begin{aligned}
& \text { Must shaw where the } \\
& \text { aswer is derived from }
\end{aligned}
$$ Must show where the aswer is derived from using (1)

$$
=524288
$$

$$
\begin{aligned}
& \text { CC) }(1+x)^{2 n}+(1-x)^{2 n} \quad n>0 \\
& (1+x)^{2 n}=(1)^{2 n}+{ }^{2 n} c_{1} x+{ }^{2 n} c_{2} x^{2}+\cdots \cdots \cdot x^{2 n} \text {. } \\
& (1-x)^{2 n}=(1)^{2 n}-{ }^{2 n} c_{1} x+{ }^{2 n} c_{2} x^{2}+\cdots \cdot \cdot(-x)^{2 n} . \\
& (1+x)^{2 n}+(1-x)^{2 n}=2 \times(1)^{2 n}+2 x^{2 n} c_{2} x^{2}+\cdots+2^{2 n}(x)^{2 n} \\
& =2\left(1^{2 n}+{ }^{2 n} c_{2} x^{2}+\cdots \cdot c_{2 n}^{2 n}(x)^{2 n}\right)
\end{aligned}
$$

the rule : Using $T_{k+1}={ }^{n} C_{k} a^{n-k}, b^{k}$

$$
\begin{aligned}
& T_{k+1}={ }^{n} c_{k-1} a^{n-(k-1)} \cdot b^{k} \\
& T_{k}={ }^{n} c_{k-1} a^{n-k+1}, b^{k}
\end{aligned}
$$

$$
=19 k_{k-1}^{k-1} \cdot 3^{20-k} \cdot(11 x)^{k-1}
$$

(1) mark correct expressio
for T_{k}
(1) W that the rule i using $T_{k+1}={ }^{n} c_{k} a_{n-(k-1)}$
\qquad

$$
\therefore \frac{T k+1}{T_{k}}=\frac{19 c_{k} \cdot 3^{19-k} \cdot(11 x)^{k}}{19 c_{k-1} \cdot 3^{20-k} \cdot(11 x)^{k-1}}
$$

$$
=\frac{\frac{19!}{k!(19-k)!} \cdot 3^{19-k} \cdot(11 x)^{k}}{\frac{19!}{(k-1)!(20-k)!} \cdot 3^{20-k} \cdot(11 x)^{k-1}}
$$

Working rust be Shows.

$$
=\frac{(k-1)!(20-k)!11 x}{k!(19-k)!3}
$$

$$
=\frac{(20-k) \cdot 11 x}{1<, 3}
$$

(1) mark for correct

$$
=\frac{11 x(20-k)}{3 k}
$$

(ii) Greatest coefficient occurs when $\frac{T k+1}{T k} \geqslant 1$
$\therefore \frac{11(20-k)}{3 k} \geqslant 1$ (1) mark for their result
$11(20-k) \geqslant 3 k$
$220-11 k \geqslant 3 k$
$220 \geqslant 14 k$

$$
14 k \leq 220
$$

$$
k \leq 15 \frac{5}{7}
$$

$$
\therefore k=15
$$

(1) mark correct term selected from their inequality for k.
$\therefore T_{k+1}>T_{k}$ when $k \leq 15 \frac{5}{7}$

$$
\therefore T_{16}>T_{15}
$$

\therefore Til has the greatest coefficient $T_{16}=194_{15} \cdot 3^{4} \cdot 11^{15}$
(1) rank correct answer.

$$
\begin{aligned}
& T_{k}={ }^{n} c_{k-1} a^{n-k+1}, b^{k} . \\
& T_{k+1}={ }^{19} c_{k} 3^{19-k} \cdot(11 x)^{k} \\
& \begin{array}{l}
T_{k+1}=19 c_{k} \cdot 3^{19-k+1} \cdot(11 x)^{k-1} \\
T_{k-1} \cdot 3^{20-k} \cdot(11 x)^{k-1}
\end{array}
\end{aligned}
$$

