Total Marks - 84 Attempt Questions 1 – 7 All questions are equal value. Answer each question in a SEPARATE writing booklet.

Question 1 (12 Marks) Use a SEPARATE writing booklet.Marks

(a) Find the exact value of
$$\int_{0}^{\frac{\pi}{6}} \sec^2 2x dx$$
. 2

(b) Solve the inequation
$$\frac{x}{x-3} \ge 2$$
, $x \ne 3$. 3

(c) Find the acute angle between the lines x - y + 3 = 0 and 2x + y + 1 = 0 2 Give your answer correct to the nearest minute.

- (d) Find the co-ordinates of P, the point which divides the interval A(-5, -3) and **2** B(4, -6) externally in the ratio 2:3.
- (e) When $P(x) = x^3 + 3x^2 mx + n$ is divided by (x+2) the remainder is 9 and 3 when P(x) is divided by (x-3) the remainder is 49. Find the values of *m* and *n*.

Question 2 (12 Marks) Use a SEPARATE writing booklet.

(a) Sketch the graph of $y = \cos^{-1}\left(\frac{x}{2}\right)$ 2 Your graph must indicate the domain and range.

(b) Find
$$\frac{d}{dx}(xsin^{-1}5x)$$
 2

(c) (i) Write $2\cos\theta + \sin\theta$ in the form $A\cos(\theta - \alpha)$ where A > 0 and 2

$$0 \le \alpha \le \frac{\pi}{2}.$$

(ii) Hence, or otherwise solve the equation $2\cos\theta + \sin\theta = \sqrt{5}$ 2 for $0 \le \theta \le 2\pi$.

Give your answer correct to 2 decimal places.

Marks

Question 2 Continued.

(d) Find the general solution for
$$\cos \theta = \frac{\sqrt{3}}{2}$$
. 2

(e) O is the centre of the circle. Find the value of the pronumerals, x and y, 2 giving reasons.

Question 3 (12 Marks) Use a SEPARATE writing booklet.

(a) Use the Binomial Theorem to find the term independent of x in **3** the expansion of $\left(x^2 - \frac{1}{2x}\right)^{18}$.

(b) Given
$$f(x) = \cos x - \ln x$$

$\langle \cdot \rangle$	$C_1 = 1 = 1 = 1 = 1 = 1 = 1 = 1$	f(x) = 0 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	1
(1)	Show that a root of	$f(x) = 0$ lies between $0 \ge and 1 \ge 0$	
(1)	bilow that a root or		-

(ii) Use Newton's Method once to find an approximation to this root of the equation, correct to 2 decimal places, starting with x = 1.

(c) Evaluate
$$\int_{0}^{0.4} \frac{3dx}{4+25x^2}$$
 3

Questions continues on Page 3.

2

Question 3 Continued.

(d) AOB is the diameter of a circle, centre O. C is the point of contact of the tangent, TC such that AC bisects ∠ TAB. Prove that AT is perpendicular to TC.

Question 4 (12 Marks) Use a SEPARATE writing booklet.

(a)	Show by Mathematical I	Induction that $9^n - 7^n$	is divisible by 2, for $n \ge 1$.	4
-----	------------------------	----------------------------	------------------------------------	---

- (b) How many different arrangements of the letters of the word NEWINGTON 2 are possible?
- (c) (i) A committee of eight people is to be formed from a group of twenty people. In how many different ways can the committee be formed?
 - (ii) This group consists of twelve men and eight women, how many ways 2 can committee of four men and four women be formed if Kate and Pete must be included?
 - (iii) In how many ways can these 8 committee members sit around a circular **1** table with no conditions restricting where anyone sits?
 - (iv) If the men and women alternate where they sit, how many arrangements 2 are possible?

Marks

Trial HSC 2006

Marks

Question 5 (12 Marks) Use a SEPARATE writing booklet.

(a)
$$P(2ap, ap^2)$$
 and $Q(2aq, aq^2)$ are two points on the parabola $x^2 = 4ay$.

The tangents at P and Q meet at T which is always on the parabola $x^2 = -4ay$.

(i) Given the equation of the tangent at P is $y - px + ap^2 = 0$. 2 Show that T is the point (a(p+q), apq).

(ii) Show that
$$p^2 + q^2 = -6pq$$
. 1

(b) A casserole is cooling in a room that has a constant temperature of C. At a given time, t minutes the temperature decreases according to $\frac{dT}{dt} = -k(T - 22)$ where k is a positive constant.

(i) Show that
$$T = 22 + Ae^{-kt}$$
 is a solution to the equation. 1

(ii) Given that the initial temperature of the casserole is $80^{\circ}C$ and it 2 cools to $60^{\circ}C$ after 10 minutes. Find A and k.

(iii) How long will it take for the casserole to cool to
$$30^{\circ}C$$
? 2

Question 6 (12 Marks) Use a SEPARATE writing booklet.

- (a) Ben fires an arrow horizontally with a speed of 60 ms^{-1} from the top of a 20 m high cliff. Use $g = 10m/s^2$.
 - (i) Show that the position of the arrow at time, t seconds is given by x = 60t and $y = 20 5t^2$.
 - (ii) Find the time taken for the arrow to hit the ground. 1
 - (iii) Find the distance the arrow is from the base of the cliff when it hits 1 the ground.
 - (iv) Find the acute angle to the horizontal at which the arrow hits the ground. 2
- (b) A particle's motion is defined by the equation, $v^2 = 12 + 4x x^2$ where x is its displacement from the origin in metres and v is its velocity in ms^{-1} . Initially, it is 6 metres to the right of the origin.
 - (i) Show that the particle is moving in Simple Harmonic Motion. 1
 - (ii) Find the centre, the period and the amplitude of the motion. **3**
 - (iii) The displacement of the particle at any time is given by the equation 2 $x = a \sin(nt + \theta) + b$. Find the values of, θ and b given $0 \le \theta \le 2\pi$.

Question 7 (12 Marks) Use a SEPARATE writing booklet.

(a) Using the substitution
$$u = 2x + 1$$
 find $\int_{0}^{1} \frac{4x}{2x+1} dx$. 4

(b) For $(a+b)^n$ the general term is $T_{k+1} = {}^n C_k a^{n-k} b^k$. For the following expansion $(3+11x)^{19}$:

(i) Show that
$$\frac{T_{k+1}}{T_k} = \frac{11x(20-k)}{3k}$$
. 2

- (ii) Hence find the greatest coefficient of $(3+11x)^{19}$. 3
- (c) (i) Use the binomial theorem to obtain an expansion for $(1+x)^{2n} + (1-x)^{2n} = 1$ where *n* is a positive integer.

(ii) Hence evaluate
$$1 + {}^{20}C_2 + {}^{20}C_4 + \dots + {}^{20}C_{20}$$
. 2

END OF PAPER

(1) a)
$$\int_{0}^{\infty} \sec^{2} 2x dx = \left[\tan \frac{2x}{4} \right]_{0}^{\infty} = \tan \frac{3x}{4} - \tan 0 = \frac{3}{4} = \frac{3}{4}$$

7	
(a) statch $y = \cos^{-1}\left(\frac{x}{2}\right)$ Domain $-1 \le x \le 1$	Imark correct curve
$-2 \leq x \leq 2$	and range.
Range $0 = y = 1$ $y = \cos^{-1}(\frac{x}{2})$	
Ti2	
-2 0 2 2	
(b) $\frac{d}{dx}(x \sin^2 5x)$	1. Corette
$= \sin^{2}5x + \alpha \times \frac{5}{1 - 25x^{2}}$	d sin' 52
$= 61n^{-1}52c + 52c$ $\sqrt{1-25x^{2}}$	I mark correct answer from their working
(c) $2\cos \phi + \sin \phi = A\cos \phi$	$(\varphi - \alpha)$ A>0 $\varphi = \alpha \leq \frac{\pi}{2}$
$A = \sqrt{2^2 + 1^2}$ $A = \sqrt{5}$	Imark A=G
12000+5100=15005(0=0	OR $Imark \propto = tan'(\frac{1}{2})$
and tan d = 1 2	or $\alpha = 0.463647$ $\alpha = \cos^{-1}\left(\frac{1}{15}\right)$
$\alpha = 0.46 (2dp)$	d=sin(ts)
$i 2\cos \phi + \sin \phi = \sqrt{5}\cos(\phi - \phi)$	α) α = tan' $(\frac{1}{2})$
OK under	degrees not accepted.

l

(c) (ii)
$$2\cos \theta + \sin \theta = \sqrt{5}$$

i. $\sqrt{5}\cos(\theta - \theta, 46^{2}) = \sqrt{5}$
i. $\cos(\theta - \theta, 46^{2}) = 1$ I mark correct equations
i. $\theta - \theta, 46^{2} = 0, 2\pi, 4\pi, ...$
But $\theta \le \theta \le 2\pi$
 $\theta = \theta, 46^{2}$ (2dp) I mark correct θ .

(d)
$$\cos \Theta = \frac{13}{2}$$

 $\cos \Theta = \cos \Pi$ I mark for Π
general solution
 $\Theta = 2\pi\Pi \Pi \pm \infty$
 $\Theta = 2\pi\Pi \mp \Xi$ I mark correct answer
 $OR \Theta = \frac{\pi}{1}, \frac{\pi}{5}, \frac{13\pi}{6}, \frac{23\pi}{5}, \dots$ I mark correct answer
 $OR \Theta = \frac{\pi}{1}, \frac{\pi}{5}, \frac{13\pi}{6}, \frac{23\pi}{5}, \dots$ Only.
(e)
 $Y = 2\times 56^{\circ}$ (angle at the
curumference)
 $SC = 112^{\circ}$
 $Y = 55^{\circ}$ (angles on the
same arc.)
(angles on the same choice
(angles in the same segment
reason.

***.** .

Trial MSC 2006 Solutions Ext. 1 Question 3 Independent term =) x° $(\chi^{2} - \frac{1}{2}\chi^{'})^{'8} \Rightarrow {}^{'8}C_{r}(\chi^{2})^{'8-r}(-\frac{1}{2})^{'}(\chi^{r}) \\ = {}^{'9}C_{r}(\chi^{2})^{'8-r}(-\frac{1}{2})^{'}(\chi^{r}) \\ = {}^{'9}C_{r}(\chi^{2})^{'8-r}(-\frac{1}{2})^{'}.$ $= {}^{18}C_{r} \left(-\frac{t}{2}\right)^{r} \chi^{36-3r}$: 36-31 = D : r=12 $\therefore \text{ Independent term = } {}^{18}C_{12} \left(\frac{1}{2}\right)^{12}$ 3 mlcs correct aus Zinks correct method for fiding r Link correct expansion L'inte correct expansion (b) (i) For f(x) = cos z - ln x [imt] f(w) is its for $0.5 \le z \le 1.5$ [] $f(0.5) \ge 0$ ic. f(0.5) = 1.57 $f(1.5) \le 0$ ic. f(1.5) = -0.33 \vdots root dies in the intenal $0.5 \le z \le 1.5$ \cdots (ii) By Newton's Method: $- f(x_0)$; if x0 = 1 X, = Xo $\chi_{1} = 1 - \frac{p(1)}{p(1)} + \frac{p(1)}{p(1)}$ then $f'(x) = -\sin x - \frac{1}{x}$:= f(i) = -sin(1) - 1.f(x) = con x = lax : f(i) = con lCorrect use f printa Littles correct ans $\therefore x_{1} = 1 + \frac{\cos 1}{\sin(1)t}$ ·· 2, = 1.29 (2dp).

 $\int \frac{3 \, dx}{4 + 25 x^2} = 3 \int \frac{1}{4 + 25 x^2} \, dx$ $= \frac{3}{285} \int \frac{27}{2} \, 5x^2 \int \frac{1}{2x^2} \, dx$ (0) Bat concil ans Sak concil and 2nk correct integral = 0.3 [tan (1) - tan (0)] 1nk correct integration = 3π - method 40_(d)__ C $90-\chi$ $B :: LABC = 90-\chi$ LTCA = 90 - x augle in alternate segment) : LATC = 90° (augle our of SATE 3 mks correct neelled Inte (ayle in alt Seg). Inte (ayle in alt Seg). Inte (ayles in A).

(diversion T
a) Step 1 Mith Prove true for
$$n = 1$$

 $q' - 7' = 2$; divisible by 2
Step 2 Assume true for $h = k$
 $q^{k} - 7^{k} = 2M$ where Mi3 apositive integer
Step 3 Prove true for $n = k + 1$
 $q^{k+1} - 7^{k+1} = q \cdot q^{k} - 7 \cdot 7^{k}$
 $= 7(q^{k} - 7^{k}) + 2 \cdot q^{k}$
 $= 7(2m) + 2 \cdot q^{k}$ (From Step 2)
 $= 2(7m + q^{k})$
 $\therefore q^{k+1} - 7^{k+1}$ is divisible by 2
Step 4

iv) . . .

4!x3! = 149

5a)
(i) As the tangent at
$$p(2ap,ap^2)$$
 is $y - px + ap^2 = 0(1)$,
therefore the tangent at Q is $y - qx + aq^2 = 0(2)$.
Solving (1) and (2) simultaneously:
(2) - (1)
 $(p - q)x - a(p^2 - q^2) = 0$
 $\therefore x = \frac{a(p^2 - q^2)}{(p - q)}$
 $= a(p + q)$
 $\therefore y = p \times a(p + q) - ap^2$
 $= apq$
 $\therefore T(a(a + q), apq)$
(ii) As T lies on $x^2 = -4ay$
 $\therefore (a(p + q))^2 = -4a \times apq$
 $\therefore p^2 + 2pq + q^2 = -4pq$
(iii) Mid-point of PQ:
 $M\left(\frac{2ap + 2aq}{2}, \frac{ap^2 + aq^2}{2}\right) = M\left(a(p + q), \frac{a}{2}(p^2 + q^2)\right)$
(iv)
Let
 $x = a(p + q), y = \frac{a}{2}(p^2 + q^2)$
 $\therefore y = \frac{a}{2}((p + q)^2 - 2pq)$
 $\therefore y = \frac{a}{2}((p + q)^2 - 2pq)$
 $\therefore y = \frac{a}{2}(\frac{x^3}{a^2} - 2pq)$
 $\therefore y = \frac{x^2}{2a} + \frac{a(p^2 + q^2)}{2} \times \frac{1}{3}$
 $\therefore y - \frac{y}{2} = \frac{x^3}{2a}$
 $\therefore x^2 = \frac{4a}{3}y$
Locus of M is a parabola.
Marking Criteria
Marking Criteria
Marking Criteria
Marking Criteria
Marking Criteria
Marking Criteria
Marking Criteria

•

5b)		Marking Criteria
	Given $\frac{dT}{dt} = -k(T-22)$ (i) $T = 22 + Ae^{-kt}$ $\frac{dT}{dt} = -kAe^{-kt}$	1 mark for correct working
	$\frac{dT}{dt} = -k(T-22) as Ae^{-kt} = T-22$ (ii) Now, when $t = 0, T = 80^{\circ}$ $\therefore 80 = 22 + A \times 1$ $\therefore A = 58$ And when $t = 10, T = 60^{\circ}$ $\therefore 60 = 22 + 58 \times e^{-k \times 10}$	1 mark for correct value of A
	$\therefore e^{-10k} = \frac{19}{29}$ $\therefore k = -\frac{1}{10} \ln\left(\frac{19}{29}\right)$ (iii) As $(100) = \frac{1}{10} \ln\left(\frac{19}{29}\right)$	1 mark for correct value of k
	$T = 22 + 58e^{\frac{1}{10}\left(\ln\frac{12}{29}\right)}$ when $T = 30$ $\frac{4}{29} = e^{\frac{t}{10}\left(\ln\frac{19}{29}\right)}$ $\ln\left(\frac{4}{29}\right)$	1 mark for correct process
•	$\therefore \frac{10}{10} = \frac{19}{\ln \frac{19}{29}}$ $\therefore t \approx 46.84 \text{ m in } (\#6 \text{ min})$ 51 Sec	1 mark for correct answer

KЬ (i) Vertialle Hongoit $\ddot{y} = -9$ X =0 V=60m/5 · x=t+c i = -10t+c weent = 0, y=0 20^M when f=0, $\dot{x}=60$ $\dot{y} = -10t$. X=60 $\therefore y = -igt^2 + c$ x = 60t + c, when t=0 y= 20 ulen x = 0, t= 0 $.../y = 20 - 5t^2/L$. . px = Got/ Arrow hits the ground when y=0 20-5t²=0 (22) (2-t)(2+t)=0 . ofter 2 seconds [t=0] V when t=2 Ĩù $\chi = 60 \times Z$ = 120 m = 60 m/s11) y == 20 m/5 ZQM tano = 160 Q = tAN (3) acept 0= 1.8°26

(b)V2=12+4x-2 (i) $\frac{1}{2}u^2 = 6 + 2x - \frac{1}{2}x^2$ $\frac{d(1+y^2)}{dx} = 2 - \chi$. SHM as is is directly proportional to its displacement. $v^{2} = (6 - x)(2 + x)$ (i) $V = \pm \sqrt{(6-x)(2+x)}$ Cantre fration: X = 2 3 Period = 217 = The zec Amplitude = 6m x = a h(nt+e) + b(Tii) x = 6, a = 4 n = 1, t = 06 = 4 Sao+ 6 Now X = an (s(n++0) $\dot{x} = 0$ when t = 0(2) $\therefore \quad C_0 \Theta = O$ o=Ett 6 = k k k k + b when t = 0, x = 6· . b= z z . .

$$(a) \int_{0}^{1} \frac{4x}{2x+1} doc \quad bt \quad u = 2x+1 \\ \therefore u-1 = 2x \\ b \quad \frac{2x}{2x+1} - 2 dx \quad 1 du = 2 dx \\ \text{when } x = 1 \quad u = 3 \\ x = 0 \quad u = 1 \\ (a) \int_{0}^{1} \frac{4x}{2x+1} - 2 dx \quad 1 du = 2 dx \\ \text{when } x = 1 \quad u = 3 \\ x = 0 \quad u = 1 \\ (a) \int_{0}^{1} \frac{4x}{2x+1} - 2 dx \quad (b) (a) = 1 \\ (a) \int_{0}^{1} \frac{4x}{2x+1} - 2 dx \quad (b) (a) = 1 \\ (b) \int_{0}^{1} \frac{1}{4t} du \quad (c) (b) \int_{0}^{1} \frac{1}{4t} \int_{0}^{$$

$$\frac{\int vestion 7}{cc} (1+x)^{2n} + (1-x)^{2n} \quad n > 0$$

$$\frac{(1+x)^{2n}}{(1-x)^{2n}} = (1)^{2n} + {}^{2n}c_1x + {}^{2n}c_2x^2 + \cdots + x^{2n}.$$

$$\frac{(1-x)^{2n}}{(1-x)^{2n}} = (1)^{2n} - {}^{2n}c_1x + {}^{2n}c_2x^2 + \cdots + x^{2n}.$$

$$\frac{(1+x)^{2n}}{(1-x)^{2n}} = 2x(1)^{2n} + 2x^{2n}c_2x^2 + \cdots + x^{2n}(x)^{2n}.$$

$$\frac{(1+x)^{2n}}{(1-x)^{2n}} = 2x(1)^{2n} + 2x^{2n}c_2x^2 + \cdots + x^{2n}(x)^{2n}.$$

$$= 2(1^{2n} + {}^{2n}c_2x^2 + \cdots + {}^{2n}c_1x)^{2n})$$

$$= 2(1^{2n} + {}^{2n}c_2x^2 + \cdots + {}^{2n}c_1x)^{2n}.$$

$$(1-x)^{2n} = 2x(1)^{2n} + 2x^{2n}c_2x^2 + \cdots + {}^{2n}c_1x)^{2n}.$$

$$= 2(1^{2n} + {}^{2n}c_2x^2 + \cdots + {}^{2n}c_1x)^{2n}.$$

$$(1-x)^{2n} = 2(1^{2n} + {}^{2n}c_2x^2 + \cdots + {}^{2n}c_1x)^{2n}.$$

$$= 2(1^{2n} + {}^{2n}c_2x^2 + \cdots + {}^{2n}c_1x)^{2n}.$$

$$(1-x)^{2n} = 2(1^{2n} + {}^{2n}c_2x^2 + \cdots + {}^{2n}c_1x)^{2n}.$$

= 524288

() without the rule : Using
$$T_{k+1} = {}^{n}C_{k}a^{n-k}$$
, b
 $T_{k} = {}^{n}C_{k-1}a^{n-k-1}$, c
 $T_{k} = {}^{n}C_{k-1$