

Student Number

2013

HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-14, show relevant mathematical reasoning and/or calculations
- Begin each question on a separate writing booklet

Total marks - 70

Section I
Pages 2-5
10 marks

- Attempt Questions 1-10
- Answer on the Multiple Choice answer sheet provided
- Allow about 15 minutes for this section

Section II

Pages 6-11
60 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10
(1) The height of a giraffe has been modelled using the equation: $H=5.40-4.80 e^{-k t}$ where H is the height in metres, t is the age in years and k is a positive constant. If a 6 years old giraffe has a height of 5.16 metres, find the value of k, correct to 2 significant figures.
(A) 0.05
(B) 0.24
(C) 0.50
(D) 4.8
(2) What is the value of $\lim _{x \rightarrow 0}\left(\frac{\sin \frac{1}{3} x}{2 x}\right)$
(A) $\frac{1}{6}$
(B) $\frac{2}{3}$
(C) $\frac{3}{2}$
(D) 6
(3) Which of the following equates to the expression $\frac{1-e^{3 x}}{1-e^{2 x}}$.
(A) $1+\frac{e^{2 x}}{1+e^{x}}$
(B) $1-e^{x}$
(C) $1+e^{x}+e^{2 x}$
(D) None of the above
(4) The point P divides the interval $A\left(\frac{17}{3}, 2\right)$ to $B(-3,4)$ externally in the ratio $2: 3$. Which one of the following is the coordinates of point P ?
(A) $(-23,2)$
(B) $(-9,-12)$
(C) $\quad(9,0)$
(D) $(23,-2)$
(5) A curve is defined by the parametric equations $x=\sin 2 t$ and $y=\cos 2 t$. Which of the following, in terms of t, equates to $\frac{d y}{d x}$?
(A) $-\tan 2 t$
(B) $2 \tan 2 t$
(C) $2 \sin 4 t$
(D) $\cos 4 t$
(6) Which of the following is the inverse function of $y=\frac{x-4}{x-2}, x \neq 2$?
(A) $y=\frac{x-2}{x-4}$
(B) $\quad y=f^{-1}(y)$
(C) $y=\frac{2(x-2)}{x-1}$
(D) $y=\frac{x+4}{x+2}$
(7) Which of the following represents the graph of $y=\cos ^{-1}(x+1)$.
(A)

(B)

(C)
${ }_{\pi}$
(D)

(8) Given that $x y=x+1$, the definite integral $\int_{3}^{5} x d y$ equates to:
(A) e^{2}
(B) $\ln 2$
(C) $\quad-\ln \left(\frac{5}{3}\right)$
(D) $e^{\frac{5}{3}}$
(9) The motion of a particle moving along the x-axis executes simple harmonic motion. The maximum velocity of the particle is $4 \mathrm{~m} / \mathrm{s}$ and the period of motion is π seconds. Which of the following could be the displacement equation for this particle?
(A) $x=4 \cos \pi t$
(B) $x=-\sin 2 t$
(C) $x=2 \cos 2 t$
(D) $x=2+\cos 2 t$
(10) A particle moves with a velocity $v \mathrm{~m} / \mathrm{s}$ where $v=\sqrt{x^{2}+1}$. Given that $x>0$, which of the following is equal to the acceleration of the particle when $v=4 \mathrm{~m} / \mathrm{s}$.
(A) $\sqrt{17} \mathrm{~m} / \mathrm{s}^{2}$
(B) $-3 m / s^{2}$
(C) $\sqrt{15} \mathrm{~m} / \mathrm{s}^{2}$
(D) $2 \sqrt{17} \mathrm{~m} / \mathrm{s}^{2}$

Section II

60 marks

Attempt Questions 11-14
Allow about 1 hour and 45 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Find the exact value of $\sin 75^{\circ}$.
(b) Given that the acute angle between the lines $y=m x$ and $2 x-3 y=0$ is 45°, find possible value(s) of m.
(c) Using the substitution $u=1+x^{2}$, or otherwise, evaluate

$$
\int_{0}^{\sqrt{8}}\left(\frac{x}{\sqrt{1+x^{2}}}\right) d x
$$

(d) Solve the following inequality for x :

$$
\frac{1}{x}+\frac{x}{(x-2)}<0
$$

(e) (i) On the same number plane, graph the following functions:

$$
y=4-x^{2} \quad \text { and } \quad y=|3 x|
$$

(ii) Hence or otherwise solve $4-x^{2} \leq|3 x|$

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) Find the exact value of $\sin \left(2 \cos ^{-1} \frac{\sqrt{3}}{4}\right)$.
(b) $A B$ is a chord of a circle centre $O . A O$ is a diameter of a circle centre $Q . Z$ is the point where the circle centre Q meets $A B$.

(i) Explain why $A O=O B$.
(ii) Hence or otherwise, prove that $A Z=Z B$.
(c) The quadratic equation $x^{2}-4 x+9=0$ has roots $\tan A$ and $\tan B$. Hence, find the size(s) of $\angle(A+B)$, noting that $0 \leq A+B \leq 360^{\circ}$ (leave your answer to the nearest degree).
(d) (i) By use of long division, find the remainder, in terms of a and b when

$$
P(x)=x^{4}+3 x^{3}+6 x^{2}+a x+b \text { is divided by } x^{2}+2 x+1 .
$$

(ii) If this remainder is $3 x+2$, find the values of a and b.
(e) (i) Prove that $\sin A \cos A \cos 2 A=\frac{1}{4} \sin 4 A$.
(ii) Hence or otherwise solve $\sin A \cos A \cos 2 A=0$, for $0 \leq A \leq \frac{\pi}{2}$.

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) Prove by mathematical induction that $5^{n} \geq 1+4 n$ for all integers $n \geq 1$.
(b)

$P\left(2 a p, a p^{2}\right)$ and $Q\left(-2 a p, a p^{2}\right)$ are variable points on the parabola $x^{2}=4 a y$. The line $P Q$ is parallel to the x-axis. The tangent at P meets the x-axis at Z.
(i) Show that the equation of the tangent at P is given by

$$
y=p x-a p^{2}
$$

(ii) Hence show that $Z=(a p, 0)$.
(iii) Find the locus of midpoints of $Q Z$.
(c) (i) Graph the function $y=2 \tan ^{-1}(x)$.
(ii) Graphically show why $2 \tan ^{-1}(x)-\frac{x}{4}=0$ has one root, for $x>0$.
(iii) Taking $x_{1}=10$ as a first approximation to this root, use one application of Newton's method to find a better approximation, correct to 2 decimal places.

A ladder AB , 5 metres long, is leaning against a vertical wall OA , with its foot B , on horizontal ground OB. The distances OB and OA are x and y metres respectively. x and y are related by the equation $x^{2}+y^{2}=25$.

The foot of the ladder begins to slide along the ground away from the wall at a constant speed of 1 metre per second.

Find the speed at which the top of the ladder A is moving down the wall at the time when the top of the ladder is 4 metres above the ground.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) A particle is travelling in a straight line. Its displacement $(x \mathrm{~cm})$ from O at a given time (t sec $)$ after the start of motion is given by: $x=2+\sin ^{2} t$.
(i) Prove that the particle is undergoing simple harmonic motion.
(ii) Find the centre of motion.
(iii) Find the total distance travelled by the particle in the first $\frac{3 \pi}{2}$ seconds.
(b) A shade sail with corners A, B and C is shown in diagram 1, supported by three vertical posts. The posts at corners A and C are the same height, and the post at corner B is 2.4 m taller. Diagram 2 shows the sail in more detail. D is the point on the taller post horizontally level with the tops of the other two posts. $A D=6.4 \mathrm{~m}$ and $D C=5.2 \mathrm{~m} . \angle A D C=125^{\circ}$.
Find the area of the shade sail $A B C$ (leave your answer to 1 decimal place)
(c) Over 80 years ago, during training exercises, the Army fired an experimental missile from the top of a building 15 m high with initial velocity (v) where $v=130 \mathrm{~m} / \mathrm{s}$, at an angle (α) to the horizontal. Noting that $\alpha=\tan ^{-1}\left(\frac{5}{12}\right)$ and taking $g=10 \mathrm{~m} / \mathrm{s}^{2}$

NOT TO

Assume that the equations of motion of the missile are
$\ddot{x}=0$ and $\ddot{y}=-10$
(i) Show that $\dot{x}=120$ and $\dot{y}=-10 t+50$.

Hence write down the equations of x and y.
(ii) The rocket hit its intended target when its velocity reached $60 \sqrt{5} \mathrm{~m} / \mathrm{s}$.

Find the horizontal distance that the missile travelled to hit its target.
(iii) The rocket was designed to hit its target once the angle to the horizontal of its flight path in a downward direction lies between 20° and 30°. Find the range of times after firing that this could happen.

End of paper

STANDARD INTEGRALS

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, \quad x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec ^{2} a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan -\frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin { }^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
\text { NOTE: } \quad \ln x=\log _{e} x, \quad x>0
\end{array}
$$

Normanhurst Boys Eigh School

 2013 HSC TRIAL EXAMINATION
MATHEMATICS EXTENSION 1 -MARKING GUIDELINES

Section I

Question	Marks	Answer	Outcomes Assessed
1	1	\mathbb{Z}	01
2	1	A	Ol
3	1	A	01
4	1	D	01
5	1	A	04
6	1	C	$\mathrm{O4}$
7	1	C	O
8	1	B	O
9	1	C	O
10	1	C	O

1(c) (3 marks)
Outcomes Assessed: 05

	Criteria
\circ Obtains comrect limits	Marks
- Obtains $I=\frac{1}{2} \int_{0}^{9}\left(\frac{d u}{\frac{3}{\frac{3}{2}}}\right)$	1
0 Correct answer	

Answer

$$
\begin{aligned}
& u=1+x^{2} \\
& \frac{1}{2} d u=x d x \\
& x=\sqrt{8} \rightarrow u=9 \\
& x=0 \rightarrow u=1 \\
& I=\int_{0}^{\sqrt{5}}\left(\frac{x}{\sqrt{1+x^{2}}}\right) d x \\
& I=\frac{1}{2} \int_{1}^{9}\left(\frac{d u}{\frac{1}{2}} u^{\frac{1}{2}}\right) \\
& =\left[u^{\frac{1}{2}}\right]_{1}^{9} \\
& =3-1 \\
& =2
\end{aligned}
$$

Question 11 (15 marks)
11(a) (2 marks)
Outcomes Assessed: 03

	Criteria	Marks
\bullet Use sine of the sum	1	
\bullet Correct answer	1	

answe

$\sin 75^{\circ}=\sin \left(45^{\circ}+30^{\circ}\right)$
$=\sin 45^{\circ} \cos 30^{\circ}+\cos 45^{\circ} \sin 30^{\circ}$
$=\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \cdot \frac{1}{2}$
$=\frac{\sqrt{3}+1}{2 \sqrt{2}}$
l(b) (3 marks)
Outcomes Assessed: O3

Criteria	Marks
- Obtains correct gradients	1
- Correct substitution into formulae	1
- Correct answer	1

Answer

$$
\begin{aligned}
& \tan 45^{\circ}=\left|\frac{m-\frac{2}{3}}{1+\frac{2 m}{3}}\right| \\
&\left|\frac{3 m-2}{3} \div \frac{3+2 m}{3}\right|=1 \\
&\left|\frac{3 m-2}{3+2 m}\right|=1 \\
& \frac{3 m-2}{3+2 m}=1 \text { or } \frac{3 m-2}{3+2 m} \\
&=-1 \\
& m=5 \text { or } \quad m
\end{aligned}
$$

11(d) (3 inarks)
Outcones Assessed: 02

| Criteria | Marks |
| :--- | :---: | :---: |
| - Multiplies throughout by $x^{2}(x-2)^{2}$ | 1 |
| - Obtain $x(x-2)(x+2)(x-1)<0$ | 1 |
| - Conect answer | 1 | Answer

$\frac{1}{x}+\frac{x}{(x-2)}<0$
$x(x-2)^{2}+x^{3}(x-2)<0$
$x(x-2)\left[(x-2)+x^{2}\right]<0$
$x(x-2)\left[x^{2}+x-2\right]<0$
$x(x-2)(x+2)(x-1)<0$
$-2<x<0$ of ${ }^{1<x<2}$ (from diagram)

11 (e) (i) (2 marks)
Outcomes Assessed: OI

	Criteria	Marks
- Comect graph for $y=4-x^{2}$	1	
- Comect grapl for $y=\|3 x\|$	1	

Answer

11(e) (ii) (2 marks)

Outcomes assessed: OL	Criteria
- Solve for both points of intersection	Mark
- Correct answer	1

Answer

Solve
$4-x^{2}=|3 x|$
$4-x^{2}=3 x$ or $4-x^{2}=-3 x$
$x^{2}+3 x-4=0$ or $x^{2}-3 x-4=0$
$(x+4)(x-1)=0$ or $(x-4)(x+1)=0$
$x=1,-4 \quad x=4,-1$.
check solutions
correct solutions: $x= \pm 1$
hence from diagram $x<-1$ or $x>1$
Question 12 (15 marks)
12(a) (2 marks)

Criteria	Marks
- Achieves $\cos \alpha=\frac{\sqrt{3}}{4}$ and $\sin \alpha=\frac{\sqrt{13}}{4}$	1
- Correct answer	

Answer
Let $\alpha=\cos ^{-1} \frac{\sqrt{3}}{4}$
$\therefore \sin \left(2 \cos ^{-1} \frac{\sqrt{3}}{4}\right)=\sin (2 \alpha)$
Also $\cos \alpha=\frac{\sqrt{3}}{4}$, hence $\sin \alpha=\frac{\sqrt{13}}{4}$ (pythagoras)

2013 NiHS Malis Extl Trial HSC Exain Marking Guide
5

\qquad 5

2(d) (i) (2 marks)
Outcomes Assesser: O4

Criteria	Marks
- Makes a positive attempt to solve obtain the remainder by long division	1
e Correct answer	1

Answer
$P(x)=x^{4}+3 x^{3}+6 x^{2}+a x+b$
By long division
$P(x)=\left(x^{2}+2 x+1\right)\left(x^{2}+x+3\right)+[(a-7) x+(b-3)]$
$\therefore R(x)=(a-7) x+(b-3)$

12(d) (ii) (1 mark)
Outcomes Assessed: 04

Correct answer	Criteria
	1

Answer
$3 x+2=(a-7) x+(b-3)$
$\therefore a=10$ and $b=5$

2(e) (i) (2 marks)
Outcones Assessed: O3

Criteria	Marks
- Uses the double angle comtectly at least once	1
- Correct answer with correct working	1

Answer

$$
\begin{aligned}
\sin A \cos A \cos 2 A & =\frac{1}{4} \sin 4 A \\
L H S & =\frac{1}{2}[2 \sin A \cos A \times \cos 2 A] \\
& =\frac{1}{2}[\sin 2 A \times \cos 2 A] \\
& =\frac{1}{2} \times \frac{1}{2}[2 \sin 2.4 \times \cos 2 A] \\
& =\frac{1}{4} \sin 4 A \\
& =\text { RHS }
\end{aligned}
$$

12(b) (i) (1 mark)

Outcomes Assessed: 03	Criteria	Mark
- Correct answer reasoning		

Answer

$A O=O B \quad$ (radii of circle centre O)
12(b) (ii) (2 marks)
utcomes Assessed: 03

Criteria	Marks
- Notes that Also $\angle A Z O=90^{\circ}$ with reasons	1
- Correct answer with correct reasoning	1

Answer
If from (i) $\triangle O A B$ is isosceles
Also $\angle A Z O=90^{\circ}$ (angles in a semi-circle are right angles at the circunference)
$\therefore A Z=Z B \quad$ (a line from the apex of an isosceles triangle which meets the base at right angles, bisects the base)

12(c) (3 marks)
Outcomes Assessed: 03

Criteria	Marks
- Obtains $\tan A+\tan B=4$ or $\tan A \tan B=9$	1
- Uses $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$	1
- Correct answer	1

Answer
$\tan A+\tan B=-\frac{b}{a}$
$\tan A+\tan B=4$
$\tan A \tan B=\frac{c}{a}$
$\tan A \tan B=9$
$\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$
$=\frac{4}{1-9}$
$=-\frac{1}{2}$
$\angle(A+B)=153^{\circ} 26^{\prime}, 333^{\circ} 26^{\prime}$
$=153^{\circ}, 333^{\circ}$

2013 NBHS Mails Ext1 Tinal HSC Exann Morking Guide

12(e) (ii) (2 marks)

Outcomes A Ssessed: 03	Criteria	Marks
Achieves at least 2 of the comect answers	1	
	1	

Answer
$\frac{1}{4} \sin 4 A=0$
$\sin 4 A=0$ $4 A=0, \pi, 2 \pi, 3 \pi, 4 \pi \ldots$.

$$
A=0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \ldots \ldots
$$

Hence $A=0, \frac{\pi}{4}, \frac{\pi}{2} \quad ; 0 \leq A \leq \frac{\pi}{2}$

Question 13 (15 marks)
13(a) (3 marks)
Outcomes Assessed: 02

Answer

Steple3
Step 2 - Using assingotion

- A A A osec
- Ad Rosmect
tep 1: Prove the
≥ 5 (true) expression is true for $n=$
$\therefore \equiv \quad$ Assume the expression is true for $n=k$ (where k is even) \quad - A A Ecimect
i $.5^{k} \geq 1+4 k$ (where k is a positive integer)
Step $2:$ Prove the expression is true for $n=k+1$
i. $.5^{k+1} \geq 1+4(k+1)$
$5.5^{k} \geq 4 k+5$
$\because \because \because$
$5^{k+1}-4<-5: \geq 0$
Now LHS . $=5.5^{k}-4 k-5$
$\geq 5(1+4 k)-4 k-5 \quad$ (from assumption)
$=16 k \geq 0 \quad(k \geq 1)$
Hence if the expression is true when $n=k$, it is true when $n=k+1$
Step 3 If the expression is true for $n=1, \therefore$ it is true when $n=2$
If true for $n=2, \therefore$ it is true when $n=3$
Therefore the expression is true for all $n, n \geq 1$.

13(b) (i) (2 marks)
13(b) (ii) (1 mark)

Outcomes_Assessed: 04	Criteria	Marks
.$~ C o r r e c t ~ w o r k i n g ~ t o ~ a c h i e v e ~ Z ~$	1	

Answer
Tangent: $\quad y=p x-a p^{2}$
For Z : substitute $y=0$
$p x-a p^{2}=0$
$x=a p$
$Z=(a p, 0)$
13(b) (ii) (2 marks)
Outcomes Assessed: O4

Outcomes Assessed: O4	Criteria
- Obtains midpoint	
$z Q$	
• $=\left(\frac{-a p}{2}, \frac{a p^{2}}{2}\right)$	1
- Correct answer for locus	1

Answer

(2)

2013 NBHS Matis Exu Trial HSC Exanl Marking Guide
9
\qquad

13(c) (iii) (2 marks)

Outcomes Assessed: 04	Criteria	Marks	
- Usesthe-correct-formulae and makes a good attempt at achieving answer	1		
		Cormect answer	

13(d) (3 marks)
Outcomes Assessed: OS

Criteria	Marks
- Differentiates correctly	$\underline{-1}$
- Equates various rates comreetly	1
- Achieves corfeet answer	-1

Answer
$x^{2}+y^{2}=25$
$y=\sqrt{25-x^{2}} \quad(y>0)$
$\frac{d y}{d x}=\frac{-x}{\sqrt{25-x^{2}}}$
Now $\frac{d x}{d t}=1$
$\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}$
$\frac{d y}{d t}=\frac{-x}{\sqrt{25-x^{2}}} \times 1$
Now when $y=4, x=3$
$\frac{d y}{d t}=\frac{-3}{\sqrt{25-3^{2}}} \times 1$
$=-\frac{3}{4}$ (i.e. $\frac{3}{4}$ metres per second down the nall)

13(c) (i) (1 mark)
Outcomes Assessed: O4

| Criteria | Marlc |
| :--- | :---: | :---: |
| - Correct diagaifigrogh with asymptotas labeled. | 1 |

Answer

13(c) (ii) (1 mark)
Outcomes Assessed: 04

	Chiteria	Mark
- Correct answer	1	

Answer
$2 \tan ^{-1}(x)-\frac{x}{4}=0$
$2 \tan ^{-1}(x)=\frac{x}{4}$
$: \therefore$ Graph $y=2 \tan ^{-1}(x)$ and $y=\frac{x}{4}$ to show thet there is only one point of

2013 NBHS Matiss Ext Tialt HSC Exan Marliug Guide
10

Question 14 (15 marks)
14(a) (i) (2 marks)
Outcomes Assessed: 05

Criteria	Marles
- Achievesthe-acceleration formulae in any form	1
- Correet working	1

Answer	
x	$=2+\sin ^{2} t-0$
\dot{x}	$=v=2 \sin t \cos t$
\ddot{x}	$=\cos t(2 \cos t)+2 \sin t(-\sin t)$
	$=2\left[\cos ^{2} t-\sin ^{2} t\right]$
	$=2\left[1-\sin ^{2} t-\sin ^{2} t\right]$
	$=2\left[1-2 \sin ^{2} t\right]$
	$=2[1-2(x-2)]$ using (1)
	$=2[1-2 x+4]$
	$=10-4 x$
	$=-4\left(x-\frac{5}{2}\right)$

Since in the form of $\vec{x}=-n^{2} X$, therefore SHM.
14(a) (ii) (l mark)
Outcomes Assessed: 05

	Criteria
0 Correct answer	Mark

Answer

$\ddot{x}=0$
$10-4 x=0$
$x=\frac{5}{2}$

14(a) (iii) (2 marks)

Outcomes Assessed: 05	Criteria
- Achieves $t=0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2} \ldots$.	1
- Correct answer with sufficiast working	1

Answer
$y=0$ Parficle changes direction $\mathrm{y}=2 \sin t \cos t$ $2 \sin t \cos t=0$

$t=0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2} \ldots .$.
$t=0 \quad x=2$
when
(2)
\therefore total distance $=3 \mathrm{~cm}$
14(b) (3 marks)

Answer

14(c) (i) (2 marks)
Outcontes Assessed: 05

| Criteria | Marks |
| :--- | :---: | :---: | :---: |
| - Uses $\nu^{2}=(\dot{x})^{2}+(\dot{\nu})^{2}$ and works towards answer | |

Answer

$$
\begin{aligned}
v^{2} & =(\dot{x})^{2}+(y)^{2} \\
(60 \sqrt{5})^{2} & =(120)^{2}+(-10 t+50)^{2} \\
18000 & =14400+100 t^{2}-1000 t+2500
\end{aligned}
$$

$100 t^{2}-1000 t-1100=0$

$$
t^{2}-10 t-11=0
$$

$$
(t-11)(t+1)=0
$$

$$
t=11,-1
$$

$$
t=11(t>0)
$$

$$
x:=120(11)
$$

$$
=1320 \mathrm{~m}
$$

(n)

