

NORMANHURST BOYS HIGH SCHOOL

MATHEMATICS EXTENSION 1

2017 HSC Course Assessment Task 4 (Trial HSC)
Monday August 7, 2017

General instructions

- Working time -2 hours.
(plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- NESA approved calculators may be used.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets used in the correct order after this paper, tie into one bundle with the string provided and hand to examination supervisors.
- A NESA Reference Sheet is provided.

SECTION I

- Mark your answers on the answer grid provided (on page 9)

SECTION II

- Commence each new question on a new booklet. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

NESA STUDENT \#:
\# BOOKLETS USED:

Class (please \boldsymbol{V})
12MAT. 1 - Mrs Bhamra
O 12MAT. 3 - Mr Wall
○ 12MAT. 4 - Mr Sekaran
O 12MAT. 2 - Mr Lam
O 12MAT. 5 - Mrs Gan

Marker's use only.

QUESTION	1-10	$\overline{11}$	$\overline{12}$	$\overline{13}$	$\overline{14}$	Total	$\%$
MARKS	$\overline{10}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{70}$	

Section I

10 marks

Attempt Question 1 to 10

Allow approximately 10 minutes for this section

Mark your answers on the answer grid provided (labelled as page 9).

Questions

1. The points A, B and C lie on a circle with centre O, as shown in the diagram.

The size of $\angle A O C$ is $\frac{4 \pi}{5}$ radians.
What is the size of $\angle A B C$ in radians?
(A) $\frac{3 \pi}{10}$
(B) $\frac{\pi}{2}$
(C) $\frac{3 \pi}{5}$
(D) $\frac{4 \pi}{5}$
2. Which of the following is the range of the function

$$
y=2 \sin ^{-1} x+\frac{\pi}{2}
$$

(A) $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
(C) $-\pi \leq y \leq \pi$
(B) $-\frac{\pi}{2} \leq y \leq \frac{3 \pi}{2}$
(D) $-\pi \leq y \leq \frac{3 \pi}{2}$
3. What is the y coordinate of the point that divides the interval joining $P(-2,2)$ and $Q(8,-3)$ internally in the ratio $3: 2$?
(A) 2
(B) 1
(C) 0
(D) -1
4. Which of the following is the derivative of $\sin ^{-1} \frac{2 x}{3}$?
(A) $\frac{3}{\sqrt{9-4 x^{2}}}$
(B) $\frac{2}{\sqrt{9-4 x^{2}}}$
(C) $\frac{3}{\sqrt{3-2 x^{2}}}$
(D) $\frac{2}{\sqrt{3-2 x^{2}}}$
5. What is the value of $\lim _{x \rightarrow 0} \frac{\sin x \cos x}{2 x}$?
(A) 2
(B) 1
(C) $\frac{1}{2}$
(D) $\frac{1}{4}$
6. Which of the following is a correct intermediate step in evaluating

$$
\int_{0}^{1} 3 x\left(x^{2}+1\right)^{5} d x
$$

by using the substitution $u=x^{2}+1$?
(A) $3 \int_{1}^{2} u^{5} d u$
(B) $\frac{3}{2} \int_{1}^{2} u^{5} d u$
(C) $3 \int_{0}^{1} u^{5} d u$
(D) $\frac{3}{2} \int_{0}^{1} u^{5} d u$
7. A particle undergoing simple harmonic motion in a straight line has an acceleration of $\ddot{x}=25-5 x$, where x is the displacement after t seconds.

Where is the centre of motion?
(A) $x=0$
(B) $x=5$
(C) $x=10$
(D) $x=15$
8. The function $f(x)=\sin x-\frac{2 x}{3}$ has a real root close to $x=1.5$. If $x=1.5$ is the first approximation, what is the next approximation to the root by using Newton's Method of approximation?
(A) 1.495
(B) 1.496
(C) 1.503
(D) 1.504
9. The diagram below shows the velocity-time graph of an object that moves over a ten second time interval.

For what percentage of time is the speed of the object decreasing?
(A) 30%
(C) 70%
(B) 60%
(D) Cannot determine from the graph.
10. What is the solution of the inequation $3 x+2<|2 x-1|$?
(A) $x<-\frac{1}{5}$
(C) $-3<x<\frac{1}{5}$
(B) $x<-3$
(D) $x<-\frac{1}{5}$ or $x>3$

Examination continues overleaf. . .

Section II

60 marks

Attempt Questions 11 to 14

Allow approximately 1 hour and 50 minutes for this section.

Write your answers in the writing booklets supplied. Additional writing booklets are available. Your responses should include relevant mathematical reasoning and/or calculations.
(a) Solve for x : $\frac{x}{x^{2}-1}>0$
(b) Find the size of the acute angle between the lines $x-y=2$ and $2 x+y=1$. Give your answer to the nearest degree.
(c) $\quad P\left(2 a t, a t^{2}\right)$ is any point on the parabola $x^{2}=4 a y$. The line ℓ is parallel to the tangent at P and passes through the focus S of the parabola.

i. Find the equation of the line ℓ.
ii. The line ℓ intersects the x axis at the point R. Find the coordinates of the midpoint M, of the interval $R S$.
iii. Find the equation of the locus of M as the point P moves along the parabola where $t \neq 0$.
(Note: Consideration of the case where $t=0$ is not required for purposes of this question.)

Question 11 continues overleaf ...

Question 11 continued from page 7 . .
(d) $A B C D$ is a cyclic quadrilateral with $\angle F A E=\angle E C D=90^{\circ}$.

Copy or trace the diagram into your writing booklet.
i. Give a reason why $A E C F$ is a cyclic quadrilateral.
ii. Hence prove that $E F$ is parallel to $B D$.

Question 12 (15 Marks)
Commence a NEW booklet.
(a) i. Show that $\cos (A-B)=\cos A \cos B(1+\tan A \tan B)$.
ii. Suppose that $0<B<\frac{\pi}{2}$ and $B<A<\pi$.

Deduce that if $\tan A \tan B=-1$, then $A-B=\frac{\pi}{2}$.
(b) The region bounded by the graph $y=3 \cos \frac{x}{2}$ and the x axis between $x=0$ and $x=\pi$ is rotated about the x axis to form a solid.

Find the exact volume of the solid.
(c) Prove by mathematical induction that $5^{n}+12 n-1$ is divisible by 16 for all positive integers $n \geq 1$.
(d) Find $\int \frac{1}{x^{2}+2 x+2} d x$
(e) Consider the function $f(x)=\frac{x}{x+4}$.
i. Explain why $f(x)$ has an inverse function $f^{-1}(x)$.
ii. Find an expression for the inverse function $f^{-1}(x)$.
iii. Find the point(s) of intersection of $y=f(x)$ and $y=f^{-1}(x)$.

Question 13 (15 Marks)
Commence a NEW booklet.
(a) Newton's Law of Cooling states that when an object at temperature $T^{\circ} \mathrm{C}$ is placed in an environment $T_{0}^{\circ} \mathrm{C}$, the rate of the temperature loss is given by the equation

$$
\frac{d T}{d t}=-k\left(T-T_{0}\right)
$$

where t is the time in minutes, and k is a positive constant.
An object whose initial temperature is $90^{\circ} \mathrm{C}$ is placed in a room in which the internal temperature is maintained at $20^{\circ} \mathrm{C}$. After 10 minutes, the temperature of the object is $70^{\circ} \mathrm{C}$.
i. Show that $T=T_{0}+A e^{-k t}$ satisfies the above equation.

1
ii. Show that $k=\frac{1}{10} \log _{e} \frac{7}{5}$.
iii. How long will it take for the object's temperature to reduce to $63^{\circ} \mathrm{C}$?
(b) A particle moves in a straight line such that its acceleration $\ddot{x} \mathrm{~ms}^{-2}$ is given by

$$
\ddot{x}=x+\frac{3}{2}
$$

Initially, the particle was 5 metres to the right of O and moving towards O with a speed of $6 \mathrm{~ms}^{-1}$.
i. Initially was the particle speeding up or slowing down? Justify your answer.
ii. Show that $v^{2}=x^{2}+3 x-4$. 2
iii. Where does the particle first change direction?
(c) A particle moves in a straight line and its position at time t is given by

$$
x=5+\sqrt{3} \sin 3 t-\cos 3 t
$$

i. Express $\sqrt{3} \sin 3 t-\cos 3 t$ in the form $R \sin (3 t-\alpha)$, where α is in radians.
ii. Prove that the particle is undergoing simple harmonic motion.
iii. Find the amplitude and centre of motion.
iv. Find the first time when the particle is at its minimum displacement.
(a) A particle is projected from a point O with speed of V metres per second at an angle of θ to the horizontal. Air resistance is negligible, and the acceleration due to gravity is $g \mathrm{~ms}^{-2}$. The particle also passes through the point $(4,3)$.

The displacement-time equations for the projectile are

$$
\begin{aligned}
x & =V t \cos \theta \quad(\text { Do NOT prove these) } \\
y & =-\frac{1}{2} g t^{2}+V t \sin \theta
\end{aligned}
$$

i. Show that the Cartesian equation of the trajectory is given by

$$
y=x \tan \theta-\frac{g x^{2}}{2 V^{2}}\left(1+\tan ^{2} \theta\right)
$$

ii. Find the initial angle of projection θ to the nearest minute, if $V^{2}=8 g$.
iii. Find the range of the projectile.

Question 14 continues overleaf ...

Question 14 continued from page 7. .
(b) An oil tanker at T is leaking oil which forms a circular oil slick. An observer is measuring the oil slick from a position $P, 450$ metres above sea level and 2 kilometres horizontally from the centre of the oil slick.

i. At a certain time the observer measures the angle, α, subtended by the diameter of the oil slick, to be 0.2 radians. What is the radius, r, at this time?
ii. At this time, $\frac{d \alpha}{d t}=0.04$ radians per hour. Find the rate at which the area of the oil slick is growing.
(c) It is given that $P(x)=(x-a)^{3}+(x-b)^{2}$. The remainder when $P(x)$ is divided by $(x-b)$ is -8 .
i. Show that when $P(x)$ is divided by $(x-a)$, the remainder is 4 .
ii. Prove that $x=\frac{a+b}{2}$ is a zero of $P(x)$.
iii. Prove that $P(x)$ has no stationary points.

End of paper.

Sample Band E4 Responses

Section I

1. (C) 2. (B) 3. (D) 4. (B) 5. (C)
2. (B) 7. (B) 8. (B) 9. (A) 10. (A)

Section II

Question 11 (Lam)
(a) (3 marks)
$\checkmark \quad$ [1] for correctly multiplying by the square of the denominator.
$\checkmark \quad$ [1] diagram or otherwise in assisting with the final inequalities.
$\checkmark \quad$ [1] for correct inequalities.

$$
\begin{gathered}
\frac{x}{x^{2}-1}>\underset{\times\left(x^{2}-1\right)^{2}}{0} \\
\times\left(x^{2}-1\right)^{2} \\
x\left(x^{2}-1\right)>0 \\
x(x-1)(x+1)>0
\end{gathered}
$$

Hence $-1<x<0$ or $x>1$.
(b) (2 marks)
$\checkmark \quad$ [1] for correct $\tan (\alpha-\beta)$ formula.
$\checkmark \quad[1]$ for final answer.

$$
\begin{aligned}
& x-y=2 \Rightarrow \quad m_{1}=1 \\
& 2 x+y=1 \quad \Rightarrow \quad m_{2}=-2 \\
& \tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
&=\frac{1-(-2)}{1+(1)(-2)} \\
&=|-3|=3 \\
& \therefore \theta \approx 72^{\circ}
\end{aligned}
$$

(c) i. (3 marks)
\checkmark [1] for correctly differentiating $y=$ $\frac{x^{2}}{4 a}$.
$\checkmark \quad$ [1] for the correct gradient.
\checkmark [1] for correct equation.

$$
\begin{gathered}
x^{2}=4 a y \\
y=\frac{x^{2}}{4 a} \\
\frac{d y}{d x}=\left.\frac{2 x}{4 a}\right|_{x=2 a t}=\frac{4 a t}{4 a}=t \\
\therefore y=t x+b
\end{gathered}
$$

As the line ℓ passes through the focus $(0, a)$,

$$
\therefore y=t x+a
$$

ii. (2 marks)
$\checkmark \quad$ [1] for each correct coordinate of M.

$$
y=t x+a
$$

At $R, y=0$:

$$
\begin{gathered}
t x+a=0 \\
\therefore x_{R}=-\frac{a}{t} \\
\therefore R\left(-\frac{a}{t}, 0\right)
\end{gathered}
$$

The midpoint of $R S$:

$$
\begin{aligned}
M & =\left(\frac{-\frac{a}{t}+0}{2}, \frac{0+a}{2}\right) \\
& =\left(-\frac{a}{2 t}, \frac{a}{2}\right)
\end{aligned}
$$

iii. (1 mark)

$$
y=\frac{a}{2}
$$

(as y is independent of t)

(d)
 i. (1 mark)

- Opposite angles $\angle F A C$ and $\angle E C F$ are supplementary (as they are both 90°).
ii. (3 marks)
$\checkmark \quad$ [1] for finding angles in the same segment (twice)
$\checkmark \quad$ [1] for final result, based on correct argument.

- $\angle B D C=\angle B A C$ (angles in the same segment, circle $A B C D)$
- $\angle E A C=\angle E F C$ (angles in the same segment, circle $A E C F$)
Hence $\angle B D C=\angle E F C$, which are corresponding angles that are equal. Hence $E F \| B D$.

Question 12 (Bhamra)
(a) i. (1 mark)

$$
\begin{aligned}
& \cos (A-B) \\
= & \cos A \cos B+\sin A \sin B \\
= & \cos A \cos B\left(1+\frac{\sin A \sin B}{\cos A \cos B}\right) \\
= & \cos A \cos B(1+\tan A \tan B)
\end{aligned}
$$

ii. (1 mark)

$$
\begin{aligned}
\cos (A-B) & =\cos A \cos B(1+\tan A \tan B) \\
& =\cos A \cos B(1+(-1)) \\
& =0 \\
\therefore A-B= & \frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2} \cdots=(2 k+1) \frac{\pi}{2}
\end{aligned}
$$

Since $A<\pi$ and $B>0$,

$$
\begin{aligned}
& \therefore A-B<\pi \\
& \therefore A-B=\frac{\pi}{2}
\end{aligned}
$$

(b) (3 marks)
$\checkmark \quad[1]$ for correct volume integral.
$\checkmark \quad$ [1] for correct primitive.
$\checkmark \quad$ [1] for correct final answer.

$$
\begin{aligned}
V & =\pi \int_{0}^{\pi} 9 \cos ^{2} \frac{x}{2} d x \\
& =9 \pi \int_{0}^{\pi}\left(\frac{1}{2}+\frac{1}{2} \cos x\right) d x \\
& =\frac{9 \pi}{2}[x+\sin x]_{0}^{\pi} \\
& =\frac{9 \pi}{2}((\pi+\sin \pi)-(0+0)) \\
& =\frac{9 \pi^{2}}{2}
\end{aligned}
$$

(c) (3 marks)
$\checkmark \quad$ [1] for correctly proving the base case.
$\checkmark \quad$ [1] for using the base case in the inductive hypothesis.
$\checkmark \quad$ [1] for final proof.
Let $P(n)$ be the proposition $5^{n}+12 n-1$ is divisible by 16 , i.e.

$$
5^{n}+12 n-1=16 M
$$

- $\quad P(1)$:

$$
5^{1}+12-1=17-1=16
$$

Hence $P(1)$ is true.

- Inductive step: assume $P(k)$ is true, $k \in \mathbb{Z}^{+}$, i.e.

$$
5^{k}+12 k-1=16 P
$$

is true.

- Examine $P(k+1)$:

$$
\begin{aligned}
& 5^{k+1}+12(k+1)-1 \\
= & 5 \times 5^{k}+12 k+11 \\
= & 5(16 P-12 k+1)+12 k+11 \\
= & 16 \times 5 P-60 k+5+12 k+11 \\
= & 16 \times 5 P-48 k+16 \\
= & 16(5 P-3 k+1) \\
= & 16 Q
\end{aligned}
$$

Hence $P(k+1)$ is also true, and $P(n)$ is true by induction.
(d) (2 marks)

$$
\begin{aligned}
\int \frac{1}{x^{2}+2 x+2} d x & =\int \frac{1}{(x+1)^{2}+1} d x \\
& =\tan ^{-1}(x+1)+C
\end{aligned}
$$

(e) i. (1 mark)

$$
\begin{aligned}
f(x) & =\frac{x}{x+4}=\frac{x+4-4}{x+4} \\
& =1-\frac{4}{x+4}
\end{aligned}
$$

i.e. a regular hyperbola which is one-to-one (monotonic increasing). Hence $f(x)$ has an inverse function.
ii. (2 marks)
$\checkmark \quad$ [1] for interchanging variables.
\checkmark [1] for final answer.

$$
f: y=1-\frac{4}{x+4}
$$

Interchanging variables,

$$
\begin{gathered}
x=1-\frac{4}{y+4} \\
x-1=-\frac{4}{y+4} \\
y+4=-\frac{4}{x-1} \\
y=-4-\frac{4}{x-1}
\end{gathered}
$$

iii. (2 marks)
$\checkmark \quad[1]$ for realising f and f^{-1} intersect along $y=x$.
$\checkmark \quad[1]$ for both points of intersection. $f(x)$ and $f^{-1}(x)$ intersect along $y=$ x :

$$
\begin{gathered}
x=\frac{x}{x+4} \\
x-\frac{x}{x+4}=0 \\
x\left(1-\frac{1}{x+4}\right)=0 \\
x=0 \quad \text { or } \quad \frac{1}{x+4}=1 \\
\therefore x=0 \text { or } x=-3
\end{gathered}
$$

Points of intersection are $(0,0)$ and $(-3,-3)$.

Question 13 (Sekaran)
(a) i. (1 mark)

$$
\begin{gathered}
T=T_{0}+A e^{-k t} \\
\therefore T-T_{0}=A e^{-k t}
\end{gathered}
$$

Differentiating,

$$
\frac{d T}{d t}=-k A e^{-k t}=-k\left(T-T_{0}\right)
$$

Hencce $T=T_{0}+A e^{-k t}$ satisfies the equation $\frac{d T}{d t}=-k\left(T-T_{0}\right)$.
ii. (1 mark)

$$
\begin{gathered}
t=0, T=90 \\
\therefore 90=20+A e^{0} \\
A=70 \\
T=20+70 e^{-k t}
\end{gathered}
$$

When $t=10, T=70$:

$$
\begin{gathered}
70=20+70 e^{-10 k} \\
e^{-10 k}=\frac{5}{7} \\
-10 k=\ln \frac{5}{7} \\
k=-\frac{1}{10} \ln \frac{5}{7}=\frac{1}{10} \ln \frac{7}{5}
\end{gathered}
$$

iii. (2 marks)
$\checkmark \quad{ }_{e^{-k t}}^{[1]}$. for obtaining expression for
$\checkmark \quad$ [1] for final answer.

$$
T=20+70 e^{-k t}
$$

Finding t when $T=63$:

$$
\begin{gathered}
63=20+70 e^{-k t} \\
e^{-k t}=\frac{43}{70} \\
-k t=\ln \frac{43}{70} \\
t=\frac{1}{k} \ln \frac{70}{43} \\
=\frac{10 \ln \frac{70}{43}}{\ln \frac{7}{5}} \\
\quad \approx 14.482 \cdots
\end{gathered}
$$

(15 minutes)
(b) i. (1 mark)

$$
\ddot{x}=x+\frac{3}{2}
$$

When $t=0, x=5$:

$$
\begin{gathered}
\ddot{x}=5+\frac{3}{2}=6.5 \mathrm{~ms}^{-2}>0 \\
\dot{x}=-6 \mathrm{~ms}^{-1}<0
\end{gathered}
$$

Hence the particle is slowing down as \ddot{x} and \dot{x} have opposite signs.
ii. (2 marks)
$\checkmark \quad$ [1] for obtaining the primitive which is equal to $\frac{1}{2} v^{2}$
$\checkmark \quad$ [1] for final answer.

$$
\begin{aligned}
& \ddot{x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=x+\frac{3}{2} \\
& \therefore \frac{1}{2} v^{2}=\int\left(x+\frac{3}{2}\right) d x \\
& \quad=\frac{1}{2} x^{2}+\frac{3}{2} x+C_{1} \\
& v^{2}=x^{2}+3 x+C_{2}
\end{aligned}
$$

When $t=0, x=5, v=-6$:

$$
\begin{gathered}
(-6)^{2}=5^{2}+3(5)+C_{2} \\
C_{2}=-4 \\
\therefore v^{2}=x^{2}+3 x-4
\end{gathered}
$$

iii. (1 mark)

$$
v^{2}=x^{2}+3 x-4=(x-1)(x+4)
$$

Particle commences at $x=5$ and is therefore relegated to the right branch of the parabolic $v^{2}-x$ graph. At $x=1, v=0$ and $\ddot{x}=2.5>$ 0 . Hence the particle first changes direction when it is 1 metre to the right of O.
(c) i. (2 marks)

$$
\begin{aligned}
& \sqrt{3} \sin 3 t-\cos 3 t \\
= & R \sin (3 t-\alpha) \\
= & R \sin 3 t \cos \alpha-R \cos 3 t \sin \alpha
\end{aligned}
$$

Comparing coefficients,

$$
\left\{\begin{array}{l}
R \cos \alpha=\sqrt{3} \tag{1}\\
R \sin \alpha=1
\end{array}\right.
$$

$(2) \div(1):$

$$
\begin{gathered}
\therefore \tan \alpha=\frac{1}{\sqrt{3}} \\
\alpha=\frac{\pi}{6} \\
R \sin \frac{\pi}{6}=1 \\
\therefore R=2 \\
\therefore \sqrt{3} \sin 3 t-\cos 3 t=2 \sin \left(3 t-\frac{\pi}{6}\right)
\end{gathered}
$$

ii. (1 mark)

$$
\begin{aligned}
x & =5+\sqrt{3} \sin 3 t-\cos 3 t \\
& =5+2 \sin \left(3 t-\frac{\pi}{6}\right) \\
\dot{x} & =2 \times 3 \cos \left(3 t-\frac{\pi}{6}\right) \\
\ddot{x} & =-2 \times 3^{2} \sin \left(3 t-\frac{\pi}{6}\right) \\
& =-9\left(2 \sin \left(3 t-\frac{\pi}{6}\right)\right) \\
& =-9(x-5)
\end{aligned}
$$

As acceleration is proportional to but directed against the displacement from the centre of motion $x=5$, the particle is undergoing SHM.
iii. (2 marks)

$$
a=2 \quad x_{C}=5
$$

iv. (2 marks)
\checkmark [1] for recognition when the minimum displacement occurs.
$\checkmark \quad$ [1] for final answer.
Minimum displacement occurs when $\sin \left(3 t-\frac{\pi}{6}\right)=-1$:

$$
\begin{gathered}
\sin \left(3 t-\frac{\pi}{6}\right)=-1 \\
3 t-\frac{\pi}{6}=\frac{3 \pi}{2}, \cdots \\
3 t=\frac{10 \pi}{6}=\frac{5 \pi}{3} \\
\therefore t=\frac{5 \pi}{9}
\end{gathered}
$$

Question 14 (Gan)

(a) i. (2 marks)

$$
\left\{\begin{array}{l}
x=V t \cos \theta \tag{1}\\
y=-\frac{1}{2} g t^{2}+V t \sin \theta
\end{array}\right.
$$

From (1):

$$
t=\frac{x}{V \cos \theta}
$$

Substitute into (2):

$$
\begin{aligned}
y & =-\frac{1}{2} g\left(\frac{x}{V \cos \theta}\right)^{2}+V\left(\frac{x}{V \cos \theta}\right) \sin \theta \\
& =-\frac{g x^{2}}{2 V^{2}} \sec ^{2} \theta+x \tan \theta \\
& =-\frac{g x^{2}}{2 V^{2}}\left(1+\tan ^{2} \theta\right)+x \tan \theta
\end{aligned}
$$

ii. (2 marks) Using $V^{2}=8 g$ and substituting $x=4, y=3$:

$$
\begin{gathered}
3=-\frac{g \times 16}{2 \times 8 g}\left(1+\tan ^{2} \theta\right)+4 \tan \theta \\
3=-1-\tan ^{2} \theta+4 \tan \theta \\
\tan ^{2} \theta-4 \tan \theta+4=0 \\
(\tan \theta-2)^{2}=0 \\
\tan \theta=2 \\
\theta \approx 63^{\circ} 26^{\prime}
\end{gathered}
$$

iii. (1 mark) At the range $R, y=0$. Also, draw picture depicting $\tan \theta=$ 2 :

i.e. $\sec \theta=\sqrt{5} \quad 1$

$$
\begin{gathered}
0=-\frac{g x^{2}}{16 g} \sec ^{2} \theta+x \tan \theta \\
0=-\frac{x^{2}}{16} \times 5+2 x \\
x\left(2-\frac{5}{16} x\right)=0
\end{gathered}
$$

As $x \neq 0$,

$$
\begin{aligned}
& \frac{5}{16} x=2 \\
& x=\frac{32}{5}= 6.4 \mathrm{~m}
\end{aligned}
$$

(b) i. (2 marks)

- In $\triangle P U T$,

$$
\begin{gathered}
P T^{2}=450^{2}+2000^{2} \\
\therefore P T=2050
\end{gathered}
$$

- In $\triangle P T S$,

$$
\tan 0.1=\frac{r}{P T}=\frac{r}{2050}
$$

$$
\therefore r=2050 \tan 0.1 \approx 205.69
$$

ii. (3 marks)
$\checkmark \quad$ [1] for obtaining $\frac{d A}{d \alpha}$.
$\checkmark \quad[1]$ for substituting in values for $\frac{d A}{d \alpha} \times \frac{d \alpha}{d t}$.
$\checkmark \quad$ [1] for final answer.
As $A=\pi r^{2}$,

$$
\begin{gathered}
A=\pi \times 2050^{2} \tan ^{2} \frac{\alpha}{2} \\
\frac{d A}{d \alpha}=2050^{2} \times \pi \times \sec ^{2} \frac{\alpha}{2} \times \tan \frac{\alpha}{2} \\
=2050^{2} \times \pi \times \sec ^{2} 0.1 \times \tan 0.1
\end{gathered}
$$

Applying the chain rule,

$$
\begin{aligned}
\frac{d A}{d t} & =\frac{d A}{d \alpha} \times \frac{d \alpha}{d t} \\
& =2050^{2} \times \pi \times \sec ^{2} 0.1 \times \tan 0.1 \times 0.04 \\
& =\frac{2050^{2} \pi \tan 0.1}{\cos ^{2} 0.1} \times 0.04 \\
& \approx 53520.33 \text { square metres per hour }
\end{aligned}
$$

(c) i. (1 mark)

$$
\begin{gather*}
P(x)=(x-a)^{3}+(x-b)^{2} \\
P(b)=-8 \\
\therefore(b-a)^{3}+(b-b)^{2}=-8 \\
(b-a)^{3}=-8 \\
b-a=-2 \tag{t}
\end{gather*}
$$

Applying the remainder theorem and evaluating $P(a)$:

$$
\begin{aligned}
P(a) & =(a-a)^{3}+(a-b)^{2} \\
& =(a-b)^{2} \\
& =4
\end{aligned}
$$

Hence the remainder when divided by $(x-a)$, is 4 .
ii. (1 mark)

$$
\begin{aligned}
P\left(\frac{a+b}{2}\right) & =\left(\frac{a+b}{2}-a\right)^{3}+\left(\frac{a+b}{2}-b\right)^{2} \\
& =\left(\frac{a+b-2 a}{2}\right)^{3}+\left(\frac{a+b-2 b}{2}\right)^{2} \\
& =\left(\frac{b-a}{2}\right)^{3}+\left(\frac{a-b}{2}\right)^{2} \\
& =\left(-\frac{2}{2}\right)^{3}+\left(\frac{2}{2}\right)^{2} \\
& =-1+1=0
\end{aligned}
$$

Hence $x=\frac{a+b}{2}$ is a zero of $P(x)$.
iii. (3 marks)
$\checkmark \quad[1]$ for obtaining $3(x-a)^{2}+2(x-$ $b)=0$.
$\checkmark \quad$ [1] for correct substitution into Δ.
$\checkmark \quad$ [1] for correct proof.

$$
P(x)=(x-a)^{3}+(x-b)^{2}
$$

Differentiating,

$$
P^{\prime}(x)=3(x-a)^{2}+2(x-b)
$$

Stationary points occur when $P^{\prime}(x)=0$:

$$
\begin{gathered}
3(x-a)^{2}+2(x-b)=0 \\
3 x^{2}-6 a x+3 a^{2}+2 x-2 b=0 \\
3 x^{2}+(2-6 a) x+\left(3 a^{2}-2 b\right)=0
\end{gathered}
$$

Checking the discriminant of this quadratic:

$$
\begin{aligned}
\Delta & =(2-6 a)^{2}-4(3)\left(3 a^{2}-2 b\right) \\
& =4-24 a+36 a^{2}-36 a^{2}+24 b \\
& =4-24(a-b) \\
& =4-24(2) \\
& <0
\end{aligned}
$$

$P^{\prime}(x)=0$ has no real roots. Hence $P(x)$ has no stationary points.

