3

4

(12 marks) Question 1 Marks a) Solve $\frac{3}{x-1} < 4$.

b) Find
$$\lim_{x \to 0} \frac{\sin x}{5x}$$
. 1

c) Given
$$\sin \theta + \cos \theta = A$$
 and $\sin \theta \cos \theta = B$. Express 2
 $\sin^3 \theta + \cos^3 \theta$ in terms of A and B

d) Find
$$\int \frac{\cos\theta}{5-\sin\theta} d\theta$$
 2

The two parabolas $y = x^2$ and $y = (x-2)^2$ intersect at the point e) (1,1). Find the angle between the tangents to the curves at x = 1. Give your answer to the nearest degree.

Start this question in a new booklet. \bullet^1 **Question 2** (12 marks)

a) Use the substitution
$$u = 9 - x^2$$
 to find $\int_0^1 6x\sqrt{9 - x^2} dx$. 4

b) Given
$$\frac{d}{dx}(x \sin x) = \sin x + x \cos x$$
, find $\int x \cos x dx$. 2

c) (i) State the domain and range of the function
$$y = 3\sin^{-1}\left(\frac{x}{2}\right)$$
 2

The letters of the word CALCULUS are arranged in a row. 3 d)

- How many different arrangements are there? (i)
- If one of these arrangements is selected at random, find (ii) the probability that it begins with "U" and ends with a "U".

Question 3(12 marks)Start this question in a new booklet.Marks

- a) Consider the parabola $x^2 = 4ay$ where a>0, and suppose the tangents at $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ intersect at the point *T*.
 - (i) Given the equation of the tangent from *P* is $y = px ap^2$, **2** show that the point T has coordinates, (a(p+q), apq)
 - (ii) Given S is the focus, show that $SP = a(p^2+1)$. 2
 - (iii) If *P* and *Q* move along the parabola such that SP + SQ = 4a, **2** find the equation of the locus of point *T*.
- b) The function $f(x) = x e^{-x}$ has one root between 0 and 1.
 - (i) Show that the root lies between 0.4 and 0.6. 1
 - (ii) Use one application of Newton's Method with an **2** initial approximation of x = 0.5 to find a second approximation.
- c) A polynomial f(x) leaves a remainder of -10 when divided by **3** (x-1) and 20 when divided by (x+2). If $f(x) = x^n + ax - 6$, show that x + 1 is a factor.

Question 4 (12 marks) Start this question in a new booklet.

- a) The speed v cm/s of a particle with simple harmonic motion in a straight line is given by $v^2 = 6 + 4x 2x^2$, where x cm is the magnitude of the displacement from a fixed point O.
 - (i)Show that $\ddot{x} = -2(x-1)$.2(ii)Find the centre of the motion.1(iii)Find the period of the motion.1(iv)Find the amplitude of the motion.2

Marks

Question 4 continued

- b) Find, as a rational number, the coefficient of x in the expansion 3 of $\left(x^2 + \frac{1}{2x}\right)^8$.
- c) Colour blindness affects 5% of all men. What is the probability that any random sample of 20 men should contain:
 - (i) no colour blind men. 1 2
 - exactly 4 colour blind men. (ii)

Question 5 (12 marks) Start this question in a new booklet.
a) (i) Show that
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos^2 x \, dx = \frac{\pi}{8} - \frac{1}{4}.$$
2

(ii) Hence or otherwise find the volume generated when 2 $y = 1 - \cos x$ is rotated about the x axis between $x = \frac{\pi}{4}$ and $x = \frac{\pi}{2}$.

b)

AB is a diameter of a circle ABC. The tangents at A and C meet at T. The lines *TC* and *AB* are produced to meet at *P*.

Copy the diagram into your examination booklet. Join AC and CB.

- Prove that $\angle CAT = 90^{\circ} \angle BCP$. (i) 2
- (ii) Hence, or otherwise prove that $\angle ATC = 2 \angle BCP$. 2

Question 5 continued

- c) At time *t* the temperature T^{0} of a body in a room of constant temperature 20° is decreasing according to the equation $\frac{dT}{dt} = -k(T-20) \text{ for some constant } k>0.$
 - (i) Verify that $T = 20 + Ae^{-kt}$, where A is a constant, is a 1 solution of the equation.
 - (ii) The initial temperature of the body is 90⁰ and it falls to 70⁰ 3 after 10 minutes. Find the temperature of the body after a further 5 minutes. (Answer to the nearest degree.)

Question 6 (12 marks) Start this question in a new booklet.

a) Consider the function
$$f(x) = \frac{e^x}{1 + e^x}$$
.

(i)	Show that $f(x)$ is increasing for all values of x .	2
(ii)	Explain why $f(x)$ has an inverse function.	1

- (iii) Find the inverse function $y = f^{-1}(x)$. 2
- b) A yacht is sailing due north off the west coast of a small island with an extinct volcanic peak of height 1200m.
 At 0900 hours the bearing of the peak is 010⁰ and the angle of elevation 5⁰. At 1030 hours the bearing of the peak is 120⁰ and the angle of elevation 20⁰.
 - (i) Draw a diagram to illustrate the information above. 1
 - (ii) Calculate their speed in km/h. 3

c) (i) Express
$$\sin x + \sqrt{3} \cos x$$
 in the form $R \sin(x + \alpha)$. 1

(ii) Hence solve
$$\sin x + \sqrt{3} \cos x = 1$$
 for $0 \le x \le 2\pi$ 2

x

2

Question 7 Start this question in a new booklet. (12 marks) Marks

A boat leaves a dock at a speed of $\frac{V}{2} m/s$ and travels in a straight a) line. A rocket is fired simultaneously from the same starting point and in the same direction, with initial speed V m/s and angle of elevation θ , where $0^0 < \theta < 90^0$. Also assume the height of the dock and the boat is zero metres.

Given the rocket's trajectory is defined by the equations:

$$x = Vt \cos \theta \text{ and } y = -\frac{1}{2} gt^2 + Vt \sin \theta$$

$$rocket$$

$$V \text{ m/s}$$

$$\frac{V}{2} \text{ m$$

$$\frac{2V\sin\theta}{g} \text{ seconds.}$$
(ii) show that the range of the rocket is 1

$$\frac{2V^2\sin\theta\cos\theta}{dt} \text{ metres.}$$

g

Use mathematical induction to prove that, for every positive b) 3 integer n, $9^n - 3$ is divisible by 6.

Question 7 continued

c) A boat is pulled towards a dock by a rope through a ring on the dock which is 4 metres above the boat. If the rope is pulled in at 2 m/s, how fast is the boat travelling when the rope is 10 metres long?

End of paper.

Marks

Trial Yene 12 Ext 1 $(\bigcirc (a)_{\frac{3}{Y-1}} \times (x-1)^{2} < 4(x-1)^{2}$ $3(x-i) < 4(x-i)^2$ $4(x-i)^{2}-3(x-i) > 0$ (x-1)(4x-7) > 0x < 1 or x>2 $(b) = \frac{1}{5}$ (c) $\sin^3\theta + \cos^3\theta$ $= (\sin \Theta + \cos \Theta) (\sin^2 \Theta - \sin \Theta \cos \Theta + \cos^2 \Theta)$ =A(I-B) $(\sin\theta + \cos\theta)^2 = \sin^3\theta + 3\sin^2\theta\cos\theta + 3\sin\theta\cos^2\theta + \cos^3\theta$ $= \sin^{3}\Theta + \cos^{3}\Theta = (\sin\Theta + \cos\Theta)^{3} + 3\sin\Theta\cos\Theta(\sin\Theta + \cos\Theta)$ $= A^3 - 3BA$ $(d) - \ln (5 - \sin \theta) + C$ (e) Let 0 = acute angle between lines $fan \Theta = \left| \frac{m_i - m_2}{1 + m_i M_2} \right|$ M,=2x, at x=1 $m_2 = 2(x-2)$ at x=1 $tan \theta = \left| \frac{2-2}{1+2,-2} \right|$ = - + / $\theta = 53^{\circ}$ (nearest degree)

 $u = 9 - x^2$ $2(\alpha) \int_0^{\infty} 6x \sqrt{9-x^2} dx$ du = -2x dx $= -3 \int_{0}^{1} \sqrt{9-x^2} (-2xdx)$ if x=1, u=8x=0, u=9 M $=-3\int u^{\prime\prime} du$ $= -3 \left[\frac{2}{3}u^{3/2}\right]_{q}^{8}$ $= -3 \left(\frac{2}{3} \sqrt{512} - 18 \right)$ $= -2\sqrt{512} + 54$ $= -32\sqrt{2} + 54$ 8.745766004 (b) $\frac{d}{dx}(x \sin x) = \sin x + x \cos x$ $\therefore x \cos x = \frac{d}{dx} (x \sin x) - \sin x$ $\int x \cos x \, dx = \int \left[\frac{d}{dx} (x \sin x) - \sin x \right] dx$ = xsinx - Ssinxdx x sin x + cos x + C(c) (i) $y = 3 \sin^{-1}(\frac{x}{2})$ \Rightarrow $\therefore -2 \le x \le 2$ $\frac{1}{3}y = \sin^{-1}\left(\frac{x}{2}\right)$ $-\frac{3\pi}{2} \le y \le \frac{3\pi}{2}$ V $\sin \frac{1}{3}y = \frac{x}{2}$ $\therefore 2\sin 3y = x$

······	
(\hat{n}) $\frac{3!}{2}$	
	and the second
(1) The second se Second second se	
 The second s second second se second second sec second second sec	
and a second	
and the second	an the second
······································	
2 1 1 1 1 1 1 1 1 1 1 1 1 1	
References and the second s	
(d)(i) Arrangements =	8!
••••••••••••••••••••••••••••••••••••••	2!2!2!
aananan ee teel teel teelteeteelteeteeteelteeteelteeteelteetee	5040
(ii) . Probability =	<u>61</u>
multipline survey a second provide a second	2:21
waana ahaana ka waxaa ahaana ahaa ahaa	5040
	130
	5040
	1 for simpl. from factorial
ann agus an ann ann an an an an an an an an an a	4728 V torm
OR Prob = (Pr	ob 1st letter is a U) × (Prob. last letter is a U)
бороли формили формили	$\frac{2}{3} \times \frac{1}{7}$ and $\sqrt{2}$
ಕರಿಸಿಕೊನ್ ಕ್ರಿಫ್ಲಾನ್ಸ್ ಕೆಗ	28

 $(3)(a)(i) y = p \propto -ap^2 - 0$ y=qx-aq2 - O Solve O, (2) Simultaneously x = a(p+q), y = apq(a)(ii) S(0, a), $P(2ap, ap^2)$ $SP = \sqrt{(2\alpha p - 0)^{2} + (\alpha p^{2} - \alpha)^{2}}$ $= \sqrt{4a^{2}p^{2} + a^{2}p^{4} - 2a^{2}p^{2} + a^{2}}$ $= \sqrt{a^2(p^2+1)^2}$ $= \alpha \left(\rho^{2} + I \right)$ $\binom{1}{10} SP = \alpha \left(p^2 + 1 \right), SQ = \alpha \left(q^2 + 1 \right)$ $a(p^{2}+1) + a(q^{2}+1) = 4a$ $p^2 + q^2 = 2$ (3) $x = \alpha(p+q), y = \alpha p q$ $x^2 = \alpha^2 \left(\rho^2 + q^2 + 2 \rho q \right)$ $= a^2 \left(2 + \frac{2 \alpha p q}{\alpha} \right) + from 3$ $=\alpha^{2}\left(2+\frac{2\gamma}{2}\right)$ = 2a(a+y)

 $s \left(P(2\alpha p, \alpha p^2) \right)$

SP=PM (by definition) $= \alpha p^2 - (-\alpha)$ $= ap^2 + a = a(p^2 + i)$

 $\frac{f(0,4)}{f(0,4)} < 0, \quad f(0,6) > 0$ $\frac{2f}{f(0,4)} < f(0,6) < 0$ $\frac{2f}{between \quad 0.4 + 0.6}$

$$b(ii) \quad x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})}$$

$$= x_{1} - \frac{x_{1} - e}{1 + e^{-x_{1}}}$$

$$x_{1} = 0.5$$

$$\therefore x_{2} \approx 0.57$$
(c)
$$f(i) = -10 , f(2) = 20$$
(c)
$$f(i) = -10 , f(2) = 20$$

$$a = -5$$

$$(-2)^{n} + 10 - 6 = 20$$

$$(-2)^{n} = 16$$

$$n = 4$$

$$f(x) = x^{4} - 5x - 6$$

$$f(-1) = 1 + 5 - 6$$

$$= 0$$

$$\therefore x + 1 \text{ is a factor.}$$

Question 4 a) i) $x = \frac{d}{dx} \left(\frac{1}{2} v^2 \right) = \frac{d}{dx} \left(\frac{1}{2} \left(6 + 4x - 2x^2 \right) \right) v$ $=\frac{d}{dn}\left(3+2\chi-\chi^{2}\right)/2$ -2(2+1) clearly centre is 2=1. ii) iii) $n^2 = 2$ V=0 at and points $n = \sqrt{2}$ $0 = 6 + 4x - 2x^2$ Period = 211 $0 = x^2 - 2x - 3$ = 272 $O = (\chi - 3)(\chi + 1)$ = IT V x=-1 on 3 IV) From part il -1 1 3 / complitude = 2 i cantre of motion is x=1

Question 4 $\frac{1}{b}\left(\chi^{2}+\frac{1}{2\pi}\right)^{8} = \sum_{r=0}^{8} (\chi^{2})^{r} (\frac{1}{2\pi})^{8-r} & Coefficient = \mathcal{E}_{3} (\frac{1}{2})^{8-3}$ $(\chi^2)^n \left(\frac{1}{2\chi}\right)^{3-n} = -\chi'$ $= \frac{8}{3} \left(\frac{1}{2}\right)^{3}$ 2r + - 1(s - r) = 12n - 8 + n == 1.75 3n = 931 $\dot{\lambda}$ $(0.95)^{20} = 0.36$ <) $\frac{1}{12} = \frac{20}{C_4} (0.05)^4 (0.95)^{16} = 0.013$

 $\frac{42 \text{ Ext} 7 \text{ nal}^{97}}{95(a), (1)} \int_{\pi_{a}}^{\pi_{a}} \cos^{2} dx = \frac{1}{2} \int_{\pi_{a}}^{97} \cos 2x + 1 \, dx$ $= \frac{1}{2} \left[\frac{1}{2} S u 2x + 2 \int_{\pi/r}^{\pi}$ $= \frac{1}{2} \left[\left(\frac{1}{2} \operatorname{SUT} + \frac{\pi}{2} \right) - \left(\frac{1}{2} \operatorname{SUT} + \frac{\pi}{2} \right) \right] /$ $=\frac{1}{2}\left(\frac{\pi}{2}-\frac{1}{2}-\frac{\pi}{4}\right)$ (2) generally well done $(\tilde{n}) \text{ Vol} = \pi \int_{-\infty}^{\pi} (1 - \cos x)^2 dx$ $= \pi \int_{\pi L}^{\pi L} 1 - 2\cos x + \cos^2 x \, dx \, dx$ $= \pi \left[x - 2 \sin x \right]_{\pi \mu}^{\pi \mu} + \frac{\pi}{8} - \frac{1}{4} \right].$ some did not $=\pi((72-2)-(74-52)+75-\frac{1}{2})$ use part (1) $=\pi\left(\frac{3\pi}{8}-24+52\right) u^{3}$. Mary mened up substitution Q5(b) many answed (i) BÂC = BĈP (alt segned knowen) BÂT = 90° (ongle between hangent and drameter) lacked sequence or had poor CAT = BAT - BAC explanations (2) $90^\circ - B\hat{C}P$ (ii) Since AT = CT (tangetest from external point to a cide are equal length) / $\frac{:-\Delta ATC}{ba} \xrightarrow{i} isosceles.$ $\frac{ba}{ba} = ACT = AT = 90 - BCP (bare < isos \Delta) / (a)$ $\frac{ba}{ba} = 2190 - BCP (c rum \Delta)$ (a): $A\hat{T}C = (80 - 2(90 - B\hat{C}\hat{P}))$ (< run Δ) = 2BĈP //. $S(c)(l) \frac{dT}{dt} = -kAe^{-kG}$ = -K(T-20) (sure $Ae^{-kf}=T-20$) (1) (i) t=0 T=90 ta = 70 / $T=20+70e^{-kt}$ well done When T= 70 E=10 70=20+70 e-10k => k = -10 lm= -1. Whe T=5 T= 20+70et 4 \$ x15 (3)62° (regrest dayree)

Question 6 a) i) a) i) $f'(z) = \frac{e^{z}(1+e^{z}) - e^{z} \cdot e^{z}}{(1+e^{z})^{2}}$ ii) Since f(a) is always $= \frac{e^{x} + e^{2x} - e^{2x}}{(1 + e^{x})^{2}}$ Mcreasing for each guable there can only be one $= \frac{e^{\chi}}{(1+e^{\chi})^2}$ × calve . >0 for all calves of n .: f(x) always has a positive goodient i. f(x) is increasing for all values Ŷ $e^{g(\chi-1)} = -\chi$ $\frac{e^{y}}{1+e^{y}}$ $e^{y} = \frac{-\chi}{\chi - l}$ $(1+e^{y})x = e^{y}$ $y = \ln\left(\frac{-\kappa}{\kappa-1}\right)^{\prime}$ $\chi + \chi e^{\gamma} = e^{\gamma}$ xey-ey = -x20° / 1200m 10° b 110° 10° a $\chi^{2} = \left(\frac{1200}{400}\right)^{2} + \left(\frac{1200}{40020}\right)^{2} - 2\left(\frac{1200}{4005}\right)\left(\frac{1200}{40020}\right) \cos \left(\frac{1200}{40020}\right) \cos \left(\frac{1200}{40020}\right$ x = 15163.56578m v Speed = 15.163 = 10.1 km/h $\sin(x+\frac{\pi}{3}) \leq \frac{1}{2}$ $x+\frac{\pi}{3} = \frac{3\pi}{6} + \frac{3\pi}{6} + \frac{3\pi}{6}$ c) Sin X + N3 cos X #M $2(\frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x)$ $\chi = \frac{1}{6} \sigma + \frac{1}{2} V$ AFAZ 2 (contasina + sin A con 2) tot $2(\sin(x+\frac{\pi}{3})) = N$

7.(a)(i) y=0 when rocket hits ground $-\frac{1}{2}gt^2 + Vtsin\theta = 0$ $\dot{t} \left(-\frac{1}{2}gt + V \sin \Theta \right) = 0$ either t = 0 or $\frac{1}{2}gt = V \sin \theta$ $t = \frac{2V \sin \theta}{100}$ V. A. (ii) when $t = \frac{2V \sin \theta}{g}$ $x = \frac{2V^2 \sin 0 \cos 0}{9}$ (iii) for the boat: $x = \frac{Vt}{2}$ $\therefore x = \frac{2V^2 \sin \theta}{2q}$ Equating (1) and (2) $\frac{2N^2 \sin \Theta \cos \Theta}{g}$ $= \frac{2N^2 sign}{2g}$ $2\cos \Theta$ = 1/2 020 = $\frac{12}{3}$ (must be in first quadrant)

(b) To prove: 9n-3 is divisible by 6 for all positive integers n For n=1: q'-3 = 6 \therefore true for n=1Assume true for n=k $q^{k}-3=6M$ where M is an integer Prove true for n=k+1 $9^{k+1}-3 = 9.9^{k}-3$ = 9(6M+3) - 3= 54M + 27 - 3= 54M + 24= 6(9M+4)and the second second i true for n=k+1 Since it is the for n=1, and when we assume that it is the for n=k then it follows that it is also the for n=k+1, then it must be the for all integers greater than or equal to 1.

 $r^{2} = 16 + \omega^{2}$ $r = \sqrt{16 + \omega^{2}}$ (C) 4 w $\frac{dr}{dt} = \frac{1}{2} \times 2\omega \times (16 + \omega^2)^{-1/2}$ dw $\sqrt{16+\omega^2}$ 2 dr nga **tan**a ing n Tanga 2 dw d d $\sqrt{16+\omega^2}$ x 1. r = 10....**)**... when $100 = 16 + \omega$ \mathbf{k} $w = \sqrt{84}$: dw x 2 16+84 184 d+ 18