1

Marks

2

3

- Differentiate with respect to x $x^2 \tan^{-1} x$ a)
- Solve $\frac{2x+1}{x+3} < 1$ b) 2

c) Evaluate
$$\int_{0}^{\frac{\pi}{2}} \cos x e^{\sin x} dx$$
 3

Prove that if the roots of $ax^2 - 2x + (1 - 2a) = 0$ are reciprocals, d) then their sum is 6.

e) Sketch the graph
$$y = \frac{|x|}{x}$$
 2

Question 2

Question 1

a) Find
$$\int \frac{x}{\sqrt{1+x}} dx$$
 using the substitution $u = 1 + x$ 2

b) The lines
$$y = mx + 2$$
 and $y = 3x - 1$ intersect forming an angle whose 3
tangent is $\frac{2}{3}$. Find 2 possible values for m.

c) If
$$\alpha = \tan^{-1}\left(\frac{1}{2}\right)$$
 and $\beta = \tan^{-1}\left(\frac{1}{3}\right)$, show that $\tan(\alpha + \beta) = 1$ 2

d) Find the domain and range of
$$y = 3\cos^{-1}(2x + 3)$$
 2

e) i) Show that
$$y = \sqrt{x^2 + x - 1}$$
 has a zero between 0 and 1. 1

Taking 0.4 as your first approximation use **one** application 2 ii) of Newton's Method to find a better approximation.

Question 3

a)	Consider the curve $y = \frac{x^2}{1+x^2}$			
	i)	Find the coordinates of any stationary points and determine their nature. There is no need to find points of inflexion.	3	
	ii)	State the equation of the horizontal asymptote	1	
	iii)	Sketch the function indicating all important features.	1	
b)	A bequest of \$20000 is invested at 6% p.a. to pay an annual prize of \$1500. The prize is removed each year after the interest has been paid.			
	i)	How much is in the account after the first prize is awarded?	1	
	ii)	Show that the amount remaining after n prizes A_n is given by	2	
		$A_n = 25000 - 5000 \times 1.06^n$		
	iii)	Hence find the number of years the full prize can be awarded.	2	
c)	Prove	$\frac{\sin 2A - \sin A}{\cos 2A - \cos A + 1} \equiv \tan A$	2	

Question 4

a)	Prove by the process of Mathematical Induction	5
	that $3^{2n} - 1$ is divisible by 8 for $n \ge 1$	
b)	Find the locus of the mid point of PS where P is the point $(2ap,ap^2)$ on the parabola $x^2 = 4ay$ and S is the focus.	3
c)	The area enclosed between the curve $y = \sqrt{2} \cos x$ and the two axes is rotated about the x-axis. Find the volume so formed.	4

Question 5

a)	Express $\sin t - \sqrt{3} \cos t$ in the form $A\sin(t - \alpha)$.			
	Hence solve $\sin t - \sqrt{3} \cos t = \sqrt{2}$	$0 \leq t \leq 2\pi$		

Question 5 continued

b)	Show that	x = -1	is the only real zer	o of $P(x) = x^3 + 2x^2 + 2x + 1$.	
----	-----------	--------	----------------------	-------------------------------------	--

- c) A cyclist riding along a straight, flat road passes by three stop signs R,E, and D, spaced 200m apart. From these three signs the respective angles of elevation to the top of a mobile phone tower are 30° , 45° and 45° . Let *h* be the height of the tower and T be the base of the tower.
 - i) Draw a diagram representing the situation.
 - ii) Find in terms of h, the distances RT, ET, and DT.
 - iii) Let $\angle TED = \alpha$. Find two different expressions for cosa in terms of h and hence by eliminating cosa find the height of the tower.

A particle moving in simple harmonic motion with centre the origin

Question 6

a)

	and	amplitude 8m passes the origin at 6m/s.	
	i) ii) iii)	Find x and v as functions of time. Find the period of the motion. Find the acceleration at maximum amplitude.	3 1 1
b)	Consider the function $f(x) = \frac{e^x}{(1 + e^x)}$		
	i)	State the domain of $f(x)$	1
	ii)	Show $f'(x) = \frac{e^x}{(1+e^x)^2}$	1
	iii) iv) v)	Hence explain why $f(x)$ is increasing for all x. Explain why $f(x)$ has an inverse function. Find the inverse function $f^{-1}(x)$.	1 1 1
c)	Skete	where function $y = \cos^{-1}(x) + \cos^{-1}(-x)$.	2

Question7

a) Rain is falling into a conical rain gauge at a constant rate of 3π cm³/h. If the radius r of the cone is one third its height h, find the rate in cm/h at which the height is increasing when h = 6 cm. 5

4

3

b)

Copy the diagram below onto your answer sheet and then prove that if AN produced to X is a diameter of circle MAF,

4

c) The diagram below represents two roads AO and OC which meet at right angles at O. A hiker decides to walk from A through the bush and meet the road at B, and then continue along the road to C.

His walking speed through the bush is 3 km/h and along the road 6 km/h. OA = 8 km, OC = 12 km and let OB = x km.

- i) Show that the time t hours taken for the journey is given by $t = \frac{2\sqrt{x^2 + 64} + 12 - x}{6}$
- ii) Find the distance OB such that the time taken for the journey will be minimum.

END OF EXAMINATION

2

2