Question 1 (12 marks)
Marks
a) Solve $\frac{3}{x-1}<4$.

3
b) Find $\lim _{x \rightarrow 0} \frac{\sin x}{5 x}$.
$\sin ^{3} \theta+\cos ^{3} \theta$ in terms of A and B
d) Find $\int \frac{\cos \theta}{5-\sin \theta} d \theta$
e) The two parabolas $y=x^{2}$ and $y=(x-2)^{2}$ intersect at the point
$(1,1)$. Find the angle between the tangents to the curves at $x=1$. Give your answer to the nearest degree.

Question 2 (12 marks) Start this question in a new booklet.
a) Use the substitution $u=9-x^{2}$ to find $\int_{0}^{1} 6 x \sqrt{9-x^{2}} d x$.

4
b) Given $\frac{d}{d x}(x \sin x)=\sin x+x \cos x$, find $\int x \cos x d x$.

2
c) (i) State the domain and range of the function $y=3 \sin ^{-1}\left(\frac{x}{2}\right)$
(ii) Draw a sketch of the function, carefully labeling the extremities of both the range and domain.
d) The letters of the word CALCULUS are arranged in a row.
(i) How many different arrangements are there?
(ii) If one of these arrangements is selected at random, find the probability that it begins with " U " and ends with a " U ".

Question 3 (12 marks) Start this question in a new booklet.

a) Consider the parabola $x^{2}=4 a y$ where $a>0$, and suppose the tangents at $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ intersect at the point T.
(i) Given the equation of the tangent from P is $y=p x-a p^{2}, \quad 2$ show that the point T has coordinates, $(a(p+q), a p q)$
(ii) Given S is the focus, show that $S P=a\left(p^{2}+1\right)$.2
(iii) If P and Q move along the parabola such that $S P+S Q=4 a, 2$ find the equation of the locus of point T.
b) The function $f(x)=x-e^{-x}$ has one root between 0 and 1 .
(i) Show that the root lies between 0.4 and 0.6 .

1
(ii) Use one application of Newton's Method with an initial approximation of $x=0.5$ to find a second approximation.
c) A polynomial $f(x)$ leaves a remainder of -10 when divided by $(x-1)$ and 20 when divided by $(x+2)$. If $f(x)=x^{n}+a x-6$, show that $x+1$ is a factor.

Question 4 (12 marks) Start this question in a new booklet.
a) The speed $v \mathrm{~cm} / \mathrm{s}$ of a particle with simple harmonic motion in a straight line is given by $v^{2}=6+4 x-2 x^{2}$, where $x \mathrm{~cm}$ is the magnitude of the displacement from a fixed point O.
(i) Show that $\ddot{x}=-2(x-1)$.
(ii) Find the centre of the motion.
(iii) Find the period of the motion.
(iv) Find the amplitude of the motion.

Question 4 continued

b) Find, as a rational number, the coefficient of x in the expansion of $\left(x^{2}+\frac{1}{2 x}\right)^{8}$.
c) Colour blindness affects 5% of all men. What is the probability that any random sample of 20 men should contain:
(i) no colour blind men.
(ii) exactly 4 colour blind men. $\mathbf{2}$

Question 5 (12 marks) Start this question in a new booklet.

a) (i) Show that

$$
\begin{equation*}
\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos ^{2} x d x=\frac{\pi}{8}-\frac{1}{4} \tag{2}
\end{equation*}
$$

(ii) Hence or otherwise find the volume generated when $y=1-\cos x$ is rotated about the x axis between $x=\frac{\pi}{4}$ and $x=\frac{\pi}{2}$.
b)

$A B$ is a diameter of a circle $A B C$. The tangents at A and C meet at T. The lines $T C$ and $A B$ are produced to meet at P.

Copy the diagram into your examination booklet. Join AC and CB.
(i) Prove that $\angle C A T=90^{\circ}-\angle B C P$.
(ii) Hence, or otherwise prove that $\angle A T C=2 \angle B C P$.

Question 5 continued

c) At time t the temperature T^{0} of a body in a room of constant temperature 20° is decreasing according to the equation $\frac{d T}{d t}=-k(T-20)$ for some constant $k>0$.
(i) Verify that $T=20+A e^{-k t}$, where A is a constant, is a solution of the equation.
(ii) The initial temperature of the body is 90° and it falls to 70° 3 after 10 minutes. Find the temperature of the body after a further 5 minutes. (Answer to the nearest degree.)

Question 6 (12 marks) Start this question in a new booklet.
a) Consider the function $f(x)=\frac{e^{x}}{1+e^{x}}$.
(i) Show that $f(x)$ is increasing for all values of x.
(ii) Explain why $f(x)$ has an inverse function. 1
(iii) Find the inverse function $y=f^{-1}(x)$.
b) A yacht is sailing due north off the west coast of a small island with an extinct volcanic peak of height 1200 m .
At 0900 hours the bearing of the peak is 010° and the angle of elevation 5^{0}. At 1030 hours the bearing of the peak is 120° and the angle of elevation 20°.
(i) Draw a diagram to illustrate the information above.

1
(ii) Calculate their speed in km / h.
c) (i) Express $\sin x+\sqrt{3} \cos x$ in the form $R \sin (x+\alpha)$.
(ii) Hence solve $\sin x+\sqrt{3} \cos x=1$ for $0 \leq x \leq 2 \pi$

Question 7 (12 marks) Start this question in a new booklet.

a) A boat leaves a dock at a speed of $\frac{V}{2} \mathrm{~m} / \mathrm{s}$ and travels in a straight line. A rocket is fired simultaneously from the same starting point and in the same direction, with initial speed $V \mathrm{~m} / \mathrm{s}$ and angle of elevation θ, where $0^{\circ}<\theta<90^{\circ}$. Also assume the height of the dock and the boat is zero metres.

Given the rocket's trajectory is defined by the equations:
$x=V t \cos \theta$ and $y=-\frac{1}{2} g t^{2}+V t \sin \theta$

(i) show that the time of flight of the rocket is

$$
\frac{2 V \sin \theta}{g} \text { seconds. }
$$

(ii) show that the range of the rocket is

$$
\frac{2 V^{2} \sin \theta \cos \theta}{g} \text { metres. }
$$

(iii) determine the angle of elevation of the rocket needed for the rocket to hit the boat
b) Use mathematical induction to prove that, for every positive integer $n, 9^{n}-3$ is divisible by 6 .

Question 7 continued

c) A boat is pulled towards a dock by a rope through a ring on the dock which is 4 metres above the boat. If the rope is pulled in at $2 \mathrm{~m} / \mathrm{s}$, how fast is the boat travelling when the rope is 10 metres long?

End of paper.

$6 x+1$ Yenta 12
(1)

$$
\begin{aligned}
& \text { (a) } \frac{3}{x-1} \times(x-1)^{2}<4(x-1)^{2} \\
& 3(x-1)<4(x-1)^{2} \\
& 4(x-1)^{2}-3(x-1)>0 \\
& (x-1)(4 x-7)>0 \\
& x<1 \text { or } x>\frac{7}{4}
\end{aligned}
$$

(b) $\frac{1}{5}$
(c)

$$
\begin{aligned}
& \sin ^{3} \theta+\cos ^{3} \theta \\
= & (\sin \theta+\cos \theta)\left(\sin ^{2} \theta-\sin \theta \cos \theta+\cos ^{2} \theta\right) \\
= & A(1-B)
\end{aligned}
$$

or

$$
\begin{aligned}
& (\sin \theta+\cos \theta)^{3}=\sin ^{3} \theta+3 \sin ^{2} \theta \cos \theta+3 \sin \theta \cos ^{2} \theta+\cos ^{3} \theta \\
\therefore \quad \sin ^{3} \theta+\cos ^{3} \theta & =(\sin \theta+\cos \theta)^{3}+3 \sin \theta \cos \theta(\sin \theta+\cos \theta) \\
& =A^{3}-3 B A \\
(d) & -\ln (5-\sin \theta)+C
\end{aligned}
$$

(e) Let $\theta=$ acute angle between lines

$$
\begin{aligned}
& \tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
& \begin{aligned}
m_{1} & =2 x, \text { at } x=1 \quad m_{2} \\
& =2(x-2) \text { at } x=1 \\
& =-2
\end{aligned} \\
& \tan \theta=\left|\frac{2--2}{1+2 \cdot-2}\right| \\
&=\left|-\frac{4}{3}\right| \\
& \theta=53^{\circ} \quad \text { (nearest degree) }
\end{aligned}
$$

2(a)

$$
\begin{aligned}
& \int_{0}^{1} 6 x \sqrt{9-x^{2}} d x \\
= & -3 \int_{0}^{1} \sqrt{9-x^{2}}(-2 x d x) \\
= & -3 \int_{9}^{81 / 2} d u \\
= & -3\left[\frac{2}{3} u^{3 / 2}\right]_{9}^{8} \\
= & -3\left(\frac{2}{3} \sqrt{512}-18\right) \\
= & -2 \sqrt{512}+54 \\
= & -32 \sqrt{2}+54
\end{aligned}
$$

$$
\begin{aligned}
u & =9-x^{2} \\
\therefore d u & =-2 x \cdot d x
\end{aligned}
$$

$$
\text { if } x=1, u=8
$$

$$
x=0, u=9 \quad \nsim u
$$

$8 \cdot 745166004$
(b)

$$
\text { (b) } \begin{aligned}
\frac{d}{d x}(x \sin x) & =\sin x+x \cos x \\
\therefore x \cos x & =\frac{d}{d x}(x \sin x)-\sin x \\
\therefore \int x \cos x d x & =\int\left[\frac{d}{d x}(x \sin x)-\sin x\right] d x \\
& =x \sin x-\int \sin x d x \\
& =x \sin x+\cos x+C
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \text { (i) } y=3 \sin ^{-1}\left(\frac{x}{2}\right) \\
& \therefore \frac{1}{3} y=\sin ^{-1}\left(\frac{x}{2}\right) \\
& \therefore \sin \frac{1}{3} y=\frac{x}{2} \\
& \therefore 2 \sin \frac{1}{3} y=x
\end{aligned}
$$

(ii)

(d) (i)

$$
\begin{aligned}
\text { Arrangements } & =\frac{8!}{2!2!2!} \\
& =5040
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\text { Probability } & =\frac{\frac{6!}{2!2!}}{5040} \\
& =\frac{180}{5040} \\
& =\frac{1}{42} 28
\end{aligned}
$$

$O R \quad$ Prob $=\left(\right.$ Prob $\left.1^{\text {it Deter is } ~ a U ~}\right) \times($ Prob lastletter is $a V)$

$$
\begin{aligned}
& =\frac{2}{8} \times \frac{1}{7} \\
& =\frac{1}{28}
\end{aligned}
$$

(3) (a) 1

$$
\begin{align*}
& y=p x-a p^{2} \\
& y=q x-a q^{2}
\end{align*}
$$

Solve (1) (2) simultaneoosly

$$
x=a(p+q), \quad y=a p q
$$

(i) $S(0, a), p\left(2 a p, a p^{2}\right)$

$$
\begin{aligned}
S p & =\sqrt{(2 a p-0)^{2}+\left(a p^{2}-a\right)^{2}} \\
& =\sqrt{4 a^{2} p^{2}+a^{2} p^{4}-2 a^{2} p^{2}+a^{2}} \\
& =\sqrt{a^{2}\left(p^{2}+1\right)^{2}} \\
& =a\left(p^{2}+1\right)
\end{aligned}
$$

(ii)

$$
\begin{align*}
& \text { i } S p=a\left(p^{2}+1\right), S Q=a\left(q^{2}+1\right) \\
& a\left(p^{2}+1\right)+a\left(q^{2}+1\right)=4 a \\
& p^{2}+q^{2}=2 \tag{3}\\
& x=a(p+q), y=a p q \\
& x^{2}=a^{2}\left(p^{2}+q^{2}+2 p q\right) \\
&=a^{2}\left(2+\frac{2 a p q}{a}\right) \quad \text { fro } \\
&=a^{2}\left(2+\frac{2 y}{a}\right) \\
&=2 a(b+y)
\end{align*}
$$

$$
\left.\begin{array}{c}
(f)(1) f(0.4)<0, f(0.6)>0] \\
\frac{0 r}{=} \\
f(0.4), f(0.6)<0
\end{array}\right] \therefore \begin{aligned}
& \text { root exists } \\
& \text { between } 0.4+0.6
\end{aligned}
$$

01

$$
\begin{aligned}
S P & =P M(b y \text { definition }) \\
& =a p^{2}-(-a) \\
& =a p^{2}+a=a\left(p^{2}+1\right)
\end{aligned}
$$

$$
\text { f(i) } \begin{aligned}
& x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
&=x_{1}-\frac{x_{1}-e^{-x_{1}}}{1+e^{-x_{1}}} \\
& x_{1}=0.5 \\
& \therefore x_{2} \approx 0.57
\end{aligned}
$$

$$
\begin{gathered}
\text { (c) } f(1)=-10, f(2)=20 \\
\therefore 1^{n}+a-6=-10 \\
a=-5 \\
(-2)^{n}+10-6=20 \\
(-2)^{n}=16 \\
n=4 \\
\therefore f(x)=x^{4}-5 x-6 \\
f(-1)=1+5-6 \\
=0
\end{gathered}
$$

$\therefore x+1$ is a factor.

Question 4
a)

$$
\text { i) } \begin{aligned}
\ddot{x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =\frac{d}{d x}\left(\frac{1}{2}\left(6+4 x-2 x^{2}\right)\right) \\
& =\frac{d}{d x}\left(3+2 x-x^{2}\right) \\
& =2-2 x \\
& =-2(x-1)
\end{aligned}
$$

ii)
clearly centre is $x=1$.
$V=0$ at end points

$$
\left.\begin{array}{rl}
\therefore \quad 0 & =6+4 x-2 x^{2} \\
0 & =x^{2}-2 x-3 \\
0 & =(x-3)(x+1) \\
x & =-1 \text { or } 3
\end{array}\right]
$$

iii)

1V) From part is
\therefore centre of motion is $x=1$ amplitude $=2$

Question 4
b)

$$
\begin{array}{rlr}
\left(x^{2}+\frac{1}{2 x}\right)^{8}=\sum_{r=0}^{8}\left(x^{2}\right)^{n}\left(\frac{1}{2 x}\right)^{8-n}{ }^{8} C_{n} v \\
\therefore\left(x^{2}\right)^{n}\left(\frac{1}{2 x}\right)^{8-r}=-x^{1} & \text { Coefficient } & =C_{3}\left(\frac{1}{2}\right)^{8-3} \\
2 r+-1(8-n)=1 & =C_{3}\left(\frac{1}{2}\right)^{5} \\
2 r-8+r=1 \\
3 r=9 . & =1.25
\end{array}
$$

$$
n=3 \Omega
$$

c)
i) $(0.95)^{20} \div 0.36$
ii) ${ }^{20} C_{4}(0.05)^{4}(0.95)^{16} \stackrel{V}{\rightleftharpoons} 0.013$

$$
\begin{aligned}
& n^{2}=2 \\
& n=\sqrt{2} \\
& \text { Period }=\frac{2 \pi}{n} \\
& =\frac{2 \pi}{\sqrt{2}} \\
& =\sqrt{2 \pi}
\end{aligned}
$$

YRext Tnal'o7
QS (a), (1)

$$
\begin{aligned}
\int_{\pi / 4}^{\pi / 2} \cos ^{2} d x & =\frac{1}{2} \int_{\pi / 4}^{\pi / 2} \cos 2 x+1 d x \\
& =\frac{1}{2}\left[\frac{1}{2} \sin 2 x+x\right]_{\pi / 4}^{\pi} \\
& =\frac{1}{2}\left[\left(\frac{1}{2} \sin x+\frac{\pi}{2}\right)-\left(\frac{1}{2} \sin \pi / 2+\pi / 4\right)\right] \\
& =\frac{1}{2}\left(\frac{\pi}{2}-\frac{1}{2}-\frac{\pi / 4}{4}\right) \\
& =\frac{\pi}{8}-\frac{1}{4}
\end{aligned}
$$

(2) genoraly
(ii)

$$
\begin{aligned}
& \mathrm{Vol}=\pi \int_{\pi / 2}^{\pi / 2}(1-\cos x)^{2} d x \\
&=\pi \int_{\pi / 4}^{\pi / 2} 1-2 \cos x+\cos ^{2} x d x \\
&\left.=\pi[x-2 \operatorname{sen} x]^{\pi / 2}+\frac{\pi}{8}-\frac{1}{4}\right) \\
&= \pi\left(\left(\frac{\pi / 2}{}-2\right)-\left(\frac{\pi}{4}-\sqrt{2}\right)+\frac{\pi}{8}-\frac{1}{4}\right) . \\
&=\pi\left(\frac{3 \pi}{8}-2 \frac{1}{4}+\sqrt{2}\right) u^{3} .
\end{aligned}
$$

some ded not use part (i).
(2)

Q5(b)

many messed up subshtition.

(i) $\hat{B A C}=B \hat{C} P$ (alt segnest truerem)
$B \hat{B A T}=90^{\circ}$ (ongle hetween hangent and deanster).

$$
\therefore C A T=\hat{B A T}-B \hat{B C}
$$

$$
=90^{\circ}-B \hat{C} P
$$

(ii) Since $A T=C T$ (tangestes from evtaral point a a cieb cre epol length).
$\therefore \triangle A T C$ in isasceles.
well done.
when $T=70 \quad t=10$

$$
\begin{equation*}
70=20+70 e^{-10 k} \Rightarrow k=-\frac{1}{10} \operatorname{lm} \frac{5}{7} . \tag{3}
\end{equation*}
$$

Whe $T=0 \quad T=20+70 e^{\frac{1}{15} \ln 5 \times 15}$

$$
=62^{\circ} \text { (request depree) }
$$

$$
\begin{aligned}
& \text { (ii) } t=0 \quad T=90 \quad \text { lta } A=70 \text {. }
\end{aligned}
$$

Question 6
a)

$$
\text { i) } \begin{aligned}
f^{\prime}(x) & =\frac{e^{x}\left(1+e^{x}\right)-e^{x} \cdot e^{x}}{\left(1+e^{x}\right)^{2}} \\
& =\frac{e^{x}+e^{2 x}-e^{2 x}}{\left(1+e^{x}\right)^{2}} \\
& =\frac{e^{x}}{\left(1+e^{x}\right)^{2}} \\
& >0 \text { for allualues }
\end{aligned}
$$

$$
\text { of } x
$$

$\therefore f(x)$ allays hasa positive gradient
$\therefore f(x)$ is increasing for all values
iii)

$$
\begin{array}{r}
x=\frac{e^{y}}{1+e^{y}} \\
\left(1+e^{y}\right) x=e^{y} \\
x+x e^{y}=e^{y} \\
x e^{y}-e^{y}=-x
\end{array}
$$

b)

$\sqrt{3} / 12$
c)
) $\quad \sin x+\sqrt{3} \cos x \neq n$

$$
\begin{aligned}
& 2\left(\frac{1}{2} \sin x+\frac{\sqrt{3}}{2} \cos x\right) \\
& 2(\cos A \sin x+\sin A \cos x) \\
& 2\left(\sin \left(x+\frac{\pi}{3}\right)\right)
\end{aligned}
$$

ii) Since $f(x)$ is always increasing for each gualve there can only be ore x value.

$$
e^{g(x-1)}=\frac{-x}{-x}
$$

$$
e^{y}=\frac{-x}{x-1}
$$

$$
y=\ln \left(\frac{-x}{x-1}\right)^{\prime}
$$

7. (a) (1) $y=0$ when rocket hits ground

$$
\begin{aligned}
& \therefore-\frac{1}{2} g t^{2}+v t \sin \theta=0 \\
& \therefore \quad t\left(-\frac{1}{2} g t+v \sin \theta\right)=0
\end{aligned}
$$

\therefore either $t \neq 0$ or $\frac{1}{2} g t=V \sin \theta$

$$
t=\frac{2 V \sin \theta}{g}
$$

(ii) when $t=\frac{2 V \sin \theta}{9}$:

$$
\begin{equation*}
x=\frac{2 V^{2} \sin \theta \cos \theta}{9} \tag{1}
\end{equation*}
$$

(iii) for the boat: $x=\frac{V t}{2}$

$$
\begin{equation*}
\therefore \quad x=\frac{2 v^{2} \sin \theta}{2 g} \tag{2}
\end{equation*}
$$

Equating (1) and (2) :

$$
\begin{aligned}
& \frac{\partial x^{2} \sin \theta \cos \theta}{g}=\frac{2 x^{2} \sin \theta}{2 g} \\
\therefore \quad & 2 \cos \theta=1 \\
\therefore \quad & \cos \theta=1 / 2 \\
\therefore \quad & \theta=\pi \quad \text { (must be in first quadrant) }
\end{aligned}
$$

(b) To prove: $9^{n}-3$ is divisible by 6 for all positive integers n

For $n=1: \quad 9^{\prime}-3=6$
\therefore true for $n=1$
Assume true for $n=k$
$\therefore 9^{k}-3=6 M$ where M is an integer
Prove true for $n=k+1$

$$
\begin{aligned}
9^{k+1}-3 & =9 \cdot 9^{k}-3 \\
& =9(6 M+3)-3 \\
& =54 M+27-3 \\
& =54 M+24 \\
& =6(9 M+4)
\end{aligned}
$$

\therefore true for $n=k+1$
Since it is twe for $n=1$, and when we assume that it is true for $n=k$ then it follows that it is also the for $n=k+1$, then it must be twe for all integers greater than or equal to 1.
(c)

$$
r^{2}=16+\omega^{2}
$$

$$
\therefore \frac{d r}{d w}=\frac{1}{2} \times 2 w \times\left(16+w^{2}\right)^{-1 / 2}
$$

$$
=\frac{\omega}{\sqrt{16+\omega^{2}}}
$$

$$
\frac{d r}{d t}=2
$$

3

$$
\begin{aligned}
\frac{d w}{d t} & =\frac{d w}{d r} \times \frac{d r}{d t} \\
& =\frac{\sqrt{16+w^{2}}}{w} \times 2
\end{aligned}
$$

when $r=10, ~ t<=100=16+w^{2}$

$$
\begin{aligned}
& \therefore \frac{d w}{d t}=\frac{\sqrt{84}}{\sqrt{16+84}} \times 2 \\
&=\frac{20}{\sqrt{84}} \\
&
\end{aligned}
$$

