\qquad

CLASS (Please circle): 12M1 12M2 12M3 12M4 12M5

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-14, show relevant mathematical reasoning and/or calculations
- Begin each question on a separate

Total marks - 70
Section I
Pages 2-4
10 marks

- Attempt Questions 1-10
- Answer on the Multiple Choice answer sheet provided
- Allow about 15 minutes for this section

Section II
 Pages 5-9

60 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

Students are advised that this is a school-based examination only and cannot in any way guarantee the content or format of future Higher School Certificate Examinations.

Section I

10 marks

Attempt Questions 1 - 10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10

1

The diagram above represents a sketch of the gradient function of the curve $y=f(x)$. Which of the following is a true statement? The curve $y=f(x)$ has
(A) a minimum turning point occurs at $x=-4$
(B) a horizontal point of inflexion occurs at $x=2$
(C) a horizontal point of inflexion occurs at $x=-4$
(D) a maximum turning point occurs at $x=0$.

2 Solve $\frac{3}{x(2 x-1)} \geq 1$
(A) $x \leq-1,0<x<\frac{1}{2}$ and $x \geq \frac{3}{2}$
(B) $-1 \leq x<0$ and $\frac{1}{2}<x \leq \frac{3}{2}$
(C) $-\frac{3}{2} \leq x \leq-\frac{1}{2}$ and $0<x \leq 1$
(D) $x \leq-\frac{3}{2},-\frac{1}{2} \leq x<0$ and $x \geq 1$

3 If $\sin x=\frac{3}{5}, \frac{\pi}{2} \leq x \leq \pi$, evaluate $\tan 2 x$.
(A) $-\frac{7}{24}$
(B) $-\frac{24}{7}$
(C) $\frac{7}{24}$
(D) $\frac{24}{7}$

4 Find the acute angle between the tangents to the graphs $y=x$ and $y=x^{3}$ at the point $(1,1)$.
(A) 27°
(B) 30°
(C) 45°
(D) 63°

5 The polynomial $P(x)=2 x^{3}+k x^{2}+5 x-2$ has $(x+2)$ as a factor. Find the value of k.
(A) -7
(B) 7
(C) -12
(D) 12

6 Find $\frac{d}{d x}\left(\sqrt{1-x^{2}}+x \sin ^{-1} x\right)$
(A) $\frac{-2}{\sqrt{1-x^{2}}}$
(B) $\frac{-1}{\sqrt{1-x^{2}}}$
(C) $\cos ^{-1} x$
(D) $\sin ^{-1} x$

7 Find the domain and range of $y=3 \cos ^{-1} \pi x$
(A) Domain: $0 \leq x \leq 3$ Range: $0 \leq y \leq \pi$
(B) Domain: $-1 \leq x \leq 1$ Range: $0 \leq y \leq \pi$
(C) Domain: $-\pi \leq x \leq \pi$ Range: $0 \leq y \leq 3 \pi$
(D) Domain: $-\frac{1}{\pi} \leq x \leq \frac{1}{\pi}$ Range: $0 \leq y \leq 3 \pi$

8 A stone is thrown at an angle of α to the horizontal. The position of the stone at time t seconds is given by $x=V t \cos \alpha$ and $y=V t \sin \alpha-\frac{1}{2} g t^{2}$ where $g m / s^{2}$ is the acceleration due to gravity and $v \mathrm{~m} / \mathrm{s}$ is the initial velocity of projection.

What is the maximum height reached by the stone?
(A) $\frac{V \sin \alpha}{g}$
(B) $\frac{g \sin \alpha}{V}$
(C) $\frac{V^{2} \sin ^{2} \alpha}{2 g}$
(D) $\frac{g \sin ^{2} \alpha}{2 V^{2}}$

9 The volume of a sphere of radius 8 mm is increasing at a constant rate of $50 \mathrm{~mm}^{3}$.
Determine the rate of increase of the surface area of the sphere.
(A) $0.06 \mathrm{~mm}^{2} / \mathrm{s}$
(B) $0.60 \mathrm{~mm}^{2} / \mathrm{s}$
(C) $1.25 \mathrm{~mm}^{2} / \mathrm{s}$
(D) $12.50 \mathrm{~mm}^{2} / \mathrm{s}$

10 The acceleration of a particle is defined in terms of its position by $\ddot{x}=2 x^{3}+4 x$. The particle is initially $2 m$ to the right of the origin, travelling with velocity $6 \mathrm{~ms}^{-1}$. Find the minimum speed of the particle.
(A) $6 \mathrm{~ms}^{-1}$
(B) $16 \mathrm{~ms}^{-1}$
(C) $20 \mathrm{~ms}^{-1}$
(D) $36 \mathrm{~ms}^{-1}$

Section II

60 marks

Attempt Questions 11 - 14
Allow about 1 hour and 45 minutes for this section
Answer each question in a SEPARATE writing booklet.
Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
Marks
(a) (i) Evaluate $\int_{1}^{2} \frac{d x}{x}$.

1
(ii) Use Simpson's rule with 3 function values to approximate $\int_{1}^{2} \frac{d x}{x}$.
(iii) Use your results to parts (i) and (ii) to obtain an approximation for e . Give your answer correct to 3 decimal places.
(b) Using one application of Newton's method with $x=\frac{\pi}{2}$ as the first
approximation, find the second approximation to the root of the equation $\cos x=2 x-3$. Correct answer to 3 decimal places.
(c) The polynomial $P(x)=x^{3}+b x^{2}+c x+d$ has roots 0,3 and -3 .
(i) What are the values of b, c and d ?

2
(ii) Without using calculus, sketch the graph of $y=P(x)$. 1
(iii) Hence or otherwise, solve the inequality $\frac{x^{2}-9}{x}>0$
(d) Consider the function $f(x)=\tan ^{-1} \frac{1}{x}$. Find the slope of the tangent to the curve where the function $y=f(x)$ cuts the y-axis.
(e) Find the exact value of $\int_{-1}^{1} \sqrt{4-x^{2}} d x$, using the substitution $x=2 \sin \theta$.
(a) The point $C(-28,19)$ divides the interval $A B$ externally in the ratio $k: 5$.

Find the value of k if A is the point $(-4,3)$ and B is the point $(2,-1)$
(b) (i) Show that $\sin \left(x+\frac{\pi}{4}\right)=\frac{\sin x+\cos x}{\sqrt{2}}$
(ii) Hence or otherwise, solve $\frac{\sin x+\cos x}{\sqrt{2}}=\frac{\sqrt{3}}{2}$ for $0 \leq x \leq 2 \pi$.

1
(c) $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ are two points on the parabola $x^{2}=4 a y$.
(i) Show that the equation of the normal to the parabola at P is given by $x+p y=2 a p+a p^{3}$.
(ii) Find the co-ordinates of R, the point of intersection of the normals at P and Q, in terms of p and q.
(iii) If $p q=-2$, find the cartesian equation of the locus of R.
(d) Evaluate $\int_{0}^{1} x^{2} \sqrt{1+3 x^{3}} d x$ using the substitution $u=1+3 x^{3}$.
(e) After t years the number of animals, N, in a national park decreases according to the equation:

$$
\frac{d N}{d t}=-0.09(N-100)
$$

The initial number of animals in the national park is 400 .
(i) Verify that $N=100+A e^{-0.09 t}$ is a solution of the above equation, where A is a constant.
(ii) How many years does it take for the number of animals to reach 150 ?
(a)

The diagram shows a cylindrical barrel of length l and radius r. The point A is at one end of the barrel, at the very bottom of the rim. The point B is at the very top of the barrel, half-way along its length. The length of AB is d.
(i) Show that the volume of the barrel is $V=\frac{\pi l}{4}\left(d^{2}-\frac{l^{2}}{4}\right)$.
(ii) Find l in terms of d if the barrel has maximum volume for the given d.
(b) Two circles are intersecting at P and Q. The diameter of one of the circles is $P R$.

Copy this diagram into your writing booklet.
(i) Draw a straight line through P, parallel to $Q R$ to meet the circle $P R Q$ at S and the other circle at T. Prove that $Q S$ is also diameter of the circle.
(ii) Prove that the circles have equal radii if $T Q$ is parallel to $P R$.

Question 13 continues on page 9
(c) A rocket is fired from a pontoon on the sea. The rocket is aimed at a 60 m high cliff, 240 m from the pontoon. The angle of projection of the rocket is 45° and its initial velocity is $40 \sqrt{2} \mathrm{~ms}^{-1}$.
(i) Taking the point of projection as the origin O , derive expressions for the horizontal component x and vertical component y of the position of the rocket at time t seconds.
(Assume the acceleration due to gravity is $10 \mathrm{~ms}^{-2}$)
(ii) Show that the path of the rocket is given by the equation

$$
y=x-\frac{x^{2}}{320}
$$

(iii) Find the time taken for the rocket to land on top of the cliff.

[^0](a) Use mathematical induction to prove that $3^{n}+7^{n+1}$ is divisible by 4 for all integers $n \geq 1$.
(b) The velocity of a particle moving in a straight line is given by
$$
v=10-x
$$
where x metres is the displacement from a fixed point O and v is the velocity in metres per second. Initially the particle is at O .
(i) Show that the acceleration of the particle is given by
$$
\ddot{x}=x-10
$$
(ii) Express x in terms of time t.
(iii) What is the limiting position of the particle?
(c) A particle moves in a straight line and its displacement x metres from a fixed point O at any time t seconds is given by the equation
$$
x=4 \cos ^{2} t-1 .
$$
(i) Prove that the particle is undergoing simple harmonic motion.
(ii) State the period of the motion.
(iii) Sketch the graph $x=4 \cos ^{2} t-1$ for $0 \leq t \leq \pi$.

Clearly show the times when the particle passes through O.
(iv) Find the time when the velocity of the particle is increasing most rapidly for $0 \leq t \leq \pi$.

End of paper

STANDARD INTEGRALS

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec ^{2} a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan -\frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\sin \left(x+\sqrt{x^{-1}} \frac{x}{a}, a>0,-a<x<a\right. \\
\sqrt{x^{2}-a^{2}} d x & \\
\int \ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int &
\end{array}
$$

NOTE: $\ln x=\log _{e} x, x>0$

2015 Trial Extension 1 Solutions

1) (C)
2) $\frac{3}{x(2 x-1)} \geqslant 1$

$$
\begin{align*}
& x^{2}(2 x-1)^{2} \times \frac{3}{x(2 x-1)} \geqslant x^{2}(2 x-1)^{2} \\
& 3 x(2 x-1) \geqslant x^{2}(2 x-1)^{2} \\
& x(2 x-1)[(3-x(2 x-1)] \geqslant 0 \\
& x(2 x-1)\left(2 x^{2}-x-3\right) \leqslant 0 \\
& x(2 x-1)(2 x-3)(x+1) \leqslant 0 \\
& \therefore-1 \leqslant x<0 \quad \& \quad \frac{1}{2} \leqslant x \leqslant \frac{3}{2} \tag{B}
\end{align*}
$$

3) $\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$

$$
=\frac{2\left(-\frac{3}{4}\right)}{1-\left(-\frac{3}{4}\right)^{2}}=-\frac{24}{7}
$$

(B)
4)

$$
\begin{array}{ll}
y=x & \begin{array}{ll}
y=x^{3} \\
m_{1} & =1
\end{array} \\
\tan \theta=\left|\frac{1-3}{1+(1)(3)}\right|=\frac{1}{2} \\
y_{2}^{\prime}=3 x^{2}
\end{array} \quad \text { at }(1,1)
$$

(A)
5)

$$
\begin{gathered}
P(x)=2 x^{3}+k x^{2}+5 x-2 \\
P(-2)=0 \\
2(-2)^{3}+k(-2)^{2}+5(-2)-2=0 \\
-16+4 k-12=0 \\
k=7
\end{gathered}
$$

(3)
6)

$$
\begin{aligned}
& \frac{d}{d x}\left(\sqrt{1-x^{2}}+x \sin ^{-1} x\right) \\
= & \frac{1}{2}\left(1-x^{2}\right)^{-\frac{1}{2}}(-2 x)+x \cdot \frac{1}{\sqrt{1-x^{2}}}+\sin ^{-1} x \\
= & \sin ^{-1} x
\end{aligned}
$$

(D)
7) $y=3 \cos ^{-1} \pi x$

$$
\begin{aligned}
D: & -1<\pi x<1 \\
& -\frac{1}{\pi}<x<\frac{1}{\pi}
\end{aligned}
$$

$$
R: 0 \leqslant y \leqslant 3 \pi
$$

(D)
8)

$$
\begin{align*}
& y=V_{t} \sin \alpha-\frac{g t^{2}}{2} \tag{1}\\
& \dot{y}=V \sin \alpha-g t
\end{align*}
$$

Atmax height, $\dot{y}=0$
$V \sin \alpha-g t=0$

$$
t=\frac{V \sin \alpha}{g}
$$

Subs into (1),

$$
\text { max } \begin{aligned}
h r & =V \sin \alpha \times \frac{V \sin \alpha}{g}-\frac{g}{2}\left(\frac{V \sin \alpha}{g}\right)^{2} \\
& =\frac{V^{2} \sin ^{2} \alpha}{2 g}
\end{aligned}
$$

(C)
9)

$$
\begin{array}{rlrl}
V & =\frac{4}{3} \pi r^{3} & S & =4 \pi r^{2} \\
\frac{d V}{d t} & =\frac{d V}{d r} \times \frac{d r}{d t} & \frac{d S}{d t} & =\frac{d s}{d r} \times \frac{d r}{d t} \\
50 & =4 \pi r^{2} \times \frac{d r}{d t} & & =8 \pi \times 8 \times \frac{25}{128 \pi} \\
\frac{d r}{d t} & =\frac{25}{128 \pi} & & =12.5 \mathrm{~mm}^{2} / \mathrm{s}
\end{array}
$$

(D)
10)

$$
\begin{aligned}
& \ddot{x}=2 x^{3}+4 x \\
& \frac{d}{d x}\left(\frac{r^{2}}{2}\right)=2 x^{3}+4 x \\
& \frac{r^{2}}{2}=\frac{x^{4}}{2}+2 x^{2}+c
\end{aligned}
$$

when $t=0, x=2, r=6$

$$
\begin{aligned}
& \therefore \frac{36}{2}=\frac{16}{2}+8+C \\
& c=2 \\
& \therefore r^{2}=\left(x^{2}+2\right)^{2}
\end{aligned}
$$

When $t=0, x=2, v=6>0$

$$
\therefore V=x^{2}+2
$$

Hence $v \geqslant 6$ as the porticle never changes drection and it is moling with increasing speed.
(4)
(1) a) is

$$
\begin{align*}
\int_{1}^{2} \frac{d x}{x} & =[\ln x]_{1}^{2} \\
& =\ln 2-\ln 1 \\
& =\ln 2 \tag{1}
\end{align*}
$$

ii)

$$
\begin{aligned}
\int_{1}^{2} \frac{d x}{x} & \doteqdot \frac{06}{3}\left(1+4 \times \frac{1}{1.5}+\frac{1}{2}\right) \\
& =\frac{25}{36}
\end{aligned}
$$

(1)
iii)

$$
\begin{align*}
\ln 2 & \doteqdot \frac{25}{36} \\
2 & \doteqdot e^{\frac{25}{36}} \\
e & \doteqdot 2^{\frac{36}{25}} \\
& =2.713(3 \text { dee } p l) \tag{3}
\end{align*}
$$

b)

$$
\begin{align*}
f(x) & =\cos x-2 x+3 \\
f^{\prime}(x) & =-\sin x-2 \\
f\left(\frac{\pi}{2}\right) & =\cos \frac{\pi}{2}-2\left(\frac{\pi}{2}\right)+3 \\
& =3-\pi \\
f^{\prime}\left(\frac{\pi}{2}\right) & =-\sin \frac{\pi}{2}-2 \\
& =-3 \\
\therefore x_{1} & =\frac{\pi}{2}-\frac{3-\pi}{-3} \\
& =\frac{\pi}{15}+1 \\
& =1.524(3 \text { despl. }) \tag{2}
\end{align*}
$$

c)

$$
\text { i) } \left.\begin{array}{rl}
x^{3}+6 x^{2}+c x+d & =x(x-3)(x+3) \\
& =x^{3}-9 x \\
\therefore b & =0 \\
c & =-9 \\
d & =0
\end{array}\right\}
$$

if)

iii)

$$
\begin{align*}
& x^{2} \times \frac{x^{2}-9}{x}>0 \times x^{2} \tag{1}\\
& x\left(x^{2}-9\right)>0
\end{align*}
$$

From graph, $-3<x<0$ of $x>3$
d)

$$
\begin{align*}
y & =\tan ^{-1} \frac{1}{x} \\
y^{\prime} & =\frac{1}{1+\left(\frac{1}{x}\right)^{2}}\left(-\frac{1}{x^{2}}\right) \\
& =-\frac{1}{x^{2}+1} \\
& =-1 \text { ar } x=0 \tag{2}
\end{align*}
$$

$$
a t^{t} x=0
$$

e)

$$
\begin{align*}
& \int_{-1}^{1} \sqrt{4-x^{2}} d x \quad x=2 \sin \theta \\
= & \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \sqrt{4-4 \sin ^{2} \theta} \times 2 \cos \theta d \theta d \frac{d x}{d \theta}=2 \cos \theta \\
= & 4 \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \cos ^{2} \theta d \theta \\
= & 8 \int_{0}^{\frac{\pi}{6}} \frac{1}{2}(\cos 2 \theta+1) d \theta \\
= & 4\left[\frac{1}{2} \sin 2 \theta+\theta\right]_{0}^{\frac{\pi}{6}} \\
= & 4\left(\frac{1}{2} \sin \frac{\pi}{3}+\frac{\pi}{6}-0-0\right) \\
= & 4\left(\frac{1}{2} \times \frac{\sqrt{3}}{2}+\frac{\pi}{6}\right) \\
= & \sqrt{3}+\frac{2 \pi}{3}
\end{align*}
$$

$124 a$

$$
\begin{align*}
-28 & =\frac{2(-k)+(-4)(5)}{-k+5} \\
k & =4 \tag{2}
\end{align*}
$$

b) i)

$$
\begin{align*}
\angle A S & =\sin \left(x+\frac{\pi}{4}\right) \\
& =\sin x \cos \frac{\pi}{4}+\cos x \sin \frac{\pi}{4} \\
& =(\sin x) \times \frac{1}{\sqrt{2}}+(\cos x) \times \frac{1}{\sqrt{2}} \\
& =\frac{\sin x+\cos x}{\sqrt{2}} \tag{1}\\
& =\text { RIIS }
\end{align*}
$$

ii)

$$
\begin{align*}
& \sin \left(x+\frac{\pi}{4}\right)=\frac{\sqrt{3}}{2} \\
& x+\frac{\pi}{4}=\frac{\pi}{3} \text { or } \frac{2 \pi}{3} \\
& \therefore x=\frac{\pi}{12} \text { or } \frac{5 \pi}{12} \tag{2}
\end{align*}
$$

12c)is

$$
\begin{aligned}
y & =\frac{x^{2}}{4 a} \\
\frac{d y}{d x} & =\frac{x}{2 a} \\
& =\frac{2 a p}{2 a} \\
& =p
\end{aligned}
$$

\therefore gradient of noraral $=-\frac{1}{p}$
Equation of noranal at P :

$$
\begin{align*}
& y-a p^{2}=-\frac{1}{p}(x-2 a p) \\
& p y-a p^{3}=-x+2 a p \\
& x+p y=2 a p+a p^{3} . \tag{1}
\end{align*}
$$

ii) Equation of normal at Q :

$$
\begin{equation*}
x+q y=2 a q+a q^{3} \tag{2}
\end{equation*}
$$

(1) - (3),

$$
\begin{aligned}
y & =\frac{2 a(p-q)+a\left(p^{3}-q^{3}\right)}{p-q} \\
& =\frac{2 a(p-q)+a(p-q)\left(p^{2}+p q+q^{2}\right)}{p-q} \\
& =a\left(2+p^{2}+p q+q^{2}\right)
\end{aligned}
$$

Sub into (1),

$$
\begin{gather*}
x=2 a p+a p^{3}-a p\left(2+p^{2}+p q+q^{2}\right) \\
=-a p q(p+q) \\
\therefore R=\left[-a p q(p+q), a\left(2+p^{2}+p q+q^{2}\right)\right] \tag{2}
\end{gather*}
$$

iii)

$$
\begin{align*}
& x=-a p q(p+q)- \tag{1}\\
& y=a\left(2+p^{2}+p q+q^{2}\right) \tag{2}\\
& p q=-2 \tag{3}
\end{align*}
$$

Sub (3) Into (1),

$$
\begin{align*}
& x=-a(-2)(p+q) \\
& p+q=\frac{x}{2 a}-\Theta
\end{align*}
$$

From (2),

$$
\begin{align*}
y & =a\left[p q+(p+q)^{2}-2 p q+2\right] \\
& =a\left[-2+\left(\frac{x}{2 a}\right)^{2}-2(-2)+2\right] \text { using } \tag{3}
\end{align*}
$$

$$
\begin{aligned}
&=\frac{x^{2}}{4 a}+4 a \\
& \therefore x^{2}=4 a(y-4 a) \\
& \text { is the lo cus of } R
\end{aligned}
$$

d)

$$
\begin{align*}
& \int_{0}^{1} x^{2} \sqrt{1+3 x^{2}} d x \\
= & \frac{1}{9} \int_{1}^{4} \sqrt{u} d u \\
= & \frac{1}{9} \times \frac{2}{3}\left[u^{\frac{3}{2}}\right]_{1}^{4} \\
= & \frac{2}{27}(8-1) \\
= & \frac{14}{27} \tag{2}
\end{align*}
$$

$$
u=1+3 x^{3}
$$

$$
\frac{d u}{d x}=9 x^{2}
$$

e) is

$$
\begin{align*}
N & =100+A e^{-0.09 t} \tag{2}\\
\frac{d N}{d t} & =-0.09 A e^{-0.09 t} \\
& =-0.09(N-100) \text { uring (1) } \tag{1}
\end{align*}
$$

ir)

$$
N=100+A e^{-0.09 t}
$$

When $t=0, N=400$

$$
\begin{aligned}
& 400=100+A \\
& \therefore A=300 \\
& N=100+300 e^{-0.09 t} \\
& 150=100+300 e^{-0.09 t} \\
& \frac{50}{300}=e^{-0.09 t} \\
& \ln 6^{-1}=-0.09 t \\
& t=\frac{\ln 6}{0.09} \\
& \\
& \equiv 19.9
\end{aligned}
$$

It takes 20 years for the
(3) a) i) $V=\pi r^{2} t$

$$
\begin{align*}
d^{2} & =(2 r)^{2}+\left(\frac{l}{2}\right)^{2} \\
& =4 r^{2}+\frac{l^{2}}{4} \\
r^{2} & =\frac{1}{4}\left(d^{2}-\frac{l^{2}}{4}\right) \\
\therefore V & =\pi l\left[\frac{1}{4}\left(d^{2}-\frac{l^{2}}{4}\right]\right] \\
& =\frac{\pi l}{4}\left(d^{2}-\frac{l^{2}}{4}\right) \tag{1}
\end{align*}
$$

ii) $V=\frac{\pi}{4} \frac{1 d^{2}}{4}-\frac{\pi}{16} N^{3}$

$$
\frac{d v}{d t}=\frac{\pi d^{2}}{4}-\frac{3 \pi}{16} l^{2}
$$

$$
=0
$$

when $\frac{\pi d^{2}}{4}=\frac{3 \pi}{16} l^{2}$

$$
\begin{aligned}
l^{2} & =\frac{\pi d^{2}}{4} \times \frac{l 6}{3 \pi} \\
& =\frac{4 d^{2}}{3} \\
l & =\frac{2}{\sqrt{3}} d
\end{aligned}
$$

$$
\frac{d^{2} v}{d l^{2}}=-\frac{3 \pi l}{8} l
$$

$$
=-\frac{3 \pi}{8} \times \frac{2 d}{\sqrt{3}}
$$

$$
\begin{equation*}
<0 \tag{2}
\end{equation*}
$$

$\therefore \max V$ when $l=\frac{2}{\sqrt{3}} d$
b) i)

$\angle P Q R=90^{\circ}$ (Angle in a semicinde)
$\angle S P Q Q+\angle P Q R=180^{\circ}$ (cointentr angles, $P S / Q R R$)

$$
\therefore \angle S P Q=90^{\circ}
$$

Hence $Q S$ is a diameter (Angle in a semicicide equals 90°)
ii) $\begin{aligned} \angle T P Q & =\angle P Q R \text { (Atemate angles, } 90^{\circ} \text {) } 1 / / 1 R R \text {) } \\ & =90^{\circ}\end{aligned}$

$$
=90^{\circ}
$$

$\therefore T \alpha$ is a diameter (Angle in a semicick $=90^{\circ}$) $P R Q T$ is a parallelogram ($T Q U P R, T P / / Q R$)
$P R=Q T$ (Opposite sides of parallelogram) $P R$ and $Q T$ are equal diameters
\therefore the two circles have equal radii,
c)

i) $\begin{aligned} \ddot{y} & =-10 \\ \dot{y} & =-10 t+C_{1}\end{aligned}$
$\ddot{x}=0$
$\dot{x}=40 \sqrt{2} \cos 45^{\circ}$
$\begin{array}{rlrl}\text { when } t=0, \dot{y} & =40 \sqrt{2} \sin 45^{\circ} & & =40 \\ = & x & =40 t+c_{3} \\ \therefore c_{1}=40 & \text { when } t=0, x=0 \\ \dot{y}=-10 t+40 & \therefore c_{3}=0 \\ y=-\frac{10 t^{2}}{2}+40 t+c_{2} & x=40 t\end{array}$
when $t=0, y=0$

$$
\therefore c_{2}=0
$$

$$
\begin{equation*}
y=-5 t^{2}+40 t \tag{2}
\end{equation*}
$$

ii) $x=40 t$-(1)

$$
y=-5 t^{2}+40 t-(2)
$$

Sub (1) into (2),

- $y=-5\left(\frac{x}{40}\right)^{2}+40\left(\frac{x}{40}\right)$
$y=x-\frac{x^{2}}{320}$
iii) Sub $y=60$ into (2),

$$
\begin{align*}
& 60=-5 t^{2}+40 t \\
& t^{2}-8 t+12=0 \\
& (t-6)(t-2)=0 \tag{2}\\
& t=2 \text { or } 6
\end{align*}
$$

\therefore it takes 6 s to reach the top. If
iv) At the top of the cliff.

$$
\dot{x}=40
$$

$$
\begin{aligned}
v^{2} & =(-20)^{2}+40^{2} \\
& =2000
\end{aligned}
$$

$|v|=20 \sqrt{5}$

Alterative Method
S Sub $x=240$ into 0 ,
$240=40 t$
$t=6$
\checkmark

$$
\dot{y}=-10 t+40
$$

$$
=-10(6)+40
$$

$$
=-20
$$

The velocity is $20 \sqrt{5} \mathrm{~m} / \mathrm{s}$,
at an angle of $26^{\circ} 34^{\prime}$ to the horizontal. at an angle of $26^{\circ} 34^{\prime}$ to the horizontal.
14)
a) $n=1$,

$$
3^{n}+7^{n+1}=3+7^{2}
$$

$=52$ which is divisible by 4
\therefore true for $n=1$
Assume true for $n=k$,
ie. $3^{k}+7^{k+t}=4 P$ where P is an integer
Prove the for $n=k+1$,
is. $3^{k+1}+7^{k+2}=4 Q, Q$ cm integer

$$
\begin{align*}
\text { HS } & =3 \times 3^{k}+7^{k} \times 49 \\
& =3\left(4 P-7 \times 7^{k}\right)+49 \times 7^{k} \text { using } \\
& =3 \times 4 P-21 \times 7^{k}+49 \times 7^{k} \text { assumption } \\
& =3 \times 4 P+28 \times 7^{k} \\
& =4\left(3 P+7 \times 7^{k}\right) \\
& =4 Q
\end{align*}
$$

Hence result is the for $n=k$, it is also the for $n=k+1$.
By principal of mathematical induction, result is thin for all integers $n \geqslant 1$.
b) is

$$
\begin{align*}
\ddot{x} & =\frac{d}{d x}\left(\frac{v^{2}}{2}\right) \\
& =\frac{d}{d x} \frac{1}{2}(10-x)^{2} \\
& =\frac{d}{d x}\left(50-10 x+\frac{1}{2} x^{2}\right) \\
& =x-10 \tag{1}
\end{align*}
$$

ii)

$$
\begin{aligned}
& \frac{d x}{d t}=10-x \\
& \int \frac{1}{10-x} d x=\int d t \\
& t=-\ln (10-x)+C
\end{aligned}
$$

when $t=0, x=0$

$$
\begin{align*}
0 & =-\ln 10+c \\
\therefore t & =-\ln (10-x)+\ln 10 \\
& =\ln \frac{10}{10-x} \\
e^{t} & =\frac{10}{10-x} \\
10-x & =10 e^{-t} \\
x & =10-10 e^{-t} \tag{3}
\end{align*}
$$

iii) 10 m on the Ruts of 0 .
C) i)

$$
\begin{align*}
x & =4 \cos ^{2} t-1 \\
& =2 \cos 2 t+1 \\
\bar{x} & =-4 \sin 2 t \\
\ddot{x} & =-4 \times 2 \cos 2 t \\
& =-4(x-1) \\
& =-2^{2}(x-1) \tag{2}
\end{align*}
$$

\therefore SHM about the print $x=1$
ii)

$$
\begin{align*}
\text { Period } & =\frac{2 \pi}{2} \\
& =\pi_{1} \text { seconds } \tag{1}
\end{align*}
$$

(ii)

Shaper t intercepts \checkmark
iv) Velocity is increasing most rapidly when \ddot{x} has the clearest positive value or x takes the least value, ie. $x=-1$

$$
\begin{gather*}
x=4 \cos ^{2} t-1 \tag{3}\\
-1=4 \cos ^{2} t-1 \\
\cos ^{2} t=0 \\
t=\frac{\pi}{2}
\end{gather*}
$$

OR. From graph,
when $x=-1$
when $x=-1$

$$
\begin{aligned}
t & =\frac{1}{2}\left(\frac{\pi}{3}+\frac{2 \pi}{3}\right) \\
& =\frac{\pi}{2}
\end{aligned}
$$

\therefore velocity is increasing most rapidly at $\frac{\pi}{2}$ seconds

[^0]: (iv) Find the exact velocity of the rocket when it reaches this point. (Hint: velocity includes magnitude and direction)

