Question 1 (12 Marks)

(a) Evaluate $\int_{0}^{\sqrt{3}} \frac{d x}{\sqrt{4-x^{2}}}$.

2
(b) The point $\mathrm{P}(x, y)$ divides the interval AB externally in the ratio $4: 3$ where A is the point $(2,-1)$ and B is the point $(1,-3)$. Find the value of x and y.
(c) State the domain and range of $f(x)=2 \cos ^{-1}\left(\frac{x}{3}\right)$.
(d) The polynomial $P(x)=x^{3}+a x^{2}-3 x+5$ has a remainder of 6 when divided by $(x+1)$. Find the values of a.
(e) Find the acute angle between the lines $2 x+3 y+5=0$ and $3 x-4 y=12$. Answer correct to the nearest minute.
(f) Evaluate $\lim _{x \rightarrow 0} \frac{\sin 2 x}{4 x}$.

Question 2 (12 Marks) Start a new booklet.
(a) Use the substitution $u=x-2$ to evaluate $\int_{4}^{5} \frac{x(x-4)}{(x-2)} d x$.
(b) The equation $x^{3}-5=0$ is used to approximate the cubed root of 5. Given that the root of the equation is near 2, use two approximations of Newton's method to find an approximate root, correct to 3 decimal places.
(c) Solve $\frac{2 x}{x+1} \leq x$.
(d) Find the coefficient of x^{6} in the expansion $\left(x^{2}+4\right)^{12}$.

Question 3 (12 Marks) Start a new booklet.
(a) Use mathematical induction to prove that for all positive integers, n

4

$$
\sum_{r=1}^{n} r^{3}=\frac{n^{2}}{4}(n+1)^{2}
$$

(b) From a point A, 200 m due south of a cliff, the angle of elevation of the top of the cliff is 30°. From a point B, due east of the cliff, the angle of elevation of the top of the cliff is 20°
(i) Draw a diagram showing all this information.
(ii) Find the distance between A and B. Answer correct to the nearest metre.
(c) O is the centre of the larger circle. The two circles intersect at the points X and Y . AXB is a tangent to the smaller circle at point X . O is on the circumference of the smaller circle.

Copy or trace the diagram onto your answer paper.
(i) Find $\angle X O Y$ in terms of θ. Give a reason for your answer.
(ii) Explain why $\angle B X Y=2 \theta$.
(iii) Prove $\mathrm{AX}=\mathrm{YX}$.

Question 4 (12 Marks) Start a new booklet.

(a) The points P (2ap, ap $\left.)^{2}\right)$ and $\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$. The chord PQ subtends a right angle at the vertex of the parabola. The normals at P and Q meet at T .
(i) Show that $p q=-4$.
(ii) Show that the equation of the normal at P is $x+p y=a p^{3}+2 a p$
(iii) Show that T has the coordinates

$$
\left(-a p q(p+q), a\left(p^{2}+p q+q^{2}+2\right)\right)
$$

(iv) Find the Cartesian equation of the locus of T .
(b) Prove $\frac{\sin 5 \theta}{\sin \theta}-\frac{\cos 5 \theta}{\cos \theta}=4 \cos 2 \theta$

Question 5 (12 Marks) Start a new booklet.
(a) A particle is moving in Simple Harmonic Motion about the origin.
(i) Assuming that $v^{2}=n^{2}\left(a^{2}-x^{2}\right)$, show that $\ddot{x}=-n^{2} x$ where a is the amplitude.
(ii) When the particle is 4 metres from the origin its speed is $6 \mathrm{~ms}^{-1}$ and when it is 3 metres from the origin its speed is $8 \mathrm{~ms}^{-1}$.
Find the amplitude and period of the motion.
(iii) Find the greatest acceleration of the particle.
(b) The annual growth rate of the population of a NSW country town is projected to be 15% of the excess of the population that is over 30000 . Initially in 2008, the population was 32000 .
(i) Show that $P=30000+A e^{0.15 t}$ is a solution to the differential
equation $\frac{d P}{d t}=0.15(P-30000)$ and hence find A.
(ii) Determine the population after 10 years.
(iii) Determine how long it will take for the population to reach 50000 .

Question 6 (12 Marks) Start a new booklet.
(a) The velocity of a particle is given by $v=3 x+7$. If the initial displacement is 1 cm to the right of the origin, find the displacement after 5 seconds.
(b) Solve $\sin ^{-1} x-\cos ^{-1} x=\sin ^{-1}(3 x+1)$
(c) In how many ways can the letters of the word PROBABILITY be arranged in a circle?
(d) (i) By considering the terms in x^{r} on both sides of the identity

$$
(1+x)^{m+n}=(1+x)^{m}(1+x)^{n} \text {, show that }{ }^{m+n} C_{r}=\sum_{k=0}^{r}{ }^{m} C_{k}{ }^{n} C_{r-k}
$$ for $0 \leq r \leq m$ and $0 \leq r \leq n$.

(ii) Hence show that

$$
\begin{aligned}
& { }^{m+1} C_{0}{ }^{n} C_{2}+{ }^{m+1} C_{1}{ }^{n} C_{1}+{ }^{m+1} C_{2}{ }^{n} C_{0}={ }^{m} C_{0}{ }^{n+1} C_{2}+{ }^{m} C_{1}{ }^{n+1} C_{1}+{ }^{m} C_{2}{ }^{n+1} C_{0} \\
& \quad \text { for } m \geq 2 \text { and } n \geq 2 .
\end{aligned}
$$

Question 7 (12 Marks) Start a new booklet.

(a) Show that $\frac{d}{d x}\left(x \tan ^{-1} x\right)=\frac{x}{1+x^{2}}+\tan ^{-1} x$. Hence evaluate $\int_{0}^{1} \tan ^{-1} x d x$.
(b) A baseball player hits the ball from ground level with a speed of $20 \mathrm{~ms}^{-1}$ and an angle of elevation, α. It flies towards a building 20 metres away on level ground. Given the equations of motion are

$$
\begin{aligned}
& x=20 t \cos \alpha \\
& y=-5 t^{2}+20 t \sin \alpha
\end{aligned}
$$

(i) Find the Cartesian equation of the path of the ball in flight.
(ii) Show that the height h at which the ball hits the wall is given by

$$
h=20 \tan \alpha-5\left(1+\tan ^{2} \alpha\right) .
$$

(iii) Using part (ii) above, show that the maximum value of h occurs when $\tan \alpha=2$.
(iv) Find the maximum height.
(v) Find the speed at which the ball hits the wall.

End of paper

Year 12,2009 Extension 1 Mathematics Trial Examination
Question 1
a) $\int_{0}^{\sqrt{3}} \frac{d x}{\sqrt{4-x^{2}}}=\left[\sin ^{-1} \frac{\sqrt{3}}{2}\right]_{0}^{\sqrt{3}}$

$$
=\sin ^{-1} \frac{\sqrt{3}}{2}-\sin ^{-1} 0
$$

$$
=\frac{\pi}{3}
$$

b)

$$
\begin{array}{rlrl}
A(2,-1) \quad B(1,-3) & m: n=4:-3 \\
x & =\frac{n x_{1}+m x_{2}}{m+n} & y=\frac{n y_{1}+m y_{2}}{m+n} \\
& =\frac{-3(2)+4(1)}{4-3} & & =\frac{-3(-1)+4(-3)}{4-3} \\
& =-2 & & =9
\end{array}
$$

$\therefore(-2,9)$ divides the interval $A B$ externally in the ratio 4:3
c) $f(x)=2 \cos ^{-1}\left(\frac{x}{3}\right)$

Domain: $-1 \leqslant \frac{x}{3} \leqslant 1$

$$
-3 \leqslant x \leqslant 3
$$

Range: $\quad 0 \leqslant \cos ^{-1}\left(\frac{x}{3}\right) \leqslant \pi$

$$
0 \leqslant 2 \cos ^{-1}\left(\frac{x}{3}\right) \leqslant 2 \pi
$$

d)

$$
\text { d) } \begin{aligned}
& P(x)=x^{3}+a x^{2}-3 x+5 \\
& P(-1)=(-1)^{3}+a(-1)^{2}-3(-1)+5=6 \\
&-1+a+3+5=6 \\
& a=-1
\end{aligned} \quad \begin{aligned}
\text { e) } 2 x+3 y+5 & =0 \\
3 y & =-2 x-5 \\
y & =-\frac{2}{3} x-\frac{5}{3} \\
m_{1} & =-\frac{2}{3}
\end{aligned}
$$

$$
-1+a+3+5=6
$$

$$
a=-1
$$

$$
\begin{aligned}
3 x-4 y & =12 \\
-4 y & =-3 x-12 \\
y & =\frac{3}{4} x+3 \\
m_{2} & =\frac{3}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
&=\left|\frac{-\frac{2}{3}-\frac{3}{4}}{1+\frac{3}{4} \times \frac{2}{3}}\right| \\
&=\frac{17}{6} \\
& \theta=70^{\circ} 34^{\prime} \text { to nearest } \\
& \text { minute }
\end{aligned}
$$

f) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{4 x}=\frac{1}{2} \lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x}$

$$
=\frac{1}{2}
$$

Question 2

$$
\begin{array}{l|r}
\text { a) } \int_{4}^{5} \frac{x(x-4)}{(x-2)} d x \left\lvert\, \begin{array}{r}
u=x-2 \\
x=u+2 \\
= \\
=\int_{2}^{3} \frac{(u+2)(u-2)}{u} d u \\
=\int \frac{u^{2}-4}{v} d u \\
\text { when } x=5 \\
u=3 \\
\text { when } x=4 \\
v=2
\end{array}\right.
\end{array}
$$

$$
=\int\left(u-\frac{4}{u}\right) d u
$$

$$
=\left[\frac{1}{2} v^{2}-4 \ln v\right]_{2}^{3}
$$

$$
=\left[\frac{1}{2}(3)^{2}-4 \ln 3\right]-\left[\frac{1}{2}(2)^{2}-4 \ln 2\right]
$$

$$
=\frac{9}{2}-4 \ln 3-2+4 \ln 2
$$

$$
=\frac{5}{2}+4 \ln \left(\frac{2}{3}\right)
$$

b) Let $f(x)=x^{3}-5$

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2} \\
& x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
&=2-\frac{3}{12} \\
&=1.75 \\
& x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
&=1.75-\frac{f(1.75)}{f^{\prime}(1.75)} \\
& \doteqdot 1.710884 .354 \\
&=1.711+032 p
\end{aligned}
$$

\therefore An approximate root is 1.711 to Bop.
c) $\frac{2 x}{x+1} \leqslant x \quad x \neq-1$

$$
2 x(x+1) \leqslant x(x+1)^{2}
$$

$$
x(x+1)^{2}-2 x(x+1) \geqslant 0
$$

$$
(x+1)[x(x+1)-2 x] \geqslant 0
$$

$$
(x+1)\left(x^{2}+x-2 x\right) \geqslant 0
$$

$$
(x+1)\left(x^{2}-x\right) \geqslant 0
$$

$$
(x+1) x(x-1) \geqslant 0
$$

$$
\therefore-1<x \leqslant 0, x \geqslant 1
$$

d) $\left(x^{2}+4\right)^{12}$

General Term $\left.={ }^{12} C_{r}(x)^{2}\right)^{12-r}(4)^{r}$

$$
={ }^{12} C_{r} x^{24-2 r} 4^{r}
$$

To obtain the term in x^{6}

$$
\begin{aligned}
24-2 r & =6 \\
-2 r & =-18 \\
r & =9 \\
\text { Coefficient of } x^{6} & ={ }^{12} 94^{9} \\
& =57671680
\end{aligned}
$$

Question 3
a) $\sum_{r=1}^{n} r^{3}=\frac{n^{2}}{4}(n+1)^{2}$

$$
1 e \cdot 1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}}{4}(n+1)^{2}
$$

Step 1 Test for $n=1$

$$
\begin{aligned}
\text { L.HS } & =1^{3} \\
& =1 \\
\text { RHS } & =\frac{1^{2}}{4}(1+1)^{2} \\
& =1 \\
\text { L.HS } & =\text { RHS }
\end{aligned}
$$

\therefore Result is true for $n=1$
Step 2 Assume the result is true for $n=k$, that is assume

$$
s_{k}=\frac{k^{2}}{4}(k+1)^{2}
$$

Step 3 Hence show the result is true for $n=k+1$ that is show

$$
S_{k+1}=\frac{(k+1)^{2}}{4}(k+2)^{2}
$$

$$
\begin{aligned}
S_{K+1} & =S_{k}+T_{k+1} \\
& =\frac{k^{2}}{4}(k+1)^{2}+(k+1)^{3} \\
& =(k+1)^{2}\left[\frac{k^{2}}{4}+(k+1)\right] \\
& =\frac{(k+1)^{2}}{4}\left[k^{2}+4 k+4\right] \\
& =\frac{(k+1)^{2}}{4}(k+2)^{2}
\end{aligned}
$$

Hence if the result is true for $n=k$ then it is true for $n=k+1$

Step 4 Since the result is true for $n=1$ then from step 3 it is true for $n=1+1=2$ and then for $n=3$ and so on for all positive integral value of n.
b)

Let h be the height of the cliff

$$
\text { In } \triangle C X A, \begin{align*}
\frac{h}{200} & =\tan 30^{\circ} \\
h & =200 \tan 30^{\circ} \tag{1}
\end{align*}
$$

$\ln \Delta C \times B$

$$
\begin{align*}
& \frac{h}{\times B}=\tan 20 \\
& \times B=\frac{h}{\tan 20} \tag{2}
\end{align*}
$$

subd in (2)

$$
\times B=\frac{200 \tan 30}{\tan 20}
$$

$$
\begin{aligned}
\therefore A B^{2} & =A x^{2}+\times B^{2} \\
& =200^{2}+\left(\frac{200 \tan 30}{\tan 20}\right)^{2} \\
& \doteq 140648.4289 \\
A B & =375.0312373
\end{aligned}
$$

\therefore The distance between A and B is 375 m to the nearest metre.

(1) $x \hat{0} y=20$

Angle at the centre is twice the angle at the circumference standing on the same arc
(II) $\hat{B x y}=x \hat{0} y$ The angle between $=2 \theta$ a tangent to a circle and a chord at the point of contact is equal to any angle in the alternate segment
$\hat{B X Y}=x \hat{A} y+A \hat{Y} x$ Extemor angle $2 \theta=\theta+\hat{A} y x$ $\hat{A y} x=\theta$ of atriangle is equal to the sum of the 2 intemor opposite angles
$\therefore A \hat{Y}_{x}=x \hat{A Y}=\theta \quad \ln$ an isosceles $\therefore A x=y x$ triangle equal angles are opposite equal sides.

Question 4
a)

1)

$$
\begin{aligned}
m_{p O} & =\frac{a p^{2}-0}{2 a p-0} \\
& =\frac{p}{2} \\
m_{Q 0} & =\frac{a q^{2}-0}{2 a q-0} \\
& =\frac{q}{2}
\end{aligned}
$$

For perpendicular lines $m_{1} m_{2}=-1$

$$
\begin{aligned}
\therefore \frac{p}{2} \times \frac{q}{2} & =-1 \\
p q & =-4
\end{aligned}
$$

iI)

$$
\begin{aligned}
x^{2} & =4 a y \\
y & =\frac{x^{2}}{4 a} \\
\frac{d y}{d x} & =\frac{2 x}{4 a} \\
& =\frac{x}{2 a} \text { at } x=2 a p \\
& =\frac{2 a p}{2 a} \\
& =p
\end{aligned}
$$

Gradient of tangent at $P=P$
Gradient of normal at $P=-\frac{1}{P}$ (as $m_{1} m_{2}=-1$ for perpendicular lines)

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-a p^{2}=-\frac{1}{p}(x-2 a p) \\
& p y-a p^{3}=-x+2 a p \\
& x+p y=2 a p+a p^{3}
\end{aligned}
$$

(iii) Equation of the normal at p

$$
\begin{equation*}
x+p y=2 a p+a p^{3} \tag{1}
\end{equation*}
$$

similarly, the equation of the normal at Q is

$$
\begin{equation*}
x+q y=2 a q+a q^{3} \tag{2}
\end{equation*}
$$

(1)-(2)

$$
\text { (2) } \begin{aligned}
p y-q y & =2 a(p-q)+a\left(p^{3}-q^{3}\right) \\
y(p-q) & =2 a(p-q)+a(p-q)\left(p^{2}+p q+q^{2}\right. \\
y & =\frac{a(p-q)\left(p^{2}+p q+q^{2}+2\right)}{(p-q)} \\
& =a\left(p^{2}+p q+q^{2}+2\right)
\end{aligned}
$$

sub (1)

$$
\begin{gathered}
x+p y=2 a p+a p^{3} \\
x+a p\left(p^{2}+p q+q^{2}+2\right)=2 a p+a p^{3} \\
x+a p^{3}+a p^{2} q+a q^{2}+2 q p=2 q p^{2}+a p^{2} \\
\therefore x=-a p^{2} q-a p q^{2} \\
=-a p q(p+q) \\
\therefore T_{1 s}\left(-a p q(p+q), a\left(p^{2}+p q+q^{2}+2\right)\right)
\end{gathered}
$$

(iv) Using part (i) $\Rightarrow p q=-4$

$$
\left.\begin{array}{l}
\text { Ti }\left(4 a(p+q), a\left(p^{2}-4+q^{2}+2\right)\right. \\
\therefore x
\end{array}=4 a(p+q)\right] \text { (1) } \quad \begin{aligned}
& y+q=\frac{x}{4 a} \\
&=a\left(p^{2}-4+q^{2}+2\right) \tag{1}\\
&=a\left(p^{2}+q^{2}-2\right) \\
&=a\left[(p+q)^{2}-2 p q-2\right]
\end{aligned}
$$

$$
\begin{aligned}
y & =a\left[(p+q)^{2}+8-2\right] a \\
& =a\left[(p+q)^{2}+b\right] \\
& =a\left[\left(\frac{x}{4 a}\right)^{2}+b\right] \\
& =a\left(\frac{x^{2}}{16 a^{2}}+b\right) \\
& =a\left(\frac{x^{2}+96 a^{2}}{16 a^{2}}\right) \\
16 a y & =x^{2}+96 a^{2} \\
& x^{2} \\
& =16 a y-96 a^{2} \\
x^{2} & =16 a(y-6)
\end{aligned}
$$

b) $\frac{\sin 5 \theta}{\sin \theta}-\frac{\cos 5 \theta}{\cos \theta}=4 \cos 2 \theta$

$$
\begin{aligned}
\text { L.HS } & =\frac{\sin 5 \theta}{\sin \theta}-\frac{\cos 5 \theta}{\cos \theta} \\
& =\frac{\sin 5 \theta \cos \theta-\cos 5 \theta \sin \theta}{\sin \theta \cos \theta} \\
& =\frac{\sin (5 \theta-\theta)}{\frac{1}{2} \sin 2 \theta} \\
& =\frac{\sin 4 \theta}{\frac{1}{2} \sin 2 \theta} \\
& =\frac{2 \sin 2 \theta \cos 2 \theta}{\frac{1}{2} \sin 2 \theta} \\
& =4 \cos 2 \theta \\
& =R H S
\end{aligned}
$$

$$
\therefore \frac{\sin 5 \theta}{\sin \theta}-\frac{\cos 5 \theta}{\cos \theta}=4 \cos 2 \theta
$$

Question 5
a) 1)

$$
\text { 1) } \begin{aligned}
v^{2} & =n^{2}\left(a^{2}-x^{2}\right) \\
\ddot{x} & =\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) \\
& =\frac{d}{d x}\left(\frac{1}{2} n^{2}\left(a^{2}-x^{2}\right)\right) \\
& =\frac{d}{d x}\left(\frac{1}{2} n^{2} a^{2}-\frac{1}{2} n^{2} x^{2}\right) \\
& =-n^{2} x \\
\therefore \ddot{x} & =-n^{2} x
\end{aligned}
$$

ii) $v^{2}=n^{2}\left(a^{2}-x^{2}\right)$
when $x=4, v=6$

$$
\begin{equation*}
36=n^{2}\left(a^{2}-16\right) \tag{1}
\end{equation*}
$$

when $x=3, v=8$

$$
b 4=n^{2}\left(a^{2}-a\right)
$$

(2) \div (1)

$$
\begin{aligned}
& \frac{64}{36}=\frac{a^{2}-9}{a^{2}-16} \\
& \frac{16}{9}=\frac{a^{2}-9}{a^{2}-16}
\end{aligned}
$$

$$
9 a^{2}-81=16 a^{2}-25 b
$$

$$
\begin{aligned}
7 a^{2} & =175 \\
a^{2} & =25 \\
a & =5 \quad a>0
\end{aligned}
$$

sub (1)

$$
\begin{aligned}
36 & =n^{2}\left(a^{2}-16\right) \\
36 & =n^{2}(25-16) \\
36 & =9 n^{2} \\
n & =2 \quad n>0 \\
T & =\frac{2 \pi}{n} \\
& =\frac{2 \pi}{2} \\
& =\pi
\end{aligned}
$$

\therefore amplitude is 5 metres period is π seconds
(iii) Maximum acceleration occurs when $x=a$

$$
\begin{aligned}
\because & =-n^{2} x \\
& =-20,
\end{aligned} \quad n=2, x=5
$$

$$
\begin{aligned}
& =-20 \\
& \text { ace }
\end{aligned}
$$

maximum acceleration is $20 \mathrm{~ms}^{-2}$
integrative implies direction
b)

$$
\begin{aligned}
P & =30000+A e^{0.15 t} \\
\frac{d P}{d t} & =0.15 A e^{0.15 t} \\
& =0.15(P-30000)
\end{aligned}
$$

from (1) $A e^{0.15 t}=P-30000$
when $t=0, \quad P=32000$

$$
\begin{aligned}
P & =30000+A e^{0.15 t} \\
32000 & =30000+A e^{0.15(0)} \\
2000 & =A
\end{aligned}
$$

ii)

$$
\begin{aligned}
2000 & =A \\
\therefore P & =30000+2000 e^{0.15 t} \\
& =30000+2000 e^{0.15 \times 10} \\
& \doteqdot 38963.37814
\end{aligned}
$$

\therefore Population is approximately 38963
iII)

$$
\begin{aligned}
P & =30000+2000 e^{0.15 t} \\
50000 & =30000+2000 e^{0.15 t} \\
2000 & =2000 e^{0.15 t} \\
10 & =e^{0.15 t} \\
0.15 t & =\ln 10 \\
t & =\frac{\ln 10}{0.15} \\
& \doteqdot 15.35056729
\end{aligned}
$$

\therefore It takes approximately $15 \cdot 35$ year's to reach

50000
Question 6
a) $\quad v=3 x+7$

$$
\begin{aligned}
\frac{d x}{d t} & =3 x+7 \\
\frac{d t}{d x} & =\frac{1}{3 x+7} \\
t & =\int \frac{1}{3 x+7} d x
\end{aligned}
$$

$$
t=\ln (3 x+7)+c
$$

when $t=0 \quad x=1$

$$
\begin{aligned}
\therefore \quad & =\ln 10+c \\
c & =-\ln 10 \\
\therefore \quad t & =\ln (3 x+7)-\ln 10 \\
& =\ln \left(\frac{3 x+7}{10}\right) \\
e^{t} & =\frac{3 x+7}{10} \\
3 x+7 & =10 e^{t} \\
3 x & =10 e^{t}-7 \\
x & =\frac{1}{3}\left(10 e^{t}-7\right)
\end{aligned}
$$

b) $\sin ^{-1} x-\cos ^{-1} x=\sin ^{-1}(3 x+1)$

$$
\begin{aligned}
\text { Let } \alpha & =\sin ^{-1} x \quad \left\lvert\, \frac{1}{\alpha \mid x}\right. \\
\sin \alpha & =x \\
\cos \alpha & =\sqrt{1-x^{2}}
\end{aligned}
$$

Lat $\beta=\cos ^{-1} x$
$\cos \beta=x$

$\sin \beta=\sqrt{1-x^{2}}$

$$
\begin{aligned}
& \sin (\alpha-\beta)= \sin \left(\sin ^{-1}(3 x+1)\right) \\
& x^{2}-\sqrt{1-x^{2}} \sqrt{1-x^{2}}=3 x+1 \\
& x^{2}-\left(1-x^{2}\right)=3 x+1 \\
& 2 x^{2}-1=3 x+1 \\
& 2 x^{2}-3 x-2=0 \\
&(2 x+1)(x-2)=0 \\
& x=-\frac{1}{2}, 2(-1 \leqslant x \leqslant 1) \\
& \therefore x=-\frac{1}{2} \text { is the } \\
& \text { only solution }
\end{aligned}
$$

c) Number of ways $=\frac{11!}{2!21}$

$$
=9979200
$$

$$
\begin{aligned}
& 11(1+x)^{m+n}=(1+x)^{m}\left(1+x^{n}\right) \\
& \text { L.HS }=(1+x)^{m+n} \\
&= 1+{ }^{m+n} C_{1} x+{ }^{m+n} c_{2} x^{2}+{ }^{m+n} C_{3} x^{3}+\ldots{ }^{m+n} C_{r} c^{r}+\ldots .+{ }^{m+n} C_{m+n} x^{m+n} \\
& \text { R.HS }=(1+x)^{m}\left(1+x^{n}\right) \\
&=\left(1+{ }^{m} c_{1} x+{ }^{m} c_{2} x^{2}+{ }^{m} c_{3} x^{3}+\ldots+{ }^{m} c_{r} x^{r}+\ldots+c_{m} x^{m}\right) \times \\
&\left(1+{ }^{n} c_{1} x+{ }^{m} c_{2} x^{2}+{ }^{n} c_{3} x^{3}+\ldots+{ }^{n} C_{r} x+\ldots+{ }^{r} c_{n} x^{n}\right)
\end{aligned}
$$

The coefficient of x^{r} on Lh s $^{2}={ }^{m+n} C_{\text {. }}$
The coefficient. of x^{r} on RHS $=\sum_{k=0}^{r}{ }^{m} C_{k}{ }^{n} C_{r-k}$
Equating coefficients $m^{m+n} C_{r}=\sum_{k=0}^{r}{ }^{m} C_{k}{ }^{n} C_{r-k}$
ii) Using (i) $m \geqslant 2, n \geqslant 2$

$$
\begin{aligned}
& { }^{m+1} C_{0}{ }^{n} C_{2}+{ }^{m+1} C_{1}{ }^{n} C_{1}+{ }^{m+1} C_{2}{ }^{n} C_{0}={ }^{(m+1)+n} C_{2} \\
& { }^{m} C_{0}{ }^{n+1} C_{2}+{ }^{m} C_{1}{ }^{n+1} C_{1}+{ }^{m} C_{2}{ }^{n+1} C_{0}={ }^{m+(n+1)} C_{2} \\
& \therefore{ }^{m+1} C_{0}{ }^{n} C_{2}+{ }^{m+1} c_{1}{ }^{n} c_{1}+{ }^{m+1} c_{2}{ }^{n} C_{0}={ }^{m} c_{0}{ }^{n+1} c_{2}+{ }^{m} C_{1}{ }^{n+1} C_{1}+{ }^{m} C_{2}{ }^{m+1} C_{0}
\end{aligned}
$$

Question 7
a) Let $\begin{aligned} y & =x \tan ^{-1} x \\ & =u v\end{aligned} \left\lvert\, \begin{array}{ll}u=x & v=\tan ^{-1} x \\ \frac{d u}{d x}=1 & \frac{d v}{d x}=\frac{1}{1+x^{2}}\end{array}\right.$

$$
\begin{aligned}
& \frac{d y}{d x}=v \frac{d u}{d x}+u \frac{d v}{d x} \\
&=\tan ^{-1} x+\frac{x}{1+x^{2}} \\
& \therefore \frac{d}{d x}\left(x \tan ^{-1} x\right)=\frac{x}{1+x^{2}}+\tan ^{-1} x \\
& \int\left(\frac{x}{1+x^{2}}+\tan ^{-1} x\right) d x=x \tan ^{-1} x \\
& \int \tan ^{-1} x d x=x \tan ^{-1} x-\int_{0}^{1} \frac{x}{1+x^{2}} d x \\
& \int_{0}^{1} \tan ^{-1} x d x=\left[x \tan ^{-1} x\right]_{0}^{1}-\int_{0}^{1} \frac{x}{1+x^{2}} d x
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{1} \tan ^{-1} x d x & =\left[1 \tan ^{-1} 1\right]-0-\left[\frac{1}{2} \ln \left(1+x^{2}\right)\right] \\
& =\frac{\pi}{4}-\frac{1}{2} \ln 2-0 \\
& =\frac{\pi}{4}-\frac{1}{2} \ln 2
\end{aligned}
$$

b) 1$) x=20 t \cos \alpha$

$$
\begin{equation*}
y=-5 t^{2}+20 t \text { sind } \tag{2}
\end{equation*}
$$

Rearrange (1)

$$
t=\frac{x}{20 c \cos \alpha}
$$

Sub (2)
$y=-5 t^{2}+20 t \sin \alpha$

$$
\begin{aligned}
& =-5\left(\frac{x}{20 \cos \alpha}\right)^{2}+20\left(\frac{x}{20 \cos \alpha}\right)^{\sin \alpha} \\
\therefore y & =-\frac{x^{2}}{80} \sec ^{2} \alpha+x \tan \alpha
\end{aligned}
$$

ii) when $x=20, y=h$

$$
\begin{aligned}
y & =-\frac{x^{2}}{80} \sec ^{2} \alpha+x \tan \alpha \\
h & =-\frac{400}{80} \sec ^{2} \alpha+20 \tan \alpha \\
h & =20 \tan \alpha-5 \sec ^{2} \alpha: \\
& =20 \tan \alpha-5\left(1+\tan ^{2} \alpha\right)
\end{aligned}
$$

(iv) Maximum height

$$
\begin{align*}
h & =20 \tan \alpha-5 \sec ^{2} \alpha \\
& =20 \times 2-5(\sqrt{5})^{2} \\
& =15 \tag{1}
\end{align*}
$$

\therefore moxxomurm height is 15 m
(v)

$$
\begin{aligned}
x & =20 t \cos \alpha \\
20 & =20 t \times \frac{1}{\sqrt{5}} \\
1 & =\frac{t}{\sqrt{5}} \\
t & =\sqrt{5} \\
v & =\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d u}{d x}\right)^{2}} \\
& =\sqrt{(20 \cos \alpha)^{2}+(-10 t+20 \operatorname{din} \alpha)^{2}} \\
& =\sqrt{\left(20 \times \frac{1}{\sqrt{5}}\right)^{2}+\left(-10 \sqrt{5}+\frac{40}{\sqrt{5}}\right)^{2}} \\
& =\sqrt{80+20} \\
& =10
\end{aligned}
$$

\therefore The ball hits the wall at a speed of $10 \mathrm{~ms}^{-1}$
iii) $\frac{d h}{d \alpha}=20 \sec ^{2} \alpha-10 \tan \alpha \sec ^{2} \alpha$

For stationary points $\frac{d h}{d t}=0$
$20 \sec ^{2} \alpha-10 \tan \alpha \sec ^{2} \alpha=0$
$\sec ^{2} \alpha(2-\tan \alpha)=0$
$\sec \alpha=0$ or $\tan \alpha=2$
$\therefore \tan \alpha=2$
Test the native

α	63°	63°	$63^{\circ+}$
$\frac{d t}{d t}$	+		-

