MATHEMATICS (EXTENSION 1)

2011 HSC Course Assessment Task 3
 (Trial HSC Examination)

General instructions

- Working time - 2 hours (plus 5 minutes reading time)
- Commence each new question on a new page.
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- All necessary working should be shown in every question.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets used in the correct order within this paper and hand to examination supervisors.

Class (please \boldsymbol{V})
○ 12M3A - Mr Lam
○ 12M3B - Mr Weiss
○ $12 \mathrm{M} 3 \mathrm{C}-\mathrm{Mr} \operatorname{Lin}$
○ 12M4A - Mr Fletcher/Mrs Collins
○ 12M4B - Mr Ireland
O 12M4C - Mrs Collins/Mr Rezcallah
\qquad

Marker's use only.

QUESTION	1	$[2$	3	$\boxed{1}$	$\overline{5}$	6	7	Total	$\%$
MARKS	$\overline{12}$	$\overline{84}$							

Question 1 (12 Marks)
Commence a NEW page.
(a) Find $\int \frac{3 x^{2}-2}{x^{3}-2 x+1} d x$.

1
(b) If $y=\sqrt{\cos ^{3} 2 x}$, find $\frac{d y}{d x}$ in simplest form.
(c) Find $\int \frac{t}{\sqrt{1+t}} d t$ using the substitution $u=1+t$.
(d) i. Show that $\frac{d}{d x}\left[\tan ^{-1}\left(\frac{x}{2}\right)+\frac{2 x}{x^{2}+4}\right]=\frac{16}{\left(x^{2}+4\right)^{2}}$
ii. Hence or otherwise, evaluate

$$
\int_{-2}^{2} \frac{d x}{\left(x^{2}+4\right)^{2}}
$$

Leave your answer in exact form.

Question 2 (12 Marks)
Commence a NEW page.
Marks
(a) Solve $\frac{4}{2 x-1}<1$ for x and sketch the solution on a number line.
(b) If α, β and γ are the roots of $8 x^{3}-6 x^{2}+1=0$, evaluate
i. $\alpha+\beta+\gamma$

1
ii. $\quad \alpha \beta+\beta \gamma+\alpha \gamma$

1
iii. $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$

1
(c) Solve $\sin \theta-2 \cos \theta=1$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.
(d) Find the second derivative of $y=\sin \left(x^{3}\right)$. Draw a sketch of the curve in the 3 immediate neighbourhood of $x=0$.
(a) Prove that $\frac{\sin 2 A}{\sin A}-\frac{\cos 2 A}{\cos A}=\sec A$.
(b) Show that $\frac{1-\cos \theta}{\sin \theta}=\tan \frac{\theta}{2}$.
(c) Evaluate $\int_{0}^{\frac{\pi}{4}} \cos ^{2} \theta d \theta$.
(d) Find the values of a and b in the expression $f(x)=2 x^{4}+a x^{3}-2 x^{2}+b x+6$ so that it is exactly divisible by $2 x+1$ and has a remainder of 12 when it is divided by $x-1$.
(e) Sketch $y=\sin \left(\sin ^{-1} x\right)$.
(a) Consider the curve $y=\frac{\log _{e} x}{x}$.
i. Show that this curve cuts the x axis at one point only.
ii. Discuss the behaviour of $y=\frac{\log _{e} x}{x}$ as $x \rightarrow 0$.
iii. Show the maximum value of y is $\frac{1}{e}$.
iv. Sketch the curve.
(b) A bowl of water, heated to $100^{\circ} \mathrm{C}$ is placed in a cool room maintained at $-5^{\circ} \mathrm{C}$. After t minutes, the temperature T of the water is changing so that

$$
\frac{d T}{d t}=-k(T-B)
$$

i. Show that $T=B+A e^{-k t}$, where A and B are constants, satisfies this condition and find the values of A and B.
ii. After 20 minutes in the cool room, the water is $40^{\circ} \mathrm{C}$. How long after being put in the cool room until the water reaches $10^{\circ} \mathrm{C}$? Answer to the nearest minute.
(c) Sketch the function $y=\frac{1}{2} \sin ^{-1}\left(\frac{x}{2}\right)$.

Question 5 (12 Marks)
Commence a NEW page.
Marks
(a) Divide the interval $A(3,-2)$ and $B(-4,5)$ externally in the ratio $3: 1$.
(b) Let $f(x)=2 x^{3}+2 x-1$.
i. Show that $f(x)$ has one root between $x=0$ and $x=1$.
ii. By considering $f^{\prime}(x)$, explain why there is only one root for $f(x)$.
iii. Taking $x=0$ as an initial approximation, use Newton's method to find a closer approximation.
(c) In the diagram $E B$ is parallel to $D C$. Tangents from B meet the circle at A and C. Copy the diagram into your writing booklet.

Prove that
i. $\angle B C A=\angle B F A$.
ii. $A B C F$ is a cyclic quadrilateral.
iii. $D F=C F$.

Question 6 (12 Marks)
(a) Prove using mathematical induction that $3^{2 n+4}-2^{2 n}$ is divisible by 5 .
(b) The angle of elevation of the summit of a mountain due north is 18°. On walking 500 m due west the angle of elevation is found to be 11°.

Find the height of the mountain.
(c) Prove that

$$
\frac{d^{2} x}{d t^{2}}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)
$$

where $\frac{d^{2} x}{d t^{2}}$ is the acceleration and v is the velocity.
(d) A particle is moving in a straight line and its acceleration is given by

$$
\frac{d^{2} x}{d t^{2}}=\frac{1}{36+x^{2}}
$$

and is initially at rest at the origin.
i. Find v^{2} as a function of x and explain why v is always positive for $t>0$.
ii. Find
A. The velocity at $x=6$.
B. The velocity as $t \rightarrow \infty$.
(a) i. Prove that if the displacement x of a particle P is related to the time t by the equation

$$
x=3 \cos (2 \pi t)
$$

then the motion is simple harmonic.
ii. Find the initial velocity.
iii. Determine the greatest acceleration.
iv. Determine when the particle is first at $x=\frac{3}{2}$.
v. Express v^{2} in terms of x and state the interval within which P is restricted.
(b) i. Show that the equation of the normal at $P\left(2 a p, a p^{2}\right)$ on the parabola $\mathbf{2}$ $x^{2}=4 a y$ is

$$
x+p y=2 a p+a p^{3}
$$

ii. The normal at P meets the y axis at N and M is the midpoint of $P N$. Find the coordinates of M.
iii. Show that the locus of M is another parabola with its vertex being the focus of the original parabola.

End of paper.

THIS PAGE IS INTENTIONALLY BLANK.

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}+C, \quad n \neq-1 ; \quad x \neq 0 \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x+C, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}+C, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x+C, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x+C, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x+C, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x+C, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}+C, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C, \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Suggested Solutions

Question 1 (Fletcher)
(a) (1 mark)

$$
\int \frac{3 x^{2}-2}{x^{3}-2 x+1} d x=\log _{e}\left(x^{3}-2 x+1\right)+C
$$

(b) (3 marks)
$\checkmark \quad[1]$ for changing into index form.
$\checkmark \quad[1]$ for correct differentiation via chain rule.
$\checkmark \quad[1]$ for final answer in simplest form.

$$
\begin{gathered}
y=(\cos 2 x)^{\frac{3}{2}} \\
\frac{d y}{d x}=\frac{3}{2} \times(-2 \sin 2 x) \times(\cos 2 x)^{\frac{1}{2}} \\
=-3 \sin 2 x(\cos 2 x)^{\frac{1}{2}} \\
=-3 \sin 2 x \sqrt{\cos 2 x}
\end{gathered}
$$

(c) (3 marks)
$\checkmark \quad[1]$ for correctly changing variable of the integrand to u
$\checkmark \quad$ [1] for correct primitive in u.
$\checkmark \quad$ [1] for final answer in simplest form.

$$
\int \frac{t}{\sqrt{1+t}} d t
$$

Let $u=1+t$; then $d u=d t$:

$$
\begin{aligned}
\int \frac{t}{\sqrt{1+t}} d t & =\int \frac{u-1}{u^{\frac{1}{2}}} d u \\
& =\int u^{\frac{1}{2}}-u^{-\frac{1}{2}} d u \\
& =\frac{2}{3} u^{\frac{3}{2}}-2 u^{\frac{1}{2}}+C \\
& =\frac{2}{3}(1+t)^{\frac{3}{2}}-2(1+t)^{\frac{1}{2}}+C
\end{aligned}
$$

(d) i. (3 marks)

$$
\begin{array}{ll}
\checkmark & \text { [1] for derivative of } \tan ^{-1} \frac{x}{2} . \\
\checkmark & \text { [1] for derivative of } \frac{2 x}{x^{2}+4} . \\
\checkmark & \text { [1] for final answer. }
\end{array}
$$

$$
\begin{aligned}
& \frac{d}{d x} {\left[\tan ^{-1}\left(\frac{x}{2}\right)+\frac{2 x}{x^{2}+4}\right] } \\
&=\frac{\frac{1}{2}}{1+\left(\frac{x}{2}\right)^{2}} \times 4 \\
&=\frac{2}{4+x^{2}}+\frac{8-2 x^{2}}{\left(x^{2}+4\right)^{2}} \\
&\left(x^{2}+4\right)^{2} \\
&=\frac{2\left(x^{2}+4\right)+8-2 x^{2}}{\left(x^{2}+4\right)^{2}} \\
&=\frac{16}{\left(x^{2}+4\right)^{2}}
\end{aligned}
$$

ii. (2 marks)
$\checkmark \quad$ [1] for correct primitive.
$\checkmark \quad$ [1] for final answer.

$$
\begin{aligned}
\int_{-2}^{2} & \frac{d x}{\left(x^{2}+4\right)^{2}} \\
& =\frac{1}{16}\left[\tan ^{-1} \frac{x}{2}+\frac{2 x}{x^{2}+4}\right]_{-2}^{2} \\
& =\frac{1}{16}\left[\frac{\pi}{4}+\frac{1}{2}-\left(-\frac{\pi}{4}-\frac{1}{2}\right)\right] \\
& =\frac{1}{16}\left(\frac{\pi}{2}+1\right) \\
& =\frac{\pi+2}{32}
\end{aligned}
$$

Question 2 (Lin)

(a) (3 marks)
$\checkmark \quad$ [1] for multiplying both sides by square of denominator.
$\checkmark \quad[1] \quad$ for obtaining correct roots for $(2 x-1)(2 x-5)$.
$\checkmark \quad$ [1] for final answer.

$$
\begin{gathered}
\frac{4}{2 x-1}<\underset{\times(2 x-1)^{2}}{\times(2 x-1)^{2}}+ \\
(2 x-1)^{2}>4(2 x-1) \\
(2 x-1)^{2}-4(2 x-1)>0 \\
(2 x-1)(2 x-1-4)>0 \\
(2 x-1)(2 x-5)>0 \\
\therefore x<\frac{1}{2} \text { or } x>\frac{5}{2}
\end{gathered}
$$

(b) $8 x^{3}-6 x^{2}+0 x+1=0$.
i. (1 mark)

$$
\alpha+\beta+\gamma=-\frac{b}{a}=\frac{3}{4}
$$

ii. (1 mark)

$$
\alpha \beta+\alpha \gamma+\beta \gamma=\frac{c}{a}=0
$$

iii. (1 mark)

$$
\begin{aligned}
\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma} & =\frac{\alpha \beta+\alpha \gamma+\beta \gamma}{\alpha \beta \gamma} \\
& =\frac{\frac{c}{a}}{-\frac{d}{a}}=-\frac{c}{d}=0
\end{aligned}
$$

(c) (3 marks)
$\checkmark \quad$ [1] for expressing

$$
\sin \theta-2 \cos \theta=\sqrt{5} \sin \left(\theta-63^{\circ} 26^{\prime}\right)
$$

$\checkmark \quad$ [1] for obtaining $\sin \left(\theta-63^{\circ} 26^{\prime}\right)=\frac{1}{\sqrt{5}}$.
$\checkmark \quad[1]$ for final answers.

$$
\begin{aligned}
\sin \theta-2 \cos \theta & \equiv R \sin (\theta-\phi) \\
& =R \sin \theta \cos \phi-R \cos \theta \sin \phi
\end{aligned}
$$

Equating coefficients,

$$
\left\{\begin{array}{l}
R \cos \phi=1 \\
R \sin \phi=2
\end{array}\right.
$$

$(2) \div(1):$

$$
\begin{gathered}
\tan \phi=2 \\
\therefore \phi=63^{\circ} 26^{\prime}
\end{gathered}
$$

$(1)^{2}+(2)^{2}:$

$$
\begin{gathered}
R^{2} \cos ^{2} \phi+R^{2} \sin ^{2} \phi=2^{2}+1^{2} \\
\therefore R=\sqrt{5} \\
\therefore \sin \theta-2 \cos \theta=\sqrt{5} \sin \left(\theta-63^{\circ} 26^{\prime}\right)=1 \\
\sin \left(\theta-63^{\circ} 26^{\prime}\right)=\frac{1}{\sqrt{5}} \\
\theta-63^{\circ} 26^{\prime}=26^{\circ} 34^{\prime} \text { or } 153^{\circ} 26^{\prime} \\
\therefore \theta=90^{\circ} \text { or } 216^{\circ} 52^{\prime}
\end{gathered}
$$

(d) (3 marks)

$$
\begin{gathered}
y=\sin \left(x^{3}\right) \\
\frac{d y}{d x}=3 x^{2} \cos \left(x^{3}\right)
\end{gathered}
$$

Apply product rule to find 2nd derivative,

$$
\begin{gathered}
u=3 x^{2} \quad v=\cos \left(x^{3}\right) \\
u^{\prime}=6 x \quad v^{\prime}=-3 x^{2} \sin \left(x^{3}\right) \\
\frac{d^{2} y}{d x^{2}}=-9 x^{4} \sin \left(x^{3}\right)+6 x \cos \left(x^{3}\right) \\
=3 x\left(2 \cos \left(x^{3}\right)-3 x^{2} \sin \left(x^{3}\right)\right) \\
\left.\frac{d y}{d x}\right|_{x=0}=\left.0 \quad \frac{d^{2} y}{d x^{2}}\right|_{x=0}=0
\end{gathered}
$$

From the information, \exists possible horizontal point of inflexion around $x=0$. Test sign of 2 nd derivative:

x	0^{-}	0	0^{+}
$\frac{d^{2} y}{d x^{2}}$	-	0	+

Hence concavity changes around $x=0$.

Question 3 (Weiss)

(a) (2 marks)
$\checkmark \quad[1]$ for obtaining $\frac{2 \cos ^{2} A-\cos ^{2} A+\sin ^{2} A}{\cos A}$.
$\checkmark \quad[1]$ for final answer.

$$
\begin{aligned}
\frac{\sin 2 A}{\sin A} & -\frac{\cos 2 A}{\cos A} \\
& =\frac{2 \sin A \cos A}{\sin A}-\frac{\cos ^{2} A-\sin ^{2} A}{\cos A} \\
& =\frac{2 \cos ^{2} A-\cos ^{2} A+\sin ^{2} A}{\cos A} \\
& =\frac{\cos ^{2} A+\sin ^{2} A}{\cos A}=\sec A
\end{aligned}
$$

(b) (2 marks)
$\checkmark \quad$ [1] for transforming $\sin \theta$ and $\cos \theta$ to their t formulae.
$\checkmark \quad$ [1] for final answer.

$$
\begin{aligned}
\frac{1-\cos \theta}{\sin \theta} & =\frac{1-\frac{1-t^{2}}{1+t^{2}}}{\frac{2 t}{1+t^{2}}}=\frac{\frac{1+t^{2}-\left(1-t^{2}\right)}{1+t^{2}}}{\frac{2 t}{1+t^{2}}} \\
& =\frac{2 t^{2}}{2 t}=t=\tan \frac{\theta}{2}
\end{aligned}
$$

(c) (3 marks)
$\checkmark \quad$ [1] for transforming $\cos ^{2} \theta$ to $\frac{1}{2}+\frac{1}{2} \cos 2 \theta$.
$\checkmark \quad$ [1] for evaluating primitive.
$\checkmark \quad$ [1] for final answer.

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{4}} \cos ^{2} \theta d \theta & =\int_{0}^{\frac{\pi}{4}} \frac{1}{2}+\frac{1}{2} \cos 2 \theta d \theta \\
& =\left[\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta\right]_{0}^{\frac{\pi}{4}} \\
& =\frac{1}{2}\left(\frac{\pi}{4}\right)+\frac{1}{4} \sin \frac{\pi}{2} \\
& =\frac{\pi}{8}+\frac{1}{4}=\frac{\pi+2}{8}
\end{aligned}
$$

(d) (3 marks)

$$
f(x)=2 x^{4}+a x^{3}-2 x^{2}+b x+6
$$

By the remainder theorem, $f(1)=12$:

$$
\begin{gathered}
\not 2+a-\not 2+b+\underset{-6}{6}=\underset{-6}{12} \\
a+b=6
\end{gathered}
$$

By the factor theorem, $f\left(-\frac{1}{2}\right)=0$:

$$
\begin{gather*}
2\left(-\frac{1}{2}\right)^{4}+a\left(-\frac{1}{2}\right)^{3}-2\left(-\frac{1}{2}\right)^{2}-\frac{1}{2} b+6=0 \\
\underbrace{\frac{1}{8}-\frac{a}{8}-\frac{1}{2}-\frac{b}{2}}_{\times 8}=\frac{-6}{\times 8} \\
1-a-4-4 b=-48 \\
\quad a+4 b=45 \\
\left\{\begin{array}{l}
a+b=6 \\
a+4 b=45
\end{array}\right. \tag{1}
\end{gather*}
$$

(2) - (1):

$$
3 b=39
$$

$$
\therefore b=13
$$

$$
\therefore a=-7
$$

(e) (2 marks)
$\checkmark \quad$ [1] for line.
$\checkmark \quad$ [1] for boundary points.

Question 4 (Lam)
(a) i. (1 mark)

$$
y=\frac{\log _{e} x}{x}=0
$$

As $x \neq 0$,

$$
\begin{aligned}
& \therefore \log _{e} x=0 \\
& \quad \therefore x=1
\end{aligned}
$$

ii. (1 mark)

$$
\begin{gathered}
\log _{e} x \ll x \text { when } x<1 \\
\therefore \lim _{x \rightarrow 0} \frac{\log _{e} x}{x}=-\infty
\end{gathered}
$$

iii. (3 marks)
$\checkmark \quad$ [1] for correctly applying quotient rule.
$\checkmark \quad[1]$ for $x=e$.
$\checkmark \quad[1]$ testing for local maximum.

$$
\begin{aligned}
u & =\log _{e} x \quad v=x \\
u^{\prime} & =\frac{1}{x} \quad v^{\prime}=1 \\
\frac{d y}{d x} & =\frac{v u^{\prime}-u v^{\prime}}{v^{2}} \\
& =\frac{x \times \frac{1}{x}-\log _{e} x}{x^{2}} \\
& =\frac{1-\log _{e} x}{x^{2}}
\end{aligned}
$$

(b) i. (2 marks)

Stationary pts occur when $\frac{d y}{d x}=0$,

$$
\begin{gathered}
1-\log _{e} x=0 \\
\log _{e} x=1 \\
\therefore x=e
\end{gathered}
$$

x	e	
$\frac{d y}{d x}$	+	0
y		$\left(e, \frac{1}{e}\right)$

iv. (1 mark)

ii. (2 marks)
$\checkmark \quad$ [1] for finding the value of k.
$\checkmark \quad$ [1] for final answer.
When $t=20, T=40$

$$
\begin{gathered}
40=-5+105 e^{-20 k} \\
45=105 e^{-20 k} \\
e^{-20 k}=\frac{3}{7} \\
-20 k=\log _{e} \frac{3}{7} \\
k=-\frac{1}{20} \log _{e} \frac{3}{7}
\end{gathered}
$$

$$
\therefore T=-5+105 e^{\frac{1}{20} t \log _{e} \frac{3}{7}}
$$

$$
\begin{array}{ll}
\checkmark & {[1]} \\
\checkmark & \text { for } A=105 \\
\checkmark & {[1]} \\
\text { for } B=-5
\end{array}
$$

At $T=10^{\circ} \mathrm{C}$,

$$
\begin{gathered}
10=-5+105 e^{\frac{1}{20} t \log _{e} \frac{3}{7}} \\
15=105 e^{\frac{1}{20} t \log _{e} \frac{3}{7}} \\
e^{\frac{1}{20} t \log _{e} \frac{3}{7}}=\frac{1}{7} \\
\frac{1}{20} t \log _{e} \frac{3}{7}=-\log _{e} 7
\end{gathered}
$$

$t=\frac{-20 \log _{e} 7}{\log _{e} \frac{3}{7}}=45.93 \cdots=46 \mathrm{~min}$
(c) (2 marks)

$$
\begin{gathered}
\frac{d T}{d t}=-k(T-B) \\
\frac{d T}{T-B}=-k d t
\end{gathered}
$$

Integrating both sides,

$$
\begin{gathered}
\ln (T-B)=-k t+C \\
T-B=e^{-k t+C}=A e^{-k t} \\
\therefore T=B+A e^{-k t}
\end{gathered}
$$

(Alternatively, differentiate and verify.)
$\checkmark \quad$ [1] for shape.
$\checkmark \quad[1]$ for endpoints and passing through origin.

By inspection,

$$
B=-5
$$

When $t=0, T=100^{\circ} \mathrm{C}$

$$
\begin{gathered}
100=-5+A e 0 \\
\therefore A=105
\end{gathered}
$$

Question 5 (Collins)

(a) (2 marks)
$\checkmark \quad$ [1] for correct method.
$\checkmark \quad$ [1] for correct final answer.

$$
\begin{aligned}
& \left(\frac{(3)(-1)+(-4)(3)}{3-1}, \frac{(-2)(-1)+(3)(5)}{2}\right) \\
= & \left(\frac{-3-12}{2}, \frac{2+15}{2}\right)=\left(-\frac{15}{2}, \frac{17}{2}\right)
\end{aligned}
$$

(b) i. (1 mark)

$$
\begin{gathered}
f(x)=2 x^{3}+2 x-1 \\
f(0)=-1 \quad f(1)=3
\end{gathered}
$$

As there is a change of sign in the y value between $x=0$ and $x=1$ and $f(x)$ is continuous between $x=0$ and $x=1$, therefore $f(x)$ has a root between $x=0$ and $x=1$.
ii. (1 mark)
\boldsymbol{x} do not accept $f^{\prime}(x)>0$.

$$
f^{\prime}(x)=6 x^{2}+2
$$

As $6 x^{2}+2>0 \forall x$, therefore $f^{\prime}(x)$ has no stationary points (therefore no turning points) at all. Hence there is only one root for $f(x)$.
iii. (2 marks)
$\checkmark \quad[1]$ for $f(0)=-1, f^{\prime}(0)=2$.
$\checkmark \quad[1]$ for final answer.

$$
\begin{aligned}
f(0) & =-1 \quad f^{\prime}(0)=2 \\
x_{2} & =x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
& =0-\frac{-1}{2}=\frac{1}{2} \\
f\left(\frac{1}{2}\right) & =2\left(\frac{1}{8}\right)+2\left(\frac{1}{2}\right)-\not 又 \\
& =\frac{1}{4}
\end{aligned}
$$

(c) i. (3 marks)
$\checkmark \quad[1]$ for \angle in isos \triangle.
$\checkmark \quad[1]$ for \angle alternate segment.
$\checkmark \quad$ [1] for corresponding \angle.

- $A B=C B$
(tangents from external point)
- $\angle B C A=\angle B A C$
$(\angle$ opposite equal sides, isos $\triangle B C A)$
- $\angle B A C=\angle A D C$
(\angle in alternate segment)
- $\angle A D C=\angle A F B$
(corresponding $\angle, E B \| D C$)
$\therefore \angle B C A=\angle B F A$.
ii. (1 mark)

From the previous part, $\angle B C A=\angle B F A$. These angles represent \angle at the circumference standing on arc $A B$. Hence C, F, A and B lie on the circumference of another circle, and $C F A B$ is a cyclic quadrilateral.
iii. (2 marks)
$\checkmark \quad$ [1] ONLY if incorrect working from (i) leads to proof that $\triangle D F C$ is isosceles.
$\checkmark \quad$ [1] ONLY if a property of cyclic quadrilaterals is correctly used. Otherwise,
$\checkmark \quad$ [1] for each dot point.

- $\angle C A B=\angle C F B$
$(\angle$ standing on the same $\operatorname{arc} C B)$
- $\angle C F B=\angle F C D$
(alternate $\angle, E B \| D C$)
$\therefore F D=F C$
(sides opposite equal \angle, isos $\triangle D F C$)

Question 6 (Ireland)
(a) (3 marks)
$\checkmark \quad$ [1] for testing base case.
$\checkmark \quad[2]$ for correct inductive step proof.
To prove $3^{2 n+4}-2^{2 n}$ is divisible by 5 for all $n \geq 1$.
Base case: $n=1$

$$
3^{2(1)+4}-2^{2(1)}=3^{6}-2^{2}=725
$$

which is divisible by 5 . Hence the base case is true.
Inductive step: Assume $3^{2 k+4}-2^{2 k}$ is divisible by 5 , i.e.

$$
\begin{aligned}
& 3^{2 k+4}-2^{2 k}=5 M \\
& 3^{2 k+4}=5 M+2^{2 k}
\end{aligned}
$$

for k and $M \in \mathbb{Z}^{+}$. Examine the $(k+1)$-th term:

$$
\begin{aligned}
& 3^{2(k+1)+4}-2^{2(k+1)} \\
= & 3^{2+2 k+4}-2^{2 k+2} \\
= & 3^{2} \cdot 3^{2(k+1)}-2^{2} \cdot 2^{2 k} \\
= & 9\left(5 M+2^{2 k}\right)-4\left(2^{2 k}\right) \\
= & 9 \cdot 5 M+9 \cdot 2^{2 k}-4 \cdot 2^{2 k} \\
= & 9 \cdot 5 M+5 \cdot 2^{2 k} \\
= & 5\left(9 M+2^{2 k}\right)=5 P
\end{aligned}
$$

where $P\left(=9 M+2^{2 k}\right) \in \mathbb{Z}^{+}$.
By the principle of mathematical induction, $3^{2 n+4}-2^{2 n}$ is divisible by 5 for all positive integers n.
(b) (3 marks)
$\checkmark \quad[1]$ for $B C$ and $A C$ in terms of h.
$\checkmark \quad$ [1] for numerical expression in h^{2}.
$\checkmark \quad$ [1] for final answer.

In $\triangle B C D$

$$
\frac{h}{B C}=\tan 18^{\circ} \Rightarrow B C=\frac{h}{\tan 18^{\circ}}
$$

Likewise in $\triangle A C D$,

$$
A C=\frac{h}{\tan 11^{\circ}}
$$

As $A B C$ is right angled, apply Pythagoras' Theorem:

$$
\begin{gathered}
A B^{2}+B C^{2}=A C^{2} \\
500^{2}+\left(\frac{h}{\tan 18^{\circ}}\right)^{2}=\left(\frac{h}{\tan 11^{\circ}}\right)^{2} \\
500^{2}=h^{2}\left(\frac{1}{\tan ^{2} 11^{\circ}}-\frac{1}{\tan ^{2} 18^{\circ}}\right) \\
\therefore h^{2}=\frac{500^{2}}{\frac{1}{\tan ^{2} 11^{\circ}}-\frac{1}{\tan ^{2} 18^{\circ}}} \\
\approx \frac{500^{2}}{16.9943 \cdots} \\
\therefore h=121.3 \mathrm{~m}(1 \mathrm{~d} . \mathrm{p} .) \\
(2 \text { marks }) \\
\checkmark \quad[1] \text { for obtaining } \frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=\frac{d x}{d t} \cdot \frac{d v}{d x} . \\
\checkmark \quad[1] \text { for correct proof. }
\end{gathered}
$$

(c) (2 marks)

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =\frac{d}{d v}\left(\frac{1}{2} v^{2}\right) \frac{d v}{d x} \quad \text { (chain rule) } \\
& =v \frac{d v}{d x}=\frac{d x}{d t} \cdot \frac{d v}{d x} \\
& =\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}=a
\end{aligned}
$$

(d) i. (2 marks)
$\checkmark \quad[1]$ for $v^{2}=\frac{1}{3} \tan ^{-1} \frac{x}{6}$.
\checkmark [1] for justification.

$$
\begin{gathered}
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=\frac{1}{36+x^{2}} \\
\frac{1}{2} v^{2}=\int \frac{1}{36+x^{2}} d x=\frac{1}{6} \tan ^{-1} \frac{x}{6}+C
\end{gathered}
$$

When $t=0, x=0$ and $v=0$:

$$
\begin{gathered}
\therefore 0=\frac{1}{6}(0)+C \\
\therefore C=0 \\
\therefore v^{2}=\frac{1}{3} \tan ^{-1} \frac{x}{6}
\end{gathered}
$$

As $\frac{d^{2} x}{d t^{2}}>0$ and velocity is initially 0, so for $t>0$, the velocity will always be positive.
ii. A. (1 mark)

When $x=6$,

$$
\begin{aligned}
v^{2} & =\frac{1}{3} \tan ^{-1} 1 \\
& =\frac{1}{3} \times \frac{\pi}{4}=\frac{\pi}{12} \\
\therefore & v= \pm \sqrt{\frac{\pi}{12}}
\end{aligned}
$$

But from previous part, $v>0$.

$$
\therefore v=\sqrt{\frac{\pi}{12}}
$$

B. (1 mark)

As $t \rightarrow \infty, x \rightarrow \infty$. Hence

$$
\lim _{x \rightarrow \infty}\left(\frac{1}{3} \tan ^{-1} \frac{x}{6}\right)=\frac{1}{3} \times \frac{\pi}{2}=\frac{\pi}{6}
$$

$\therefore v \rightarrow \sqrt{\frac{\pi}{6}}$ as $t \rightarrow \infty$.

Question 7 (Collins)

(a) i. (1 mark)
$\checkmark \quad$ [1] only if 2nd derivative is correct and presented in SHM form.

$$
\begin{aligned}
& \quad x=3 \cos (2 \pi t) \\
& \dot{x}=-6 \pi \sin (2 \pi t) \\
& \ddot{x}=-12 \pi^{2} \cos (2 \pi t) \\
&=-4 \pi^{2} \times 3 \cos (2 \pi t) \\
&=-(2 \pi)^{2} \times 3 \cos (2 \pi t)=-n^{2} x
\end{aligned}
$$

As acceleration is proportional to displacement and directed to its opposite direction, therefore motion is SHM.
ii. (1 mark)

When $t=0, \dot{x}=0$.
iii. (1 mark)

Maximum acceleration when $\cos 2 \pi t=-1 . \therefore a_{\max }=12 \pi^{2} \mathrm{~ms}^{-2}$
iv. (1 mark)

When $x=\frac{3}{2}$,

$$
\begin{gathered}
\frac{\not D}{2}=\not \supset \cos (2 \pi t) \\
\cos (2 \pi t)=\frac{1}{2} \\
2 \not \mathscr{}=\frac{\not 2}{3} \\
\therefore t=\frac{1}{6}
\end{gathered}
$$

v. (2 marks)
$\checkmark \quad$ [1] for correct v^{2}.
$\checkmark \quad[1]$ for correct interval $x \in[-3,3]$.

$$
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=-4 \pi^{2} x
$$

Integrating,
$\frac{1}{2} v^{2}=-4 \pi^{2} \times \frac{1}{2} x^{2}=-2 \pi^{2} x^{2}+C$

When $t=0, v=0$ and $x=3$.

$$
\begin{gathered}
0=-2 \pi^{2} \times\left(3^{2}\right)+C \\
\therefore C=18 \pi^{2} \\
\frac{1}{2} v^{2}=-2 \pi^{2} x^{2}+18 \pi^{2} \\
v^{2}=36 \pi^{2}-4 \pi^{2} x^{2} \\
=4 \pi^{2}\left(9-x^{2}\right) \\
\left(=n^{2}\left(a^{2}-x^{2}\right)\right)
\end{gathered}
$$

Restriction on P :

$$
\begin{gathered}
9-x^{2} \geq 0 \\
\therefore-3 \leq x \leq 3
\end{gathered}
$$

(b) i. (2 marks)

$$
\begin{array}{lc}
\checkmark & {[1] \text { for } m_{\perp}=-\frac{1}{p}} \\
\checkmark & {[1] \text { for final answer. }}
\end{array}
$$

$$
\begin{gathered}
x^{2}=4 a y \Rightarrow y=\frac{x^{2}}{4 a} \\
\frac{d y}{d x}=\left.\frac{2 x}{4 a}\right|_{x=2 a p}=\frac{4 a p}{4 a}=p \\
\therefore m_{\perp}=-\frac{1}{p}
\end{gathered}
$$

Using the point-gradient formula,

$$
\begin{gathered}
y-a p^{2}=-\frac{1}{p}(x-2 a p) \\
p y-a p^{3}=-x+2 a p \\
\therefore x+p y=a p^{3}+2 a p
\end{gathered}
$$

ii. (2 marks)
$\checkmark \quad$ [1] for coordinates of M.
$\checkmark \quad$ [1] for coordinates of N.
When the normal meets the y axis,
$x=0$.

$$
\begin{gathered}
0+p y=a p^{3}+2 a p \\
\therefore y=a p^{2}+2 a \\
\therefore N\left(0, a p^{2}+2 a\right)
\end{gathered}
$$

M is the midpoint of $P N$:

$$
\begin{aligned}
M & =\left(\frac{2 a p+0}{2}, \frac{a p^{2}+\left(a p^{2}+2 a\right)}{2}\right) \\
& =\left(a p, \frac{2 a p^{2}+2 a}{2}\right)=\left(a p, a p^{2}+a\right)
\end{aligned}
$$

iii. (2 marks)
[1] for locus.
$\checkmark \quad$ [1] for stating vertex of parabola.

$$
\left\{\begin{array}{l}
x=a p \tag{1}\\
y=a\left(p^{2}+1\right)
\end{array}\right.
$$

From (1),

$$
\therefore p=\frac{x}{a}
$$

Substitute to $y=a\left(p^{2}+1\right)$:

$$
\begin{aligned}
& \therefore y=a\left(\left(\frac{x}{a}\right)^{2}+1\right) \\
& =a\left(\frac{x^{2}}{a^{2}}+1\right) \\
& =\frac{x^{2}}{a}+a \\
& a y=x^{2}+a^{2} \\
& x^{2}=a y-a^{2}=a(y-a)
\end{aligned}
$$

which is a parabola with vertex $(0, a)$ - the focus of the original parabola.

