<u>QUESTION ONE</u> (12 Marks)

(a) Find
$$\int \frac{e^{\tan x}}{\cos^2 x} dx$$
 1

(b) Find the exact value of
$$\cos 2x$$
 if $\sin x = \sqrt{3} - 1$.

(c) Solve
$$\frac{5}{2x-1} < 3$$
. 3

(d) If
$$\alpha$$
, β and γ are the roots of the equation $x^3 - 3x^2 - 5x + 2 = 0$,
find the value of $\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\alpha\gamma}$.

(e) Use the substitution
$$x = u^2 + 1$$
 for $u > 0$ to evaluate the integral: 4

$$\int_{1}^{5} (x+1)\sqrt{x-1} \, dx$$

Question two ...

Marks

Newington College 2 HSC Mathematics Ext 1 Trial Examination 2011

<u>QUE</u>	STION TWO (12 Marks) Start this question in a new booklet.	Marks
(a)	Use the substitution $t = \tan \frac{x}{2}$ to solve $\sin x - 7 \cos x - 5 = 0$ where $0^{\circ} < x < 360^{\circ}$. Give your answers correct to the nearest degree.	3
(b)	When the polynomial $P(x)$ is divided by $x^2 - 1$ the remainder is $3x + 1$. What is the remainder when $P(x)$ is divided by $x + 1$?	2
(c)	Nine people are to be seated at a round table.	
	(i) How many seating arrangements are possible?	1
	(ii) Two people, Amy and Sarah, refuse to sit next to one another. How many seating arrangements are possible now?	2
(d)	(i) Prove that $\cot x + \tan x = 2\csc 2x$.	2
	(ii) Hence evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \operatorname{cosec} 2x dx$	2

Question Three ...

Newington College 3 HSC Mathematics Ext 1 Trial Examination 2011

<u>QUES</u>	<u>STION</u>	THREE (12 Marks) Start this question in a new booklet.	Marks
(a)	The points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ lie on the parabola $4ay = x^2$ where $a > 0$. Let $S(0, a)$ be the focus of the parabola.		
	(i)	Show that the equation of the tangent at <i>P</i> is $y = px - ap^2$.	2
	(ii)	The tangents at <i>P</i> and <i>Q</i> intersect at <i>T</i> . Show that the coordinates of <i>T</i> are $(a(p+q), apq)$.	2
	(iii)	Show that $SP = a(p^2 + 1)$.	2
	(iv)	<i>P</i> and <i>Q</i> move on the parabola in such a way that $SP + SQ = 4a$. Show that the locus of the point <i>T</i> is a parabola and find the coordinates of its vertex and focus.	2
(b)	(i)	Explain why the curve $f(x) = x + \log_e x$ is increasing for all values of x in its domain.	1
	(ii)	Show that the curve cuts the <i>x</i> -axis between $x = 0 \cdot 5$ and $x = 1$.	1
	(iii)	Use Newton's method with a first approximation of $x = 0 \cdot 5$ to find a second approximation to the root of $x + \log_e x = 0$. Give your answer correct to two decimal places.	2

Question Four ...

Newington College 4 HSC Mathematics Ext 1 Trial Examination 2011

<u>QUES</u>	STION	FOUR (12 Marks) Start this question in a new booklet.	Marks	
(a)	A particle moving on a horizontal line has a velocity of v m/s where $v^2 = 64 - 4x^2 + 24x$.			
	(i)	Prove that the motion is simple harmonic.	2	
	(ii)	Find the centre of the motion.	1	
	(iii)	Write down the period and amplitude of the motion.	2	
	(iv)	Initially the particle is at the centre of motion and is moving to the left. Write down an expression for the displacement of the particle as a function of time.	2	
(b)	The ra	ate at which a body cools in air is proportional to the difference between its		

temperature *T* and the constant temperature $18^{\circ}C$ of the surrounding air. This can be expressed by the equation $\frac{dT}{dt} = -k(T - 18)$. The original temperature of a cup of boiling water was 100° *C*. The water cools to 65° *C* in 15 minutes.

(i)	Show that $T = 18 + Ae^{-kt}$ is a solution of the differential equation.	1
(ii)	Find the values of A and k .	2
(iii)	Find, to the nearest minute, the time for the temperature of the water to reach 50° C.	2

Question Five ...

QUESTION FIVE (12 Marks)

Start this question in a new booklet.

Marks

2

A particle is projected from a point *P* on horizontal ground with velocity *V* at an angle of elevation α to the horizontal. It's equations of motion are $\ddot{x} = 0$ and $\ddot{y} = -g$.

- (i) Derive equations for the horizontal and vertical displacements of the particle 2 from *P* after *t* seconds.
- (ii) Determine the time of flight of the particle.
- (iii) The particle reaches the point Q where the direction of flight makes an angle β 3 with the horizontal. Prove that the time taken for the particle to travel from P

to Q is
$$\frac{V\sin(\alpha-\beta)}{g\cos\beta}$$
 seconds.

Question Five continued ...

Question 5 Continued

Marks

PQR is a triangle inscribed in a circle and *W* is a point on the arc *QR*. *WX* is perpendicular to *PR* produced. *WZ* is perpendicular to *PQ* and *WY* is perpendicular to *QR*.

- (i) Copy the diagram into your answer booklet.
- (ii) Explain why *WXRY* and *WYZQ* are cyclic quadrilaterals. 2
- (iii) Show that the points *X*, *Y* and *Z* are collinear.

3

<u>QUESTION SIX</u> (12 Marks) Start this question in a new booklet.

Marks

(a) A man is travelling along a straight flat road that bears north west. On his journey he passes through three points *A*, *B* and *C* in that order, where AB = BC = 200 m. From these three points he observes the angle of elevation of the top of a hill to the right of the road. These angles are 30°, 45° and 45° respectively.

- (i) Find the height of the hill.
- (ii) Find the bearing of the hill from A.

3

2

Question six continued ...

Question 6 Continued

Marks

(b) Find the coefficient of
$$x^3$$
 in the expansion of $\left(2x - \frac{1}{x^2}\right)^9$. 3

(c) Consider the binomial expansion of $(5 + 11x)^{23}$.

(i) Given
$$T_k = {}^{23}C_{k-1} (11x)^{k-1} (5)^{23-(k-1)}$$
, show that $\frac{T_{k+1}}{T_k} = \frac{11x(24-k)}{5k}$.

Question Seven ...

Start this question in a new booklet. Marks **QUESTION SEVEN** (12 Marks) Show that $\tan^{-1}(n+1) - \tan^{-1}(n-1) = \tan^{-1}\left(\frac{2}{n^2}\right)$. 2 (i) Hence or otherwise show that: (ii) 3 $\frac{\pi}{4} + \sum_{r=1}^{n} \tan^{-1}\left(\frac{2}{r^2}\right) = \tan^{-1}\left(\frac{2n+1}{1-n-n^2}\right)$

Use the binomial theorem to prove that: (b) (i)

(a)

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$

(ii) Use mathematical induction to prove that
$$\frac{1}{n!} < \frac{1}{2^{n-1}}$$
 for $n \ge 3$. 3

(iii) Hence deduce that
$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = N$$
 where $2 < N < 3$. 2

END OF PAPER

2