

Student Number

NORMANHURST BOYS' HIGH SCHOOL NEW SOUTH WALES Class: 12M 1 2 3 4 5 (Please Circle)

2013 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-14, show relevant mathematical reasoning and/or calculations
- Begin each question on a separate writing booklet

Total marks - 70

Pages 2-5

Section I 10 marks

- Attempt Questions 1-10
- Answer on the Multiple Choice answer sheet provided
- Allow about 15 minutes for this section

Section II Pages 6-11

60 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

Students are advised that this is a school-based examination only and cannot in any way guarantee the content or format of future Higher School Certificate Examinations.

Section I

10 marks **Attempt Questions 1-10** Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

The height of a giraffe has been modelled using the equation: (1) $H = 5.40 - 4.80e^{-kt}$ where *H* is the height in metres, *t* is the age in years and *k* is a positive constant. If a 6 years old giraffe has a height of 5.16 metres, find the value of k, correct to 2 significant figures.

- 0.05 (A)
- (B) 0.24
- 0.50 (C)
- (D) 4.8

(2) What is the value of
$$\lim_{x \to 0} \left(\frac{\sin \frac{1}{3}x}{2x} \right)$$

- 1 (A) 6
- $\frac{2}{3}$ (B)
- $\frac{3}{2}$ (C)
- (D) 6
- Which of the following equates to the expression $\frac{1-e^{3x}}{1-e^{2x}}$. (3)

,

- $1 + \frac{e^{2x}}{1 + e^x}$ (A)
- $1-e^x$ (B)
- $1 + e^{x} + e^{2x}$ (C)
- None of the above (D)

- (4) The point *P* divides the interval $A(\frac{17}{3}, 2)$ to B(-3, 4) externally in the ratio 2:3. Which one of the following is the coordinates of point *P*?
 - (A) (-23, 2)
 - (B) (-9,-12)
 - (C) (9,0)
 - (D) (23, -2)
- (5) A curve is defined by the parametric equations $x = \sin 2t$ and $y = \cos 2t$. Which of the following, in terms of *t*, equates to $\frac{dy}{dx}$?
 - (A) $-\tan 2t$
 - (B) $2\tan 2t$
 - (C) $2\sin 4t$
 - (D) $\cos 4t$
- (6) Which of the following is the inverse function of $y = \frac{x-4}{x-2}, x \neq 2$?
 - $(A) \qquad y = \frac{x-2}{x-4}$
 - $(\mathbf{B}) \qquad y = f^{-1}(y)$
 - (C) $y = \frac{2(x-2)}{x-1}$
 - $(D) \qquad y = \frac{x+4}{x+2}$

(7) Which of the following represents the graph of $y = \cos^{-1}(x+1)$.

(8) Given that xy = x+1, the definite integral $\int_{-\infty}^{\infty} x \, dy$ equates to:

- (A) e^2
- (B) ln 2

(C)
$$-\ln\left(\frac{5}{3}\right)$$

(D) $e^{\frac{5}{3}}$

- (9) The motion of a particle moving along the x axis executes simple harmonic motion. The maximum velocity of the particle is 4 m/s and the period of motion is π seconds. Which of the following could be the displacement equation for this particle?
 - (A) $x = 4\cos \pi t$
 - (B) $x = -\sin 2t$
 - (C) $x = 2\cos 2t$
 - (D) $x = 2 + \cos 2t$
- (10) A particle moves with a velocity v m/s where $v = \sqrt{x^2 + 1}$. Given that x > 0, which of the following is equal to the acceleration of the particle when v = 4m/s.
 - (A) $\sqrt{17} m / s^2$
 - (B) $-3m/s^2$
 - (C) $\sqrt{15} m/s^2$
 - (D) $2\sqrt{17} m/s^2$

Section II

60 marks Attempt Questions 11-14 Allow about 1 hour and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

- (a) Find the exact value of sin 75°.
 (b) Given that the acute angle between the lines y = mx and 2x-3y = 0 is 45°, find possible value(s) of m.
- (c) Using the substitution $u = 1 + x^2$, or otherwise, evaluate

$$\int_{0}^{\sqrt{8}} \left(\frac{x}{\sqrt{1+x^2}}\right) dx \, .$$

- (d) Solve the following inequality for x: $\frac{1}{x} + \frac{x}{(x-2)} < 0$ 3
- (e) (i) On the same number plane, graph the following functions: $y = 4 x^2$ and y = |3x|
 - (ii) Hence or otherwise solve $4 x^2 \le |3x|$ 2

2

3

Question 12 (15 marks) Use a SEPARATE writing booklet.

- (a) Find the exact value of $\sin\left(2\cos^{-1}\frac{\sqrt{3}}{4}\right)$. 2
- (b) AB is a chord of a circle centre O. AO is a diameter of a circle centre Q. Z is the point where the circle centre Q meets AB.

- (i) Explain why AO = OB.
- (ii) Hence or otherwise, prove that AZ = ZB.
- (c) The quadratic equation $x^2 4x + 9 = 0$ has roots $\tan A$ and $\tan B$. Hence, find the 3 size(s) of $\angle (A+B)$, noting that $0 \le A+B \le 360^\circ$ (leave your answer to the nearest degree).
- (d) (i) By use of long division, find the remainder, in terms of *a* and *b* when $P(x) = x^4 + 3x^3 + 6x^2 + ax + b$ is divided by $x^2 + 2x + 1$.
 - (ii) If this remainder is 3x+2, find the values of a and b. 1

(e) (i) Prove that
$$\sin A \cos A \cos 2A = \frac{1}{4} \sin 4A$$
. 2

(ii) Hence or otherwise solve $\sin A \cos 2A = 0$, for $0 \le A \le \frac{\pi}{2}$.

2

Question 13 (15 marks) Use a SEPARATE writing booklet.

(b)

 $P(2ap, ap^2)$ and $Q(-2ap, ap^2)$ are variable points on the parabola $x^2 = 4ay$. The line PQ is parallel to the x - axis. The tangent at P meets the x - axis at Z.

(i)	Show that the equation of the tangent at <i>P</i> is given by	2
	$y = px - ap^2$	

(ii) Hence show that Z = (ap, 0). 1

(iii) Find the locus of midpoints of QZ. 2

(c) (i) Graph the function
$$y = 2 \tan^{-1}(x)$$
. 1

- (ii) Graphically show why $2 \tan^{-1}(x) \frac{x}{4} = 0$ has one root, for x > 0. 1
- (iii) Taking $x_1 = 10$ as a first approximation to this root, use one application 2 of Newton's method to find a better approximation, correct to 2 decimal places.

Question 13 continues on page 9

13 (d)

A ladder AB, 5 metres long, is leaning against a vertical wall OA, with its foot B, on horizontal ground OB. The distances OB and OA are x and y metres respectively. x and y are related by the equation $x^2 + y^2 = 25$.

The foot of the ladder begins to slide along the ground away from the wall at a constant speed of 1 metre per second.

Find the speed at which the top of the ladder A is moving down the wall at the time when the top of the ladder is 4 metres above the ground.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.

- (a) A particle is travelling in a straight line. Its displacement (x cm) from O at a given time $(t \sec)$ after the start of motion is given by: $x = 2 + \sin^2 t$.
 - (i) Prove that the particle is undergoing simple harmonic motion. 2
 - (ii) Find the centre of motion.
 - (iii) Find the total distance travelled by the particle in the first $\frac{3\pi}{2}$ seconds. 2
- (b) A shade sail with corners *A*, *B* and *C* is shown in diagram 1, supported by three vertical posts. The posts at corners *A* and *C* are the same height, and the post at corner *B* is 2.4 m taller. Diagram 2 shows the sail in more detail. *D* is the point on the taller post horizontally level with the tops of the other two posts. AD = 6.4 m and DC = 5.2 m. $\angle ADC = 125^{\circ}$. Find the area of the shade sail *ABC* (*leave your answer to 1 decimal place*)

Question 14 continues on page 11

Question 14 (continued)

(c) Over 80 years ago, during training exercises, the Army fired an experimental missile from the top of a building 15 *m* high with initial velocity (v) where

v = 130m/s, at an angle (α) to the horizontal. Noting that $\alpha = \tan^{-1}\left(\frac{5}{12}\right)$ and

Assume that the equations of motion of the missile are $\ddot{x} = 0$ and $\ddot{y} = -10$

(i)	Show that $\dot{x} = 120$ and $\dot{y} = -10t + 50$.	2
	Hence write down the equations of x and y.	

- (ii) The rocket hit its intended target when its velocity reached $60\sqrt{5} m/s$. 2 Find the horizontal distance that the missile travelled to hit its target.
- (iii) The rocket was designed to hit its target once the angle to the horizontal 3 of its flight path in a downward direction lies between 20° and 30°. Find the range of times after firing that this could happen.

End of paper

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \text{ if } n < 0$$
$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax \ dx \qquad = \frac{1}{a} \sin ax, \ a \neq 0$$

- $\int \sin ax \, dx \qquad = -\frac{1}{a} \cos ax, \ a \neq 0$
- $\int \sec^2 ax \ dx = \frac{1}{a} \tan ax, \ a \neq 0$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$$

- $\int \frac{1}{a^2 + x^2} \, dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$
- $\int \frac{1}{\sqrt{a^2 x^2}} \, dx \qquad = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$
- $\int \frac{1}{\sqrt{x^2 a^2}} \, dx \qquad = \ln\left(x + \sqrt{x^2 a^2}\right), \ x > a > 0$
- $\int \frac{1}{\sqrt{x^2 + a^2}} dx \qquad = \ln\left(x + \sqrt{x^2 + a^2}\right)$

NOTE:
$$\ln x = \log_e x, \quad x > 0$$

Normanhurst Boys High School

2013 HSC TRIAL EXAMINATION

MATHEMATICS EXTENSION 1 - MARKING GUIDELINES

Section I

Question	Marks	Answer	Outcomes Assessed
1	1	XC XC	01
2	1	A	01
3	1	A	01
4	1	D	O3
- 5	1 ,	A	04
6	1	C	04
7	1	С	04
8	1	В	O5
9	1	С	05
10	1	C	05

Question 11 (15 marks)

11(a) (2 marks) Outcomes Assessed: O3

		Criteria		Marks
•	Use sine of the sum		· · · · · · · · · · · · · · · · · · ·	1
•	Correct answer			1

Answer

 $\sin 75^\circ = \sin \left(45^\circ + 30^\circ \right)$

$$= \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ}$$

$$= \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \cdot \frac{1}{2}$$
$$= \frac{\sqrt{3} + 1}{2\sqrt{2}}$$

11(b) (3 marks) Outcomes Assessed: 03

Criteria	Marks
Obtains correct gradients	1
Correct substitution into formulae	1
Correct answer	1

2

Marks

1 1 1

Answer

11(c) (3 marks) 0utcomes Assessed: 05	
Criteria Marks Criteria	
• Obtains correct limits 1 • Multiplies throughout by $x^2(x-2)^2$	
$\int_{1}^{9} (x_{1}) = 0$	
• Obtains $I = \frac{1}{2} \left \frac{dt}{1} \right $	
Answer Answer	
Correct answer	
Answer $\frac{1}{x} + \frac{x}{(x-2)} < 0$	
$x(x-2)^2 + x^2(x-2) < 0$	
x = 1 + x $x(x-2)[(x-2) + x^2] < 0$	
$\frac{1}{2}du = x dx$	
$x = \sqrt{8} \rightarrow u = 9$	
x(x-2)(x+2)(x-1) < 0	

1

$$I = \int_{0}^{\sqrt{2}} \left(\frac{x}{\sqrt{1+x^2}}\right) dx$$

2013 NBHS Mades Extl Triol HSC Exam Marking Guide

- -- -

 $x(x-2)[x^{2}+x-2] < 0$ x(x-2)(x+2)(x-1) < 0 -2 < x < 0 $x < 2 \quad (from \ diagram)$

•

11(e) (i) (2 marks) Outcomes Assessed: 01

	Criterîa	Marks
•	• Correct graph for $y = 4 - x^2$	1
•	• Correct graph for $y = 3x $	1

Answer

11(e) (ii) (2 marks)	
Outcomes Assessed:	01

	Criteria	Mark
0	Solve for both points of intersection	1
9	Correct answer	1

Answer

Solve $4 - x^2 = 3x$ $4 - x^2 = 3x$ or $4 - x^2 = -3x$ $x^2 + 3x - 4 = 0 \quad or \quad x^2 - 3x - 4 = 0$ (x+4)(x-1)=0 or (x-4)(x+1)=0x = 4, -1x = 1, -4check solutions *correct solutions* : $x = \pm 1$ hence from diagram x < -1 or x > 1

Question 12 (15 marks) 12(a) (2 marks) Outcomes Assessed: 04

L	Criteria
ø	Achieves $\cos \alpha = \frac{\sqrt{3}}{4}$ and $\sin \alpha = \frac{\sqrt{13}}{4}$
0	Correct answer

Answer

Ø.

Let
$$\alpha = \cos^{-1} \frac{\sqrt{3}}{4}$$

 $\therefore \sin\left(2\cos^{-1} \frac{\sqrt{3}}{4}\right) = \sin(2\alpha)$
Also $\cos \alpha = \frac{\sqrt{3}}{4}$, hence $\sin \alpha = \frac{\sqrt{13}}{4}$ (pythagoras)
 $\sin\left(2\cos^{-1} \frac{\sqrt{3}}{4}\right) = \sin(2\alpha)$
 $= 2\sin \alpha \cos \alpha$
 $= 2, \frac{\sqrt{13}}{4}, \frac{\sqrt{3}}{4}$

2013 NBHS Maths Extl Trial HSC Exam Marking Guide

12(d) (i) (2 marks) Outcomes Assessed: 04

	Criteria	Marks
•	Makes a positive attempt to solve obtain the remainder by long division	1
	Correct answer	1

Answer

 $P(x) = x^4 + 3x^3 + 6x^2 + ax + b$ By long division $P(x) = (x^{2} + 2x + 1)(x^{2} + x + 3) + [(a - 7)x + (b - 3)]$ $\therefore R(x) = (a-7)x + (b-3)$

12(d) (ii) (1 mark)

Outcomes Assessed: 04

 Criteria	Mark
Correct answer	- 1

Answer 3x+2=(a-7)x+(b-3)

 $\therefore a = 10$ and b = 5

12(b) (i) (1 mark) Outcomes Assessed: 03

	Criteria	Mark	1
0	Correct answer reasoning		1

Answer

AO = OB(radii of circle centre O)

12(b) (ii) (2 marks) Outcomes Assessed: 03

	Criteria	Marks
L	Notes that $Also \angle AZO = 90^\circ$ with reasons	1
Ŀ	Correct answer with correct reasoning	1

Answer

Marks

1 1

5

If from (i) $\triangle OAB$ is isosceles

Also $\angle AZO = 90^{\circ}$ (angles in a semi-circle are right angles at the circumference) $\therefore AZ = ZB$ (a line from the apex of an isosceles triangle which meets the base at right angles, bisects the base)

12(c) (3 marks) Outcomes Assessed: 03

	Criteria	Marks
•	Obtains $\tan A + \tan B = 4$ or $\tan A \tan B = 9$	1
•	Uses $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$	1
9	Correct answer	1

Answer

Ь $\tan A + \tan B =$ $\tan A + \tan B = 4$

 $\tan A \tan B = \frac{c}{c}$ а

 $\tan A \tan B = 9$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$
$$= \frac{4}{1 - 9}$$
$$= -\frac{1}{2}$$
$$\angle (A+B) = 153^{\circ}26', \ 333^{\circ}26'$$

=153°, 333°

2013 NBHS Maths Ext1 Trial HSC Exam Morking Guide

12(e) (ii) (2 marks) 4.03

Outcomes Assesseu. Of	
Criteria	Marks
Achieves at least 2 of the correct answers	1
Correct answer	1

6

8

Answer

1

7

 $\frac{1}{4}\sin 4A = 0$

 $\sin 4A = 0$

 $4A = 0, \pi, 2\pi, 3\pi, 4\pi$

$$A = 0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \dots$$

Hence
$$A = 0, \frac{\pi}{4}, \frac{\pi}{2}$$
; $0 \le A \le \frac{\pi}{2}$

Question 13 (15 marks) 13(a) (3 marks) Outcomes Assessed: 02

	icomes mosessent of	
	Criteria	Marks
•	Provides clear steps similar to the first three steps below	
•	Makes a substitution in step 3 (from step 2)	1
9	Provides a clear working to obtain the required result and provides a	1

12(e) (i) (2 marks) Outcomes Assessed: 03

\square	Criteria	Marks
	Uses the double angle correctly at least once	1
•	Correct answer with correct working	1

Answer

$$\sin A \cos A \cos 2A = \frac{1}{4} \sin 4A$$

$$LHS = \frac{1}{2} [2 \sin A \cos A \times \cos 2A]$$

$$= \frac{1}{2} [\sin 2A \times \cos 2A]$$

$$= \frac{1}{2} \times \frac{1}{2} [2 \sin 2A \times \cos 2A]$$

$$= \frac{1}{4} \sin 4A$$

$$= RHS$$

Answer Step 1& 3 5h> 1+40 Step 1: Prove the expression is true for n=1 Step 2 - Using assungtion for h=k LHS = 51=5 5≥5 (true) 4 RHS = 1+4×1=5 }nr r=1 - All Romert Assume the expression is true for n=k (where k is even) $i \lambda_{.} 5^{k} \ge 1 + 4k$ (where k is a positive integer) Step 2: Prove the expression is true for n=k+1 $1 \leq 5^{k+1} \geq 1 + 4(k+1)$ $5.5^{k} \ge 4k + 5$ New Conse 5^{k+!} + 4k - 5 ≥0 Now LHS $= 5.5^k - 4k - 5$ $\geq 5(1+4k)-4k-5$ (from assumption) $=16k \ge 0$ $(k \ge 1)$ Hence if the expression is true when n=k, it is true when n=k+1Step 3 If the expression is true for $n=1, \therefore$ it is true when n=2If true for n=2, \therefore it is true when n=3È Therefore the expression is true for all $n, n \ge 1$.

2013 NBHS Maths Ext1 Trial HSC Exam Marking Guide

13(b) (i) (2 marks)

13(c) (i) (1 mark) Outcomes Assessed: 04

13(c) (ii) (1 mark) Outcomes Assessed: 04

Question 14 (15 marks) 14(a) (i) (2 marks)

Outcomes Assessed: 05

Criteria	Marks
 Achieves the acceleration formulae in an 	y form1
Correct working	
Answer	Alternative solution
$x = 2 + \sin^2 t O$	$\dot{x} = \sin 2t$
$v = 2\sin t \cos t$	× = 2 ws 2 t
$\ddot{x} = \cos t (2\cos t) + 2\sin t (-\sin t)$	$=2(1-2sih^{2}t)$
$=2\left[\cos^2 t - \sin^2 t\right]$	= 2 $\int -2(x-2) \int u_{x} due 0$
$= 2 \left[1 - \sin^2 t - \sin^2 t \right]$	=4 (x-等)
$=2\left[1-2\sin^2 t\right]$	
=2[1-2(x-2)] where (
=2[1-2x+4]	
=10-4x	

- 1		· • ·	
1		·····	
- 1			
- 1	• Acoreves correct answer		
- L			

Criteria

Answer

.

$$x^{2} + y^{2} = 25$$

$$y = \sqrt{25 - x^{2}} \quad (y > 0)$$

$$\frac{dy}{dx} = \frac{-x}{\sqrt{25 - x^{2}}}$$
Now $\frac{dx}{dt} = 1$

$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$$

$$\frac{dy}{dt} = -x$$

Differentiates correctly

Equates various rates of

$$\frac{dy}{dt} = \frac{-x}{\sqrt{25 - x^2}} \times 1$$

Now when y = 4, x = 3 $\frac{dy}{dt} = \frac{-3}{\sqrt{25 - 3^2}} \times 1$ $= -\frac{3}{4} (i.e. \frac{3}{4} \text{ metres per second down the wall})$ (3)

Note: A quicker method using the implicit function rule can be used by Ext 2 students.

 $=-4\left(x-\frac{5}{2}\right)$ Since in the form of $\ddot{x} = -n^2 \chi$, therefore SHM. where $\chi = (x-\frac{5}{2})$ and n=214(a) (ii) (1 mark) Outcomes Assessed: 05

	Criteria	Mark
•	Correct answer	1

Answer	
$\vec{x} = 0$	
10 - 4x = 0	
$x = \frac{5}{2}$	/

Marks

2

 (\mathbf{I})

(2)

14

Marks

1

... C2== V S/HK

g=-lot + vising

=-10t + 130×5

=-10++50

y=-10x2+50x

when too, yous

4=-5t2+50tH

Marks

-1-

5_15 = Cef

$$9.868 \le t$$

 $9.868 \le t$
 $9.868 \le t < 11.928 \ge t$
 $9.868 \le t < 11.928$
 $9.87 \le t < 11.93$