a) Differentiate with respect to $x \quad x^{2} \tan ^{-1} x \quad 2$
b) Solve $\frac{2 x+1}{x+3}<1$
c) Evaluate $\int_{0}^{\frac{\pi}{2}} \cos x e^{\sin x} d x$
d) Prove that if the roots of $a x^{2}-2 x+(1-2 a)=0$ are reciprocals, then their sum is 6 .
e) Sketch the graph $y=\frac{|x|}{x}$

Question 2

a) Find $\int \frac{x}{\sqrt{1+x}} d x$ using the substitution $u=1+x$
b) The lines $y=m x+2$ and $y=3 x-1$ intersect forming an angle whose tangent is $\frac{2}{3}$. Find 2 possible values for m.
c) If $\alpha=\tan ^{-1}\left(\frac{1}{2}\right)$ and $\beta=\tan ^{-1}\left(\frac{1}{3}\right)$, show that $\tan (\alpha+\beta)=1$ 2
d) Find the domain and range of $y=3 \cos ^{-1}(2 x+3)$ 2
e) i) Show that $y=\sqrt{x}+x-1$ has a zero between 0 and 1 .

1
ii) Taking 0.4 as your first approximation use one application 2 of Newton's Method to find a better approximation.
a) Consider the curve $y=\frac{x^{2}}{1+x^{2}}$
i) Find the coordinates of any stationary points and determine their nature.

There is no need to find points of inflexion.
ii) State the equation of the horizontal asymptote
iii) Sketch the function indicating all important features.
b) A bequest of $\$ 20000$ is invested at 6% p.a. to pay an annual prize of $\$ 1500$.

The prize is removed each year after the interest has been paid.
i) How much is in the account after the first prize is awarded?
ii) Show that the amount remaining after n prizes A_{n} is given by
$A_{n}=25000-5000 \times 1 \cdot 06^{n}$
iii) Hence find the number of years the full prize can be awarded.
c) Prove $\frac{\sin 2 A-\sin A}{\cos 2 A-\cos A+1} \equiv \tan A$

Question 4

a) Prove by the process of Mathematical Induction
that $3^{2 n}-1$ is divisible by 8 for $n \geq 1$
b) Find the locus of the mid point of PS where P is the point (2ap,ap ${ }^{2}$)
on the parabola $x^{2}=4 a y$ and S is the focus.
c) The area enclosed between the curve $y=\sqrt{2} \cos x$ and the two axes is rotated about the x-axis. Find the volume so formed.

Question 5

a) Express $\sin t-\sqrt{3} \cos t$ in the form $A \sin (t-\alpha)$.

Hence solve $\sin t-\sqrt{3} \cos t=\sqrt{2} \quad 0 \leq t \leq 2 \pi$
b) Show that $x=-1$ is the only real zero of $\mathrm{P}(x)=x^{3}+2 x^{2}+2 x+1$.
c) $\quad \Lambda$ cyclist riding along a straight, flat road passes by three stop signs R, E, and D, spaced 200 m apart. From these three signs the respective angles of elevation to the top of a mobile phone tower are $30^{\circ}, 45^{\circ}$ and 45°. Let h be the height of the tower and T be the base of the tower.
i) Draw a diagram representing the situation.
ii) Find in terms of h, the distances RT, ET, and DT.
iii) Let $\angle \mathrm{TED}=\alpha$. Find two different expressions for $\cos \alpha$ in terms of h and hence by eliminating $\cos \alpha$ find the height of the tower.

Question 6

a) A particle moving in simple harmonic motion with centre the origin and amplitude 8 m passes the origin at $6 \mathrm{~m} / \mathrm{s}$.
i) Find x and v as functions of time.
ii)
ii) Find the period of the motion. 1
iii) Find the acceleration at maximum amplitude. 1
b) Consider the function $f(x)=\frac{e^{x}}{\left(1+e^{x}\right)}$
i) State the domain of $f(x)$
ii) Show $f^{\prime}(x)=\frac{e^{x}}{\left(1+e^{x}\right)^{2}}$
iii) Hence explain why $f(x)$ is increasing for all x. 1
iv) Explain why $f(x)$ has an inverse function. $\quad 1$
v) Find the inverse function $f^{-1}(x)$.
c) Sketch the function $y=\cos ^{-1}(x)+\cos ^{1}(-x)$. 2

Question7

a) Rain is falling into a conical rain gauge at a constant ratc of $3 \pi \mathrm{~cm}^{3} / \mathrm{h}$. If the radius r of the cone is one third its height h, find the rate in cm / h at which the height is increasing when $h=6 \mathrm{~cm}$.
b)

Copy the diagram below onto your answer shcet and then prove that if $A N$ produced to X is a diameter of circle $M A F$, then $\angle \mathrm{MAN}-\angle \mathrm{FAB}$

c) The diagram below represents two roads AO and OC which meet at right angles at O . A hiker decides to walk from A through the bush and meet the road at B, and then continue along the road to C.

His walking speed through the bush is $3 \mathrm{~km} / \mathrm{h}$ and along the road $6 \mathrm{~km} / \mathrm{h}$.
$\mathrm{OA}=8 \mathrm{~km}, \mathrm{OC}=12 \mathrm{~km}$ and let $\mathrm{OB}=x \mathrm{~km}$.
i) Show that the time t hours taken for the journey is

2
given by $t=\frac{2 \sqrt{x^{2}+64}+12-x}{6}$
ii) Find the distance OB such that the time taken for the journey

