.

Extension 1 Mathematics

### **Question 1** 12 Marks

(a) Evaluate the following definite integral  $\int_{-2}^{2} \frac{dx}{x^2 + 4}$  2

(b) Solve 
$$\frac{5}{x-3} \ge 2$$
. 2

(c) Show that 
$$\int \frac{dx}{\sqrt{9-4x^2}} = \frac{1}{2}\sin^{-1}\frac{2x}{3} + C$$
, where C is constant. 2

(d) Find the general solution for  $\cos 2\theta = \frac{\sqrt{3}}{2}$  2

(e) (i) Show that the derivative of 
$$\frac{1+\sin x}{\cos x}$$
 is  $\frac{1}{1-\sin x}$ .  
(ii) Hence, deduce that  $\int_{0}^{\frac{\pi}{4}} \frac{dx}{1-\sin x} = \sqrt{2}$ 

# Question 2 12 Marks Start a new booklet

- (a) Let  $f(x) = x^3 + 5x^2 + 17x 10$ . The equation f(x) = 0 has only one real root.
- 4

4

Marks

- (i) Show that the root lies between 0 and 2.
- (ii) Use one application of the 'halving the interval' method to find a smaller interval containing the root.
- (iii) Which end of the smaller interval found in part (ii) is closer to the root? Briefly justify your answer.
- (b) Evaluate  $\int_{-1}^{2} \frac{x dx}{\sqrt{3-x}}$  using the substitution x = 3 u.
- (c) ABCD is a cyclic quadrilateral in which AC bisects  $\angle DAB$ . CE is the tangent to the circle at C. Prove  $CE \square DB$ .



Question 3 page 2.

### Question 3 12 Marks Start a new booklet

- (a) (i) Express  $\sin \theta + \sqrt{3} \cos \theta$  in the form  $R \sin(\theta + \phi)$ .
  - (ii) Hence, or otherwise, solve the equation  $\sin \theta + \sqrt{3} \cos \theta = 1$  for values of  $\theta$  between 0 and  $2\pi$ .
- (b) Cadel notices that the angle of elevation of the top of a mountain due north is 14°. Upon riding 7 kilometres due west, he finds that the angle of elevation of the top of the mountain is 10°. How high is the mountain? Give your answer correct to the nearest metre.



 $\angle DBC = 14^\circ$ ,  $\angle DAC = 10^\circ$ 

(c) (i) Show that 
$$\cos\theta = 2\cos^2\frac{\theta}{2} - 1$$

(ii) Hence, show that 
$$\frac{1}{1 + \sec x} = 1 - \frac{1}{2} \sec^2 \frac{x}{2}$$
.

(iii) Use part (ii) to deduce that 
$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \sec x} = \frac{\pi}{2} - 1.$$

Question 4 page 3.

4

4

4

2

#### Question 4 12 Marks Start a new booklet

- (a) The sides of a cube are increasing at a rate of 2 cms<sup>-1</sup>. Find at what rate the surface area is increasing when the sides are each 10 cm.
- (b) Prove by induction  $9^{n+2} 4^n$  is divisible by 5, for  $n \ge 1$

4

6

6

(c) 100 grams of cane sugar in water is converted into dextrose at a rate which is proportional to the amount unconverted at any time. That is, if *m* grams are

converted in t minutes, then  $\frac{dm}{dt} = k(100 - m)$ , where k is constant.

- (i) Show that  $m = 100 + Ae^{-kt}$ , where A is a constant, satisfies this equation.
- (ii) Find the value of A.
- (iii) If 40 grams are converted in the first 10 minutes, find how many grams are converted in the first 30 minutes.
- (iv) What is the limiting value of *m* as *t* increases indefinitely?

#### Question 5 12 Marks Start a new booklet

- (a) Solve the equation  $6x^3 17x^2 5x + 6 = 0$ , given that two of its roots have a product of -2.
- (b) Find the values of a and b so that  $x^4 + 4x^3 x^2 + ax + b$  is divisible by (x-2)(x+1).
- (c)  $P(2ap, ap^2)$  and  $Q(2aq, aq^2)$  are points on the parabola  $x^2 = 4ay$ .



(i) Show that the equation of the chord PQ is  $\frac{(p+q)x}{2} - y = apq$ 

- (ii) The line PQ passes through the point (0, -a). Show that pq = 1.
- (iv) Hence, or otherwise, if S is the focus of the parabola, show that  $\frac{1}{SP} + \frac{1}{SQ} = \frac{1}{a}.$

Question 6 page 4.

2008 Trial Examination

### Question 6 12 Marks Start a new booklet

(a) By considering the expansion of  $(1+x)^{2n}$  in ascending powers of x show that  ${}^{2n}C_0 + {}^{2n}C_1 + {}^{2n}C_2 + \dots + {}^{2n}C_{2n} = 4^n$ 

(b) (i) Write the expansion of 
$$(2+3x)^{20}$$
 in the form  $\sum_{r=0}^{20} c_r x^r$ , where  $c_r$  is 4

the coefficient of  $x^r$  in the expansion.

(ii) Show that 
$$\frac{c_{r+1}}{c_r} = \frac{60-3r}{2r+2}$$

- (iii) Hence, or otherwise, find the greatest coefficient in the expansion of  $(2+3x)^{20}$ . Leave your answer in index form.
- (c) Of a set of otherwise similar cards, ten are white, six are red and four are yellow. Three cards are taken at random. What is the probability that:
  - (i) They are all different colours;
  - (ii) They are the same colour?
- (d) (i) In how many ways can 2 boys and 1 girl be arranged in a row if the selection is made from 4 boys and 3 girls? 3
  - (ii) In how many of these arrangements does a girl occupy the middle position?

Question 7 page 5.

3

6

#### Question 7 12 Marks Start a new booklet

(a) A particle is projected with speed 40 ms<sup>-1</sup> from the top of a cliff 84 metres high at an angle of elevation  $\alpha = \tan^{-1} \frac{4}{3}$ . Assume that the equations of motion are x = 0 and y = -10 ms<sup>-2</sup>.

 $84 \text{ m} \underbrace{ \begin{array}{c} y \\ \alpha \\ 0 \end{array}} x$ 

- (i) Derive the equations x = 24t and  $y = 84 + 32t 5t^2$ .
- (ii) Hence or otherwise find the range on the horizontal plane through the foot of the cliff.
- (iii) Find the speed of the body when it reaches this plane. Answer correct to two significant figures.
- (b) A particle moves in simple harmonic motion about x = 0 and its displacement x metres, at time t seconds, is given by x = a sin n(t + α). The particle moves with a period of 16 seconds. It passes through the centre of motion when t = 2 seconds. Its velocity is 4 ms<sup>-1</sup> when t = 4 seconds.

(i) Show 
$$x = -\frac{\pi^2}{64}x$$
.

- (ii) Find the maximum displacement.
- (iii) Find the speed of the particle when t = 10 seconds.

#### **END OF EXAM**

Solutions Extension One Trial 2008  
Question 1  
(a) 
$$\int_{-2}^{2} \frac{dx}{x^{2}+4} = 2\int_{0}^{2} \frac{dx}{x^{2}+4}$$
  
 $= 2 \times \left[\frac{1}{2} \tan^{-1} \frac{x}{2}\right]_{0}^{2}$   
 $= \tan^{-1}1 - \tan^{-1}0$   
 $= \frac{\pi}{4}$   
(b)  $\frac{5}{x-3} \ge 2$ ,  $x \ne 3$   
 $\frac{5}{x-3} \times (x-3)^{2} \ge 2 \times (x-3)^{2}$   
 $5(x-3) \ge 2(x-3)^{2}$   
 $0 \ge 2(x-3)^{2} - 5(x-3)$   
 $0 \ge (x-3)[2(x-3)-5]$   
 $0 \ge (x-3)(2x-11)$   
 $3 < x \le \frac{11}{2}$  Note:  $x \ne 3$   
(c)  $\int \frac{dx}{\sqrt{9-4x^{2}}} = \int \frac{dx}{\sqrt{4(\frac{9}{4}-x^{2})}}$   
 $= \frac{1}{2} \int \frac{dx}{\sqrt{(\frac{9}{4}-x^{2})}}$   
 $= \frac{1}{2} \int \frac{dx}{\sqrt{(\frac{3}{2})^{2}-x^{2}}}$   
 $= \frac{1}{2} \sin^{-1}\left(\frac{x}{3/2}\right) + C$   
 $= \frac{1}{2} \sin^{-1}\left(\frac{2x}{3}\right) + C$   
(d)  $\cos 2\theta = \cos \frac{\pi}{6}$   
 $2\theta = 2n\pi \pm \frac{\pi}{6}, n \in \{\text{integers}\}$   
 $\theta = n\pi \pm \frac{\pi}{12}$ 

Newington College

(e) (i) 
$$\frac{d}{dx} \left(\frac{1+\sin x}{\cos x}\right) = \frac{vu'-uv'}{v^2}, \text{ where } u = 1+\sin x, v = \cos x$$
$$= \frac{\cos x \cos x - (1+\sin x) . -\sin x}{\cos^2 x}$$
$$= \frac{\cos^2 x + \sin x + \sin^2 x}{\cos^2 x}$$
$$= \frac{1+\sin x}{\cos^2 x} \qquad \text{Note: } \cos^2 x + \sin^2 x = 1$$
$$= \frac{1+\sin x}{1-\sin^2 x}$$
$$= \frac{(1+\sin x)}{(1-\sin x)(1+\sin x)}$$
$$= \frac{1}{(1-\sin x)}$$
(ii) 
$$\int_{0}^{\frac{\pi}{4}} \frac{dx}{1-\sin x} = \left[\frac{1+\sin x}{\cos x}\right]_{0}^{\frac{\pi}{4}}$$
$$= \left[\frac{1+\sin \frac{\pi}{4}}{\cos \frac{\pi}{4}} - \frac{1+\sin 0}{\cos 0}\right]$$
$$= \frac{1+\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} - \frac{1}{1}$$
$$= \frac{2}{\sqrt{2}} \left(1 + \frac{\sqrt{2}}{2}\right) - 1$$
$$= \frac{2}{\sqrt{2}} + 1 - 1$$
$$= \frac{2}{\sqrt{2}} = \sqrt{2}$$

(a) (i) f(0) = -10, f(2) = 52.  $\therefore f(\alpha) = 0, 0 < \alpha < 2$ (ii)  $f(1) = 13, \ \therefore 0 < \alpha < 1$ (iii)  $f\left(\frac{1}{2}\right) = -\frac{1}{8}, \ \therefore \frac{1}{2} < \alpha < 1$  $\alpha$  is closer to 1.

(b) 
$$x = 3 - u, \quad \therefore \frac{dx}{du} = -1 \text{ or } dx = -du$$
  
When  $x = -1, u = 4$  and when  $x = 2, u = 1$   
 $-\int_{4}^{1} \frac{(3-u)du}{\sqrt{u}} = \int_{1}^{4} u^{-\frac{1}{2}}(3-u)du$   
 $= \int_{1}^{4} \left(3u^{-\frac{1}{2}} - u^{\frac{1}{2}}\right) du$   
 $= \left[6u^{\frac{1}{2}} - \frac{2}{3}u^{\frac{3}{2}}\right]_{1}^{4}$   
 $= 6.4^{\frac{1}{2}} - \frac{2}{3}.4^{\frac{3}{2}} - \left(6.1^{\frac{1}{2}} - \frac{2}{3}.1^{\frac{3}{2}}\right)$   
 $= 12 - \frac{16}{3} - \left(6 - \frac{2}{3}\right)$   
 $= \frac{4}{3}$   
(c) Let  $\alpha = \angle DAC$   
 $\angle BAC = \angle DAC = \alpha$  (given)

 $\angle BAC = \angle DAC = \alpha \quad (given)$   $\angle BDC = \angle BAC = \alpha \quad (angles in the same segment)$   $\angle ECB = \angle BDC = \alpha \quad (angle in the alternate segment)$   $\angle CBD = \angle DAC = \alpha \quad (angles in the same segment)$   $\therefore \angle ECB = \angle CBD$  $\therefore EC \| DB \qquad (equal alternate angles)$ 

 $\frac{\text{Question 3}}{\text{(a)}}$ 

(1)  

$$\sin \theta + \sqrt{3} \cos \theta = 1.\sin \theta + \sqrt{3} \cos \theta$$

$$= 2\left(\frac{1}{2}.\sin \theta + \frac{\sqrt{3}}{2}\cos \theta\right)$$

$$= 2\left(\cos \frac{\pi}{3}.\sin \theta + \sin \frac{\pi}{3}.\cos \theta\right)$$

$$= 2\sin\left(\theta + \frac{\pi}{3}\right)$$

$$\sin \phi = \frac{\sqrt{3}}{2}, \cos \phi = \frac{1}{2}$$

$$\therefore \phi = \frac{\pi}{3}$$

(ii) 
$$\sin \theta + \sqrt{3} \cos \theta = 1$$
  
 $2 \sin \left( \theta + \frac{\pi}{3} \right) = 1$   
 $\sin \left( \theta + \frac{\pi}{3} \right) = \frac{1}{2}$   
 $\theta + \frac{\pi}{3} = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}, ...$   
 $\theta = \frac{\pi}{6} - \frac{\pi}{3}, \frac{5\pi}{6} - \frac{\pi}{3}, \frac{13\pi}{6} - \frac{\pi}{3}, ...$   
 $\theta = -\frac{\pi}{6}, \frac{\pi}{2}, \frac{11\pi}{6}, ...$   
 $\theta = \frac{\pi}{2}, \frac{11\pi}{6}, \text{ for } 0 \le \theta \le 2\pi$   
(b)

$$\tan 14^{\circ} = \frac{h}{BC}, \quad \therefore BC = \frac{h}{\tan 14^{\circ}}$$
$$\tan 10^{\circ} = \frac{h}{AC}, \quad \therefore AC = \frac{h}{\tan 10^{\circ}}$$
$$AC^{2} = BC^{2} + 7^{2}$$

$$\frac{h^2}{\tan^2 10^\circ} - \frac{h^2}{\tan^2 14^\circ} = 49$$

$$h^{2}\left(\frac{1}{\tan^{2}10^{\circ}} - \frac{1}{\tan^{2}14^{\circ}}\right) = 49$$

$$h = \sqrt{\frac{49}{\frac{1}{\tan^2 10^\circ} - \frac{1}{\tan^2 14^\circ}}}$$

= 5.432 km (to nearest metre)

(c) (i) 
$$\cos \theta = \cos \left( 2 \times \frac{\theta}{2} \right)$$
  
=  $2\cos^2 \frac{\theta}{2} - 1$ 



$$\angle DBC = 14^\circ, \angle DAC = 10^\circ$$

(ii) 
$$\frac{1}{1+\sec x} = \frac{1}{1+\frac{1}{\cos x}}.$$
$$= \frac{1}{\frac{1}{\cos x + 1}}$$
$$= \frac{2\cos^2 \frac{x}{2} - 1}{2\cos^2 \frac{x}{2} - 1 + 1}$$
$$= \frac{2\cos^2 \frac{x}{2}}{2\cos^2 \frac{x}{2}} - \frac{1}{2\cos^2 \frac{x}{2}}$$
$$= 1 - \frac{1}{2}\sec^2 \frac{x}{2}$$
(ii) 
$$\int_{0}^{\frac{\pi}{2}} \left(1 - \frac{1}{2}\sec^2 \frac{x}{2}\right) dx$$
$$= \left[x - \tan \frac{x}{2}\right]_{0}^{\frac{\pi}{2}}$$
$$= \left[\frac{\pi}{2} - \tan \frac{\left(\frac{\pi}{2}\right)}{2}\right] - \left[0 - \tan 0\right]$$
$$= \frac{\pi}{2} - \tan \frac{\pi}{4}$$
$$= \frac{\pi}{2} - 1$$

(a) Let 
$$x = \text{length of one side of the cube.}$$
 Let  $S = \text{surface area} = 6x^2$ .  
 $\frac{dx}{dt} = 2cms^{-1}, \frac{dS}{dx} = 12x$   
 $\frac{dS}{dt} = \frac{dS}{dx} \cdot \frac{dx}{dt}$   
 $= 12x.2$   
 $= 24x$ , at  $x = 10$   
 $= 240cm^2 s^{-1}$ 

Step 1 Prove result true for n = 1(b)  $9^{1+2} - 4^1 = 9^3 - 4$ = 725 $= 145 \times 5$ <u>Step 2</u> Assume the result is true for n = k, where k is a positive integer  $9^{k+2} - 4^k = 5P$ , where *P* is a positive integer i.e. <u>Step 3</u> Prove the result is true for n = k + 1Prove  $9^{k+1+2} - 4^{k+1} = 5M$ i.e.  $LHS = 9.9^{k+2} - 4.4^{k+1}$  $=9(9^{k+2}-4^k)+5.4^k$  $=9(5P)+5.4^{k}$ , from assumption  $=5(9P-4^k)$  $= 5M, M = 9P - 4^{k}$ Step 4 The result has been proved true for n = 1, n = 1 + 1 = 2, n = 2 + 1 = 3, etc. Hence, by the principle of Mathematical Induction, the result is true for all positive integers.  $m = 100 + Ae^{-kt}$ (c) (i)  $\frac{dm}{dt} = -ke^{-kt}$ =-k(m-100)=k(100-m)When t = 0, m = 0. (ii)  $\therefore 0 = 100 + Ae^0, A = -100$ When t = 10, m = 40(iii)  $\therefore 40 = 100 - 100e^{-10k}$  $e^{-10k} = \frac{60}{100}$  $-10k = \ln 0.6$  $k = -\frac{1}{10} \ln 0.6$ Let t = 30 $m = 100 - 100e^{-\left(-\frac{1}{10}\ln 0.6\right)30}$  $=100-100e^{3\ln 0.6}$  $=100-100e^{\ln(0.6^3)}$  $=100-100(0.6^3)$ = 78.4 g $\lim_{t \to \infty} m = \lim_{t \to \infty} \left( 100 - 100e^{\frac{t}{10}\ln 0.6} \right)$ (iv) =100-0=100 g

(a) 
$$6x^3 - 17x^2 - 5x + 6 = 0$$
. Let the roots be  $\alpha, \frac{-2}{\alpha}, \beta$ .  
 $\alpha + \frac{-2}{\alpha} + \beta = \frac{17}{6}$  [1]  
 $\alpha, \frac{-2}{\alpha}, \beta = \frac{-6}{6} = -1$   
 $-2\beta = -1$   
 $\beta = \frac{1}{2}$  [2]  
Sub [2] into [1].  
 $\alpha + \frac{-2}{\alpha} + \frac{1}{2} = \frac{17}{6}$   
 $6\alpha^2 + -12 + 3\alpha = 17\alpha$   
 $3\alpha^2 - 7\alpha - 6 = 0$   
 $(3\alpha + 2)(\alpha - 3) = 0$   
 $\alpha = \frac{-2}{3}$  or 3  
 $\therefore$  roots are  $\frac{-2}{3}, 3, \frac{1}{2}$   
(b) If divisible by  $(x-2)(x+1)$  then  $f(2) = f(-1) = 0$   
 $\therefore 2^4 + 4(2)^3 - 2^2 + 2a + b = 0$  and  $(-1)^4 + 4(-1)^3 - (-1)^2 - a + b = 0$   
 $2a + b = -44$  [1.  
 $a - b = -4$ ]  
Solve simultaneously  
 $a = -16, b = -12$ 

(c)  
(i) 
$$m_{pQ} = \frac{ap^2 - aq^2}{2ap - 2aq}$$
  $x^2 = \frac{a(p^2 - q^2)}{2a(p - q)}$   
 $= \frac{a(p - q)(p + q)}{2a(p - q)}$   $\leftarrow$   
 $= \frac{p + q}{2}$ 

Equation PQ:

$$y - ap^{2} = \frac{p+q}{2}(x-2ap)$$
$$= \left(\frac{p+q}{2}\right)x - \left(\frac{p+q}{2}\right)2ap$$
$$= \left(\frac{p+q}{2}\right)x - ap^{2} - apq$$
$$\therefore \left(\frac{p+q}{2}\right)x - y = apq$$



(ii) 
$$\left(\frac{p+q}{2}\right)x - y = apq$$
  
Let  $x = 0, y = -a$   
 $0 - (-a) = apq$   
 $a = apq$   
 $pq = 1$ 

(iii) 
$$SP = \sqrt{(2ap-0)^2 + (ap^2 - a)^2}$$
  
 $= \sqrt{4a^2p^2 + a^2p^4 - 2a^2p^2 + a^2}$   
 $= \sqrt{a^2(p^4 + 2p^2 + 1)}$   
 $= \sqrt{a^2(p^2 + 1)^2}$   
 $= a(p^2 + 1)$   
Similarly  $SQ = a(q^2 + 1)$   
Now,  $\frac{1}{SP} + \frac{1}{SQ} = \frac{1}{a(p^2 + 1)} + \frac{1}{a(q^2 + 1)}$   
 $= \frac{1}{a} \left[ \frac{1}{(p^2 + 1)} + \frac{1}{(q^2 + 1)} \right]$   
 $= \frac{1}{a} \left[ \frac{(q^2 + 1) + (p^2 + 1)}{(p^2 + 1)(q^2 + 1)} \right]$   
 $= \frac{1}{a} \left[ \frac{p^2 + q^2 + 2}{(p^2 + 1)(q^2 + 1)} \right]$   
 $= \frac{1}{a} \left[ \frac{p^2 + q^2 + 2}{p^2q^2 + p^2 + q^2 + 1} \right]$   
 $= \frac{1}{a} \left[ \frac{p^2 + q^2 + 2}{p^2 + q^2 + 2} \right], \quad \because pq = 1$   
 $= \frac{1}{a}$ 

(a) 
$$(1+x)^{2n} = {}^{2n}C_0 + {}^{2n}C_1x + {}^{2n}C_2x^2 + \dots {}^{2n}C_{2n}x^{2n}$$
  
Let  $x = 1$   
 $(1+1)^{2n} = {}^{2n}C_0 + {}^{2n}C_11 + {}^{2n}C_21^2 + \dots {}^{2n}C_{2n}1^{2n}$   
 $(2)^{2n} = (2^2)^n = {}^{2n}C_0 + {}^{2n}C_1 + {}^{2n}C_2 + \dots {}^{2n}C_{2n}$   
 $\therefore 4^n = {}^{2n}C_0 + {}^{2n}C_1 + {}^{2n}C_2 + \dots {}^{2n}C_{2n}$   
(b) (i)  $(2+3x)^{20} = {}^{20}C_02^{20} + {}^{20}C_12^{19}(3x)^1 + {}^{20}C_22^{18}(3x)^2 + \dots {}^{20}C_{20}(3x)^{20}$   
 $= \sum_{r=0}^{20} {}^{20}C_r2^{20-r}(3x)^r$   
 $= \sum_{r=0}^{20} {}^{20}C_r2^{20-r}3^rx^r$   
 $= \sum_{r=0}^{20} {}^{c_r}x^r$ , where  $c_r = {}^{20}C_r2^{20-r}3^r$ 

(ii) 
$$\frac{c_{r+1}}{c_r} = \frac{{}^{20}C_{r+1}2^{20-(r+1)}3^{r+1}}{{}^{20}C_r2^{20-r}3^r}$$

$$= \frac{\frac{20!}{(20-(r+1))!(r+1)!}2^{2^{20-r}3^r}}{\frac{20!}{(20-r)!r!}2^{20-r}3^r}$$

$$= \frac{20!}{(19-r)!(r+1)!} \times \frac{(20-r)!r!}{20!} \times \frac{3}{2}$$

$$= \frac{(20-r)3}{(r+1)2}$$
(iii) Let  $\frac{c_{r+1}}{c_r} > 1$ 
 $\therefore \frac{60-3r}{2r+2} > 1$ 
 $60-3r > 2r+2$ 
 $5r < 58$ 
 $r < 11.6$ 
 $\therefore c_{r+1} > c_r$  when  $r = 0,1,2,3,4,...,11$ 
 $\therefore c_{12} > c_{11} > c_{10} > c_{9} ... > c_{2} > c_{1} > c_{0}$ 
and  $\frac{\therefore c_{r+1} < c_r \text{ when } r = 12,13,14,...,19}{(20-r)!2^{20}c_{3}} = \frac{4}{19}$ 
(c) (i) Number of possible selections =  ${}^{20}C_3$ 
Number of ways of selecting one of each colour
 $= {}^{10}C_1 \cdot ^6C_1 \cdot ^4C_1$ 
P(different colours) =  $\frac{{}^{10}C_1 \cdot ^6C_1 \cdot ^4C_1}{2^{20}C_3} = \frac{4}{19}$ 
(i) P(same colour) = P(3 white or 3 red or 3 yellow)
 $= \frac{{}^{10}C_3 + ^6C_3 + ^4C_3}{2^{20}C_3}$ 
 $= \frac{12}{95}$ 

(ii) Girl occupies centre position in one third of arrangements = $\frac{1}{3} \times 108$ = 36

(a) (i)  $\sqrt{3^2 + 4^2} = 5$ Horizontal: x = 04 x = cWhen  $t = 0, x = 40 \cos \alpha$  $\therefore c = 40 \cos \alpha$ 3  $\therefore x = 40 \times \frac{3}{5}$  $\therefore \cos \alpha = \frac{3}{5}, \ \sin \alpha = \frac{4}{5}$  $\therefore x = 24$  $x = 24t + c_1$ When  $t = 0, x = 0, \therefore c_1 = 0$  $\therefore x = 24t$ 

### Vertical

$$y = -10$$
  

$$y = -10t + k$$
  
When  $t = 0, y = 40 \sin \alpha$   

$$\therefore k = 40 \sin \alpha$$
  

$$= 40 \times \frac{4}{5} = 32$$
  

$$\therefore y = 32 - 10t$$
  

$$y = 32t - 5t^{2} + k_{1}$$
  
When  $t = 0, y = 84, \therefore k_{1} = 84$   

$$\therefore y = 32t - 5t^{2} + 84$$
  
(ii) Let  $y = 0$   

$$40t.\frac{4}{5} - 5t^{2} + 84 = 0$$
  

$$32t - 5t^{2} + 84 = 0$$
  

$$5t^{2} - 32t - 84 = 0$$
  

$$(5t - 42)(t + 2) = 0$$
  

$$t = \frac{42}{5} \text{ or } -2, \text{ but } t > 0$$
  

$$\therefore t = 8.4 \text{ seconds}$$
  
Now,  $x = 24t$  and the time of flight,  $t = 8.4$ .

Range in horizontal plane =  $24 \times 8.4 = 201.6$  m

(iii) 
$$\dot{x} = 24 \text{ ms}^{-1}$$
  
 $\dot{y} = 32 - 10t$   
 $= -52 \text{ms}^{-1}$   
Speed  $= \sqrt{24^2 + (-52)^2}$   
 $= 57 \text{ms}^{-1}$  (two sig. fig.)

(b) (i) 
$$\frac{2\pi}{n} = 16$$
,  $\therefore n = \frac{\pi}{8}$   
 $\therefore x = a \sin \frac{\pi}{8} (t + \alpha)$   
 $\therefore x = \frac{\pi}{8} a \cos \frac{\pi}{8} (t + \alpha)$   
 $\therefore x = -\left(\frac{\pi}{8}\right)^2 a \sin \frac{\pi}{8} (t + \alpha)$   
 $= -\left(\frac{\pi}{8}\right)^2 x$   
 $= -\frac{\pi^2}{64} x$ 

(ii) When 
$$t = 2, x = 0$$
 and when  $t = 4, x = 4$   
 $0 = a \sin \frac{\pi}{8} (2 + \alpha)$   
 $\therefore \frac{\pi}{8} (2 + \alpha) = 0$   
 $\therefore \alpha = -2$   
 $4 = \frac{\pi}{8} a \cos \frac{\pi}{8} (4 - 2)$   
 $4 = \frac{\pi}{8} a \cos \frac{\pi}{4}$   
 $4 = \frac{\pi a}{8\sqrt{2}}$   
 $a = \frac{32\sqrt{2}}{\pi}$   
 $\therefore x = \frac{32\sqrt{2}}{\pi} \sin \frac{\pi}{8} (t - 2)$   
Maximum displacement  $= \frac{32\sqrt{2}}{\pi}$  m

(iii) 
$$\dot{x} = \frac{\pi}{8} \cdot \frac{32\sqrt{2}}{\pi} \cos \frac{\pi}{8} (t-2)$$
  
=  $4\sqrt{2} \cos \frac{\pi}{8} (t-2)$   
Now, when  $t = 10$ ,  $\dot{x} = 4\sqrt{2} \cos \pi$  ms<sup>-1</sup>  
Speed =  $|\dot{x}| = |4\sqrt{2} \cos \pi| \,\mathrm{ms}^{-1}$   
=  $|-4\sqrt{2}| \,\mathrm{ms}^{-1}$   
=  $4\sqrt{2} \,\mathrm{ms}^{-1}$