Section 1

10 marks
Attempt Questions 1-10
Allow about 15 mins for this section

Use multiple choice answer sheet for Questions 1-10

1. $\sin 3 \alpha \cos 3 \alpha=$
A) $\frac{1}{2} \sin 6 \alpha$
B) $9 \sin \alpha \cos \alpha$
C) $\frac{1}{2} \sin 6 \alpha$
D) $2 \sin 2 \alpha$
2. The point R divides the interval joining $P(-3,6)$ and $Q(6,-6)$ externally in the ratio 2:1.

Which of these are coordinates of R?
A) $(3,-2)$
B) $(15,-18)$
C) $(0,2)$
D) $(-12,18)$
3. The polynomial $3 x^{3} \quad 4 x^{2}+2 x \quad 1=0$ has roots α, β, and γ.

What is the value of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$?
A) $\frac{1}{2}$
B) 2
C) 2
D) 4
4. Which of the following are solutions of $\frac{x}{2 x \quad 1} \quad 0$?
A) $x \quad 0$
B) $0 \quad x<\frac{1}{2}$
C) $x \quad \frac{1}{2}$
D) $x \quad 0, x>\frac{1}{2}$
5. Which of the following could be the equation of the polynomial shown below?

A) $P(x)=x^{2}(2-x)$
B) $P(x)=x(2-x)$
C) $P(x)=(x-2) x^{2}$
D) $P(x)=x(x-2)$
6. What is the derivative of $\mathrm{y}=\tan ^{-1} \frac{1}{3 x}$?
A) $\frac{9 x^{2}}{1+9 x^{2}}$
B) $\frac{3 x}{3+x^{2}}$
C) $-\frac{3 x}{1+9 x^{2}}$
D) $-\frac{3}{9 x^{2}+1}$
7. A particle is moving in simple harmonic motion with displacement x. Its velocity v is given by $v^{2}=\frac{1}{4}\left(16-x^{2}\right)$. What are the amplitude and period of the motion?
A) amplitude 4 , period 4π
B) amplitude 16 , period $\frac{1}{2 \pi}$
C) amplitude 4, period $\frac{\pi}{4}$
D) amplitude $\frac{1}{2}$, period $\frac{\pi}{4}$
8. $\int \sin ^{2} x d x=$
A) $\frac{1}{2} x-\frac{1}{4} \cos 2 x+c$
B) $\frac{1}{2} x-\frac{1}{4} \sin 2 x+c$
C) $\frac{1}{2} x+\frac{1}{4} \cos 2 x+c$
D) $\frac{1}{2} x+\frac{1}{4} \sin 2 x+c$
9. Evaluate $\lim _{x \rightarrow 0} \frac{\sin \frac{x}{3}}{2 x}$
A) $\frac{2}{3}$
B) $\frac{1}{6}$
C) $\frac{3}{2}$
D) 6
10. What is the coefficient of x^{4} in the expansion of $(1-x)(1+x)^{9}$?
A) 9
B) -84
C) 42
D) 126

Section II

60 Marks

Attempt Questions 11-14

Allow 1 hours 45 minutes for this section.
Answer the questions in the own writing booklets provided.
Start each question on a new page.
All necessary working should be shown in every question

Question 11 (15 marks)

Marks

(a) Use the substitution $t=\tan \frac{x}{2}$ to show that $\frac{1+\cos x+\sin x}{1-\cos x+\sin x}=\cot \frac{x}{2}$
(b) Use the substitution $u=5-x$, to find the exact value of $\int_{1}^{5} x \sqrt{5-x} d x$
(c) Let $f(x)=\frac{1}{\sqrt{x-1}}$
(i) Find the domain and range of $f(x)$.
(ii) Find an expression for the inverse function $f^{-1}(x)$.
(iii) Find the domain and range of the inverse function.
(d) Prove by mathematical induction that,

$$
\begin{equation*}
\left(1-\frac{1}{2^{2}}\right) \times\left(1-\frac{1}{3^{2}}\right) \times\left(1-\frac{1}{4^{2}}\right) \times \ldots \ldots \ldots\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2 n} \text { for all integer } n \geq 2 \tag{4}
\end{equation*}
$$

Question 12 (15 marks) Start this question in a new booklet.

(a) A metal rod is taken from a freezer at $-10^{\circ} \mathrm{C}$ into a room where the air temperature is $25^{\circ} \mathrm{C}$.

The rate at which the rod warms follows Newton's law, that is

$$
\frac{d T}{d t}=-k(T-25)
$$

Where k is a positive integer, time t is measured in minutes and temperature T is measured in degrees Celcius.
(i) Show that $T=25-A e^{-k t}$ is a solution of the differential equation

$$
\frac{d T}{d t}=-k(T-25), \text { and find the value of } A .
$$

(ii) If the temperature of the rod reaches $5^{\circ} \mathrm{C}$ in 80 minutes, find the exact value of k.
(iii) Find the temperature of the rod after a further hour.
(iv) Sketch the graph of the temperature of the rod against time.

Question 12 continued

(b) The points $P\left(6 p, 3 p^{2}\right)$ and $Q\left(6 q, 3 q^{2}\right)$ lie on the parabola $x^{2}=12 y$.

(i) Show that the equation of the tangent to the parabola at P is $y=p x-3 p^{2}$
(ii) The tangent at P and the line passing through Q parallel to the y-axis Intersect at T. Show that the coordinates of T are $\left(6 q, 6 p q-3 p^{2}\right)$.
(iii) Find the coordinates of M, the midpoint of $P T$.
(iv) Find the Cartesian equation of the locus of M when $p q=-2$.
(c) (i) Show that the equation $\ln x-\cos x=0$ has a root between $x=1$ and $x=2$.
(ii) By taking $x=1.2$ as the first approximation, use one step of Newton's method to find a better approximation to this root.

Answer to 2 decimal places.

Question 13 (15 marks) Start this question in a new booklet.

Marks

(a) Sketch the function $y=\pi \cos ^{-1} \frac{x}{2}$
(b) The equation of motion for a particle undergoing simple harmonic motion is

$$
\ddot{x}=-n^{2} x
$$

Where x (metres) is the displacement of the particle from the origin at time t (seconds) and n is a positive constant.
(i) Verify that $x=\operatorname{asin}(n t+\alpha)$, where n, t, and α are constants, is a

1 solution of the equation of motion.
(ii) The particle is initially stationary at $x=2$ and the function has a 3 period of 3 seconds, find the values of n, a, and α.
(c) Consider the function $f(x)=x e^{x^{2}}$
(i) Show that the gradient of this function is always positive.

2
(ii) Find any points of inflexion.

1
(iii) Sketch the graph of $y=f(x)$

Question 13 continued

Marks

(d) A hemispherical bowl of radius 10 cm is being filled with water at a constant rate of $25 \mathrm{~cm}^{3}$ per minute.
(i) By finding the volume of revolution formed by rotating the semi circle $y=10-\sqrt{100-x^{2}}$ about the y-axis from $y=0$ to $y=h$, show that the volume (V) of the water in terms of its depth (h) is given by $V=\pi\left(\frac{-h^{3}}{3}+10 h^{2}\right)$.

(ii) At what rate is the water rising when the depth is 5 cm . Answer to 2 decimal places.

Question 14 (15 marks) Start this question in a new booklet.
(a) $\quad A B$ and $A C$ are tangents to a circle. D is a point on the circle such that $\angle B D C=\angle B A C$ and $\angle B A C=2 \times \angle D B C$. Let $\angle D B C=x$.
(i) Show that $D B$ is a diameter.
(ii) Show that $B C=A B$.

(b) Consider the expansion:
$(1+x)^{2 n+1}=\binom{2 n+1}{0}+\binom{2 n+1}{1} x+\binom{2 n+1}{2} x^{2}+\ldots \ldots \ldots\binom{2 n+1}{2 n+1} x^{2 n+1}$
(i) \quad Show that $\sum_{r=1}^{2 n+1}\binom{2 n+1}{r}=2 \times 4^{n}-1$
(ii) By differentiating, the original expansion above with respect to x, or otherwise, show that

$$
\binom{2 n+1}{1}-2\binom{2 n+1}{2}+3\binom{2 n+1}{3}-\ldots+(2 n+1)\binom{2 n+1}{2 n+1}=0
$$

Question 14 continued

(c) A cannonball is fired from a cannon on top of an 80 metre high cliff down on to a ship in the sea below with velocity 40 metres per second at an angle of inclination θ to the horizontal. The equations of motion of the cannonball are:
$x=35 t \cos \theta$ and $y=-4.9 t^{2}+35 t \sin \theta+80$ (Do NOT prove this).
(i) By eliminating t show that the Cartesian equation of the path of
the cannonball is given by $y=\frac{-\sec ^{2} \theta}{250} x^{2}+x \tan \theta+80$
(ii) In order to hit the ship, the cannonball must land 150 metres from the base of the cliff. For what values of θ will this occur?

End of Paper

MC
Q1 $\quad \sin 2 A=2 \sin A \cos A$.
let $A=3 \alpha \quad \sin 6 \alpha=2 \sin 3 \alpha \cos 3 \alpha$.

$$
\begin{equation*}
\sin 3 x \cos 3 x=\frac{1}{2} \operatorname{sen} 6 x \tag{6}
\end{equation*}
$$

Q2. Use ratio $2^{k}=-1$

$$
\begin{align*}
R & =\left(\frac{2 \times 6-1 \times-3}{2-1}, \frac{2 \times-6-1 \times 6}{2-1}\right) \\
& =(15,-18)
\end{align*}
$$

3.

$$
\begin{align*}
\alpha+\beta+\gamma & =\frac{4}{3} \\
\alpha \beta+\beta \gamma+\alpha \gamma & =\frac{2}{3} \\
\alpha \beta \gamma & =\frac{1}{3} \\
\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma} & =\frac{\alpha \beta+\beta \gamma+\alpha \gamma}{\alpha \beta \gamma} \\
& =\frac{\frac{2}{3}}{\frac{1}{3}} \\
& =2
\end{align*}
$$

Q4. $\therefore \quad \therefore \quad \therefore-(2 x+2$

$$
\begin{aligned}
& (x-1)(x) \leqslant 0 \\
& x(2 x-1) \geqslant 0 . \quad x \neq \frac{1}{2} \\
& x \leqslant 0, x>\frac{1}{2} .
\end{aligned}
$$

,

(D)

Q5. (A).
6. $\quad y=\operatorname{san}^{-1} \frac{1}{3 x}$.

$$
\begin{align*}
\frac{d y}{d x} & =\frac{1}{1+\left(\frac{1}{3 x}\right)^{2}} \times \frac{-1}{3} x^{-2} \\
& =\frac{1}{1+\frac{1}{9 x^{2}}} \times-\frac{1}{3 x^{2}} \\
& =-\frac{1}{3 x^{2}+\frac{1}{3}} \times \frac{3}{3}=-\frac{3}{9 x^{2}+1}
\end{align*}
$$

Q7. $\quad v^{2}=n^{2}\left(a^{2}-x^{2}\right) \quad a=4 \quad n=\frac{1}{2}$.
ampletude $\cdots 4$

$$
\text { perod }=\frac{2 \pi}{4}
$$

$$
\begin{equation*}
=4 \pi \tag{A}
\end{equation*}
$$

Q8. (B)

$$
\begin{align*}
Q 9 \frac{1}{3} \times \frac{1}{2} \lim _{x \rightarrow 0} \frac{\sin \frac{x}{3}}{\frac{x}{3}} & =\frac{1}{6} \times 1 \\
& =\frac{1}{6} .
\end{align*}
$$

Q10 $(1-x)\left({ }^{9} C_{0}+{ }^{9} C_{1} x+{ }^{4} C_{2} x^{2}+{ }^{4} C_{3} x^{3}+{ }^{4} C_{4} x^{4}+\cdots\right)$

$$
\begin{aligned}
\text { Coeff of } x^{4} & =1 x^{9} C_{4}-1 x^{9} C_{3} \\
& =126-84
\end{aligned}
$$

Q1

$$
\begin{aligned}
t & =\tan \frac{x}{2} \operatorname{sen} x=\frac{2 t}{1+t^{2}} \cos x=\frac{1-t^{2}}{1+t^{2}} \\
L H S & =\frac{1+\frac{1-t^{2}}{1+t^{2}}+\frac{2 t}{1+t^{2}}}{1-\frac{1-t^{2}}{1+t^{2}}+\frac{2 t}{1+t^{2}}} \\
& =\frac{\frac{1+t^{2}+1+t^{2}+2 t}{\left(1+t^{2}\right)}}{1+t^{2}-\left(1-t^{2}\right)+2 t} \\
& =\frac{2+\frac{(1+2 t)}{2 t+2 t^{2}}}{} \\
& =\frac{2(1+t)}{2 t(1+t)} \\
& =\frac{1}{t} \\
& =\cot \frac{x}{2}
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
& \int_{1}^{5} x \sqrt{5-x} d x \\
= & \begin{array}{ll}
u=5-x & x=1 \quad u=4 \\
= & \frac{d x}{d u}=-1
\end{array} \\
= & x=5 u=0 \\
= & \int_{0}^{4} 5 u^{\frac{1}{2}}-u^{3 / 2} d u u^{\frac{1}{2}} x-d u
\end{aligned}
$$

(b)
(i)

$$
\begin{aligned}
& y=\frac{1}{12} x^{2} \\
& \frac{d y}{d x}=\frac{1}{6} x
\end{aligned}
$$

At $x=6 p \quad \frac{d y}{d x}=p$
\therefore Equection of langent is.

$$
\begin{aligned}
& y-3 p^{2}=p(x-6 p) \\
& y-3 p^{2}=p x-6 p^{2} \\
& y=p x-3 p^{2}
\end{aligned}
$$

(ii) Vine troogh © perallel to y-axis is $x=6 q$. (2) point T is whive (1) $\&$ (2) meet
ie $y=p_{x} 6 q-3 p^{2}$.

$$
\begin{aligned}
& y=p \times 6 q-3 p \\
& y=6 p q-3 p^{2} \quad p^{p} \\
& \text { intrrection is at } T
\end{aligned}
$$

- intrrection is at $T\left(6 q, 6 p q-3 p^{2}\right)$
(iii)

$$
\begin{aligned}
M & =\left(\frac{6 p+6 q}{2}, \frac{3 p^{2}+6 p q-3 p^{2}}{2}\right) \\
& =(3 p+3 q, 3 p q) .
\end{aligned}
$$

(iv) When $p q=-2, y$-value of M is -6 ì coustant
\therefore eqration of locus of M is $y=-6$
(c)ilet

$$
\begin{aligned}
& f(x)=\ln x-\cos x \\
& f(1)=-0.5403 \\
& f(2)=1.10929 \ldots
\end{aligned}
$$

in this interval
sence $f(1)<0, f(2)>0$ and $f(x)$ is contivioos. there nust be a root
(ii)

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{x}+\sin x \\
x_{1} & =x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
x_{1} & =1.2-\frac{\ln 1.2-\cos 1.2}{\frac{1}{1.2}+\sin 1.2} \\
& =1.30 .
\end{aligned}
$$

(c) $f(x)=\frac{1}{\sqrt{x-1}}$
(i) domain $x>1$
range $y>0$
(ii) let $y=\frac{1}{\sqrt{x-1}}$

Susap x, y for inverse

$$
\begin{aligned}
& x=\frac{1}{\sqrt{y-1}} \\
& \sqrt{y-1}=\frac{1}{x} \\
& y-1=\frac{1}{x^{2}} \quad x>0 \\
& y=\frac{1}{x^{2}}+1 ; x>0
\end{aligned}
$$

Wort Vine
domain
(iii)

$$
\text { range } y>1
$$

(d) Show the for $n=2$

$$
\begin{array}{rlrl}
\angle H S & =1-\frac{1}{2^{2}} \quad \text { RH } & =\frac{2+1}{4} \\
& =\frac{3}{4} \\
& =\frac{3}{4} \\
\angle H S=\text { RH } .
\end{array}
$$

If the for $n=k$

$$
\left.\begin{array}{l}
\text { for } n=k \\
\left(1-\frac{1}{2^{2}}\right.
\end{array}\right)\left(1-\frac{1}{3^{2}}\right) \times x\left(1-\frac{1}{k^{2}}\right)=\frac{k+1}{2 k}
$$

Show the for $n=k+1$
ce $\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right) \ldots\left(1-\frac{1}{k^{2}}\right)\left(1-\frac{1}{(k+1)^{2}}\right)=\frac{k+2}{2 k+2}$.

$$
\begin{aligned}
L H S & =\left(\frac{k+1}{2 k}\right)\left(1-\frac{1}{(k+1)^{2}}\right) \\
& =\left(\frac{k+1}{2 k}\right)\left(\frac{(k+1)^{2}-1}{(k+1)^{2}}\right) \\
& =\left(\frac{k+1}{2 k}\right)\left(\frac{k^{2}+2 k}{(k+1)^{2}}\right) \\
& =(k+1) \\
2 k & \frac{k(k+2)}{(k+1)^{2}}
\end{aligned}
$$

$$
=\frac{k+2}{2 k+2}=R+5
$$

\therefore Dive for all $n \geqslant 2$ by Prucule of mothemeateal induction.

Q1(a) (i)

$$
\begin{aligned}
T & =20 \cdot A e^{-k t} \\
\frac{d T}{d t} & =-k A e^{-k t} \mid \text { bu } A e^{-k t}=-(T-20) \\
& =-k(T-20) \mid
\end{aligned}
$$

when $t=0 \quad T=-10$.

$$
\begin{aligned}
-10 & =20 \quad-A e^{0} \\
A & =30 . \\
\therefore \quad T & =20-30 e^{-k t}
\end{aligned}
$$

(ii) when $t=80 \quad T=5$.

$$
\begin{aligned}
5 & =20-30 e^{-80 k} \\
30 e^{-80 k} & =15 \\
e^{-80 k} & =\frac{1}{2} \\
-80 k & =\ln \frac{1}{2} \\
k & =\frac{\ln \frac{1}{2}}{-80} .
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\text { when } t & =80+60 \\
& =140 \\
T & =20-30 e^{-k \times 140} \\
T & =11
\end{aligned}
$$

I3 (a) domain $=-1 \leq \frac{x}{2} \leq 1 \quad-2 \leq x \leq 2$.

$$
\text { range: } 0 \leqslant \frac{4}{\pi} \leqslant \pi \quad \sigma \leqslant y \leqslant \pi^{2}
$$

(b) (i)

$$
\begin{aligned}
x & =a \operatorname{sen}(n t+\alpha) \\
\dot{x} & =n \operatorname{acos}(n t+\alpha) \\
\bar{x} & =-n^{2} a \sin (n t+\alpha) \\
& =-n^{2} x .
\end{aligned}
$$

(ii) $t=0, \dot{x}=0, x=2$
luikally sheturiany at $x=2$ means $a=2$.
and $2=2 \sin (0+\alpha)$.
$\operatorname{sen} \alpha=1$

$$
\alpha=\pi / 2 .
$$

period $=3$ seconds

$$
\frac{2 \pi}{n}=3
$$

$$
n=\frac{2 \pi}{3}
$$

(c)

$$
\begin{aligned}
n=f^{\prime}(x) & =x \times 2 x e^{x^{2}}+e^{x^{2}} \\
& =e^{x^{2}}\left(2 x^{2}+1\right)
\end{aligned}
$$

since $e^{x^{2}>0 \text { and } 2 x^{2}>0} f^{\prime}(x)>0$ for all x

$$
\begin{aligned}
f^{\prime \prime}(x) & =2 x^{2} \times\left[2 x e^{x^{2}}\right]+e^{x^{2}} \times 4 x+2 x e^{x^{2}} \\
& =4 x^{3} e^{x^{2}}+6 x e^{x^{2}} \\
& =2 x e^{x^{2}}\left(2 x^{2}+3\right)
\end{aligned}
$$

$f^{\prime \prime}(x)=0$ when $x=0 \quad\left(\right.$ note $\left.e^{x^{2}}>0,2 x^{2}+3>0\right)$

$$
\text { At } x \Rightarrow f^{\prime}(0)=1>0
$$

\therefore inflexion at $(0,0)$.

d) $(i$

$$
\text { d) (i) } \begin{aligned}
& y=10-\sqrt{100-x^{2}} \\
& \sqrt{100-x^{2}}=10-y \\
& 100-x^{2}=(10-y)^{2} \\
& x^{2}=100-(10-y)^{2} \\
& x^{2}=100-\left(100-20 y+y^{2}\right) \\
& x^{2}=20 y-y^{2} \\
& \text { Vol }=\pi \int_{0}^{n} x^{2} d y . \\
& =\pi \int_{0}^{n} 20 y-y^{2} d y \\
& =\pi\left[10 y^{2}-y^{3} / 3\right]_{0}^{n} \\
& N=\pi\left(10 h^{2}-h^{3} / 3\right)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \frac{d v}{d t}=\frac{d v}{d h} \times \frac{d h}{d t} \\
& 25=\pi\left(20 h-h^{2}\right) \times \frac{d h}{d t}
\end{aligned}
$$

$$
\frac{d V}{d h}=\pi\left(20 h-h^{2}\right)
$$

at $h=5$

$$
\begin{aligned}
& 25=\pi(100-25) \times \frac{d h}{d t} \\
& \frac{d h}{d t}=\frac{1}{3 \pi} \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

$\Leftrightarrow 14(a)$
(i) if $D \hat{B C}=x$, lten $\hat{B A C}=2 x$ (given)
$A B=A C$ (tangents from external poout are equal)
$\therefore \triangle A B C$ is sosceles.
and $\hat{A B C}=\hat{A C B}$ (base $<1800 \otimes$).
$\sin \therefore A \hat{B} C=\frac{180-2 x}{2}(<\sin \triangle A B C)$.

$$
=90-x
$$

$$
\begin{aligned}
\therefore \hat{A B D} & =90-x+x \\
& =90^{\circ}
\end{aligned}
$$

$\therefore B D$ is perpendicilor t langent $A B$ and nuet paiss
through conte of civele
te $B D$ is a drapeter.
(ii) if $\hat{B D C}=\hat{B A C}$
ond $\quad \hat{B D C}=90-x$ (alternate segment thorem).
lten

$$
\begin{aligned}
2 x & =90-x \\
3 x & =90 \\
x & =30
\end{aligned}
$$

$$
\therefore C \widehat{A B}=A \widehat{B C}=\hat{B C A}=60^{\circ}
$$

$\therefore \triangle A B C$ is equilaterel
and $B C=A B$
(b) (i) $\operatorname{sub} \quad x=1$

$$
\begin{aligned}
& 2^{2 n+1}=\binom{2 n+1}{0}+\binom{2 n+1}{1}+\binom{2 n+1}{2}+\cdots+\binom{2 n+1}{2 n+1} \\
& 2 \times 4^{n}=1+\binom{2 n+1}{1}+\left(\begin{array}{c}
2 n+2 \\
2 n+1 \\
2 n+1
\end{array}\right) \\
& 2 \times 4^{n}-1=\binom{2 n+1}{1}+\left(\frac{2 n+4}{2} 1^{2}+\cdots+\binom{2 n+1}{2 n+1}\right. \\
& =\sum_{r=1}^{2 n+1}\binom{2 n+1}{1}
\end{aligned}
$$

by defferentaiting bothe side

$$
\left.\begin{array}{l}
\text { Hereuhating botte siden } \\
(2 n+1)(1+x)^{2 n}=\binom{2 n+1}{1}+2\binom{2 n+1}{2} x+3\binom{2 n+1}{3} x^{2}+\ldots+(2 n+1)(2 n+1) x
\end{array}{ }^{2 n+1}\right) x
$$

$\operatorname{sun} x=-1$

$$
0=\binom{2 n+1}{1}-2\binom{2 n+1}{2}+3\binom{2 n+1}{3} \cdots+(2 n+1)\binom{2 n+1}{2 n+1}
$$

(c) $x=35 t \cos \theta$ (1) $y=-4.9 t^{2}+35 t \sin \theta+80$

From (i) $t=\frac{x}{35 \cos \theta}$
sub ì (2) $\quad y=-4.9\left(\frac{x}{35 \cos \theta}\right)^{2}+35\left(\frac{x}{35 \cos \theta}\right) \sin \theta+80$.

$$
\begin{aligned}
& y=\frac{-4-9}{1225} x^{2} \sec ^{2} \theta+x \tan \theta+80 \\
& y=\frac{-\sec ^{2} \theta}{250} x^{2}+x \tan \theta+80
\end{aligned}
$$

(ii) when $y=-0 x=150$.

$$
\begin{aligned}
& 0=-90 \sec ^{2} \theta+150 \tan \theta+80 . \\
& 0=-90 \cdot\left(\tan ^{2} \theta+1\right)+150 \tan \theta+80 \\
& 0=-90 \tan ^{2} \theta-90+150 \tan \theta+80 \\
& 0=-90 \tan ^{2} \theta+150 \tan \theta-10 . \\
& 9 \tan ^{2} \theta-15 \tan \theta+1 \\
& \tan \theta=\frac{15 \pm \sqrt{15^{2}-4 \times 9 \times 1}}{18} \\
& \tan \theta=1.597 \ldots \text { or. } 0.0695 \ldots \\
& \theta=58^{\circ} \quad \text { or } 4^{\circ}
\end{aligned}
$$

