

MATHEMATICS (EXTENSION 1)

2012 HSC Course Assessment Task 3 (Trial Examination) June 27, 2012

General instructions

- Working time 2 hours. (plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- Attempt **all** questions.

אר ז

1

• At the conclusion of the examination, bundle the booklets + answer sheet used in the correct order within this paper and hand to examination supervisors.

(SECTION I)

• Mark your answers on the answer sheet provided (numbered as page 9)

SECTION II

- Commence each new question on a new page. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

STUDENT NUMBER:# BOOKLETS USED:Class (please \checkmark) \bigcirc 12M4A - Mr Weiss \bigcirc 12M3C - Ms Ziaziaris \bigcirc 12M4B - Mr Ireland \bigcirc 12M3D - Mr Lowe \bigcirc 12M4C - Mr Fletcher \bigcirc 12M3E - Mr Lam

Marker's use only.							
QUESTION	1-10	11	12	13	14	Total	%
MARKS	10	15	15	15	15	70	

Section I: Objective response

Mark your answers on the multiple choice sheet provided.

- 1. Which is the correct value of $\lim_{x\to 0} \frac{3x}{\sin 2x}$? (A) 0 (B) $\frac{2}{3}$ (C) $\frac{3}{2}$ (D) 3
- 2. Which of the following is the acute angle (correct to the nearest degree) between 1 the two lines 2x - y + 1 = 0 and 3x + y - 4 = 0?
 - (A) 11° (B) 45° (C) 79° (D) 135°
- **3.** Which of the following expressions will result in the coordinates of the point P **1** which divides the interval AB externally in the ratio 3:2, given A is (-5,2) and B is (4,5)?

(A)
$$\left(\frac{(2)(-5) + (-3)(4)}{-3+2}, \frac{(2)(2) + (-3)(5)}{-3+2}\right)$$

(B)
$$\left(\frac{(-3)(-5) + (2)(4)}{-3+2}, \frac{(-3)(2) + (2)(5)}{-3+2}\right)$$

(C)
$$\left(\frac{(-2)(-5) + (-3)(4)}{-3+2}, \frac{(-2)(2) + (-3)(5)}{-3+2}\right)$$

(D)
$$\left(\frac{(2)(2) + (-3)(5)}{-3+2}, \frac{(2)(-5) + (-3)(4)}{-3+2}\right)$$

4. Which of the following is the derivative of xe^{2x} ?

(A) $e^{2x}(1+x)$ (B) $e^{2x}(1+2x)$ (C) $2x^2e^{2x}$ (D) $\frac{1}{2}xe^{2x}$

5. Which of the following represents the complete solutions for $-180^{\circ} < \theta \le 180^{\circ}$ to 1 the equation

$$\cos^2 \frac{\theta}{2} = \frac{1}{4}$$

) 60°, 120° (B) 120°, 240° (C) ±60°, ±120° (D) ±120°

6. What should $\int \cos^2 \frac{1}{2} x \, dx$ be transformed into, in order to find its primitive?

- (A) $\int \frac{1}{2} \frac{\cos x}{2} dx$ (C) $\int \frac{1}{2} \frac{\cos 2x}{2} dx$
- (B) $\int \frac{1}{2} + \frac{\cos 2x}{2} dx$ (D) $\int \frac{1}{2} + \frac{\cos x}{2} dx$

 $(\mathbf{A}$

1

1

Marks

- 7. It is known that $\log_e x + \sin x = 0$ has a root close to x = 0.5. Using one application of Newton's method, which of the following gives a better approximation to 2 decimal places?
 - (A) 0.43 (B) 0.73 (C) 0.57 (D) 0.27
- 8. Which of the following graphs represents $y = \cos^{-1} 2x$?

9. If $\sqrt{3}\cos x - \sin x \equiv R\cos(x+\alpha)$, which of the following gives the correct value of α ?

- (A) $\frac{\pi}{6}$ (B) $\frac{5\pi}{6}$ (C) $\frac{7\pi}{6}$ (D) $\frac{11\pi}{6}$
- 10. Zac and Mitchell play a series of games. The series ends when one player has won two games. In any game the probability that Zac wins is $\frac{3}{5}$ and the probability that Mitchell wins is $\frac{2}{5}$.

What is the probability that three games are played?

(A)
$$\frac{6}{25}$$
 (B) $\frac{19}{25}$ (C) $\frac{12}{25}$ (D) $\frac{18}{25}$

End of Section I. Examination continues overleaf.

1

1

1

1

Section II: Short answer

Question 12 (15 Marks)

Question 11 (15 Marks)		arks)	Commence a NEW page.	Marks	
(a)	Solve for x :	$\frac{1}{x} > x$		3	
(b)	Evaluato D	dx		9	

(b) Evaluate
$$\int_0^{\infty} \frac{1}{\sqrt{16-x^2}}$$
.

(c) Find the exact value of
$$\sin\left(2\tan^{-1}\frac{3}{7}\right)$$
, showing full working. **3**

(d) Solve
$$\sin 2\theta = \sin \theta, \ 0 \le \theta \le 2\pi.$$
 3

(e) Using the substitution
$$u = \tan x$$
, find the exact value of

$$\int_0^{\frac{\pi}{4}} \frac{\sec^2 x}{3 + \tan^2 x} \, dx$$

(a)	If $P($	$x) = x^3 - 6x^2 + ax - 4, \ a > 0,$	
	i.	Given all the roots of $P(x) = 0$ are real and positive, and that one of the roots is the product of the other two roots, show that $a = 10$.	3
	ii.	Show that $x - 2$ is a factor of $P(x) = x^3 - 6x^2 + 10x - 4$.	2

Commence a NEW page.

(b) Air is being pumped into a spherical balloon at a rate of
$$20 \text{ cm}^3 \text{s}^{-1}$$
. Find the **3** rate of increase of the surface area of the balloon when the radius is 5 cm.

(c) A particle moves along the x axis such that its velocity $v \text{ ms}^{-1}$ is given by

$$v^2 = -4x^2 + 8x + 32$$

- i. By expressing the acceleration as a function in terms of x, prove that the particle is undergoing simple harmonic motion.
 ii. Find the amplitude.
 2
- iii. Find the maximum acceleration.

4

Marks

 $\mathbf{2}$

Question 13 (15 Marks)

(a)

Commence a NEW page.

x

Prove by mathematical induction that $5^n + 2 \times 11^n$ is divisible by 3, where *n* is **3** a positive integer.

 $y = \tan^{-1} x$

(b) Show that the shaded area is $A = \frac{1}{2} \ln 2$ units².

 $\frac{\pi}{4}$

(c) Two circles intersect at A and B. CAE is a straight line where C is a point on the first circle and E is a point on the second circle. The tangents to the circles at C and E meet at D.

Copy the diagram into your writing booklet.

Prove that BCDE is a cyclic quadrilateral, without adding any construction lines.

(d) The acceleration of a raindrop which at time t seconds is falling with speed v metres per second is given by the equation

$$\frac{dv}{dt} = -\frac{1}{3}\left(v - 3g\right)$$

where g is a constant.

- i. Show that $v = 3g + Ae^{-\frac{1}{3}t}$, where A is a constant, satisfies the above **1** equation.
- ii. Given that the initial velocity has a value of g, find the value of A.
- iii. After how many seconds is the raindrop falling with a speed of 2g metres **2** per second? Give your answer correct to 1 decimal place. **2**
- iv. What value does v approach as $t \to \infty$?

Marks

3

5

 $\mathbf{4}$

1

1

Question 14 (15 Marks)

 $\mathbf{2}$

 $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are two points on the parabola $x^2 = 4ay$. The (a) tangent at P and the line through Q parallel to the axis of the parabola meet at the point R.

The tangent at Q and the line through P parallel to the axis of the parabola meet at the point S.

- i. Show that the equations of the tangents at P and Q are $y = px ap^2$ and $\mathbf{2}$ $y = qx - aq^2$ respectively.
- ii. Show that the coordinates of S and R are

$$S\left(2ap, 2apq - aq^2\right) \qquad R\left(2aq, 2apq - ap^2\right)$$

iii. Show that
$$PQRS$$
 is a parallelogram. 2
iv. Show that the area of this parallelogram is $2a^2 |p-q|^3$. 2

iv. Show that the area of this parallelogram is
$$2a^2 |p-q|^3$$
.

Question 14 continues overleaf...

1

Question 14 continued from the previous page...

(b) A projectile is thrown horizontally from the top of a 125 m tower with velocity V metres per second. It clears a second tower of height 100 m by a distance of c metres, as shown. The two towers are $20\sqrt{5}$ metres apart.

i. The equations of motion for this system are

$$\begin{cases} x = Vt\\ y = -5t^2 + 125 \end{cases}$$

(Do not prove this)

Where is the origin of the system being taken from?

ii. Show that
$$V = \frac{100}{\sqrt{25 - c}}$$
. 2

- iii. Prove that the minimum initial speed of the projectile to just clear the $1 \, 100 \,\mathrm{m}$ tower is $20 \,\mathrm{ms}^{-1}$.
- iv. Hence, find how far past the 100 m tower will the projectile strike the ground.
- v. Determine the vertical component of the velocity of the projectile when it **1** strikes the ground.

End of paper.

STANDARD INTEGRALS

$$\int x^n \, dx \qquad = \frac{1}{n+1} x^{n+1} + C, \qquad n \neq -1; \quad x \neq 0 \text{ if } n < 0$$

$$\int \frac{1}{x} \, dx \qquad \qquad = \ln x + C, \qquad \qquad x > 0$$

$$\int e^{ax} dx \qquad \qquad = \frac{1}{a}e^{ax} + C, \qquad \qquad a \neq 0$$

$$\int \cos ax \, dx \qquad = \frac{1}{a} \sin ax + C, \qquad a \neq 0$$

$$\int \sin ax \, dx \qquad = -\frac{1}{a} \cos ax + C, \qquad a \neq 0$$

$$\int \sec^2 ax \, dx \qquad = \frac{1}{a} \tan ax + C, \qquad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax + C, \qquad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} \, dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a} + C, \qquad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx \qquad = \sin^{-1} \frac{x}{a} + C, \qquad \qquad a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} \, dx \qquad = \ln\left(x + \sqrt{x^2 - a^2}\right) + C, \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx \qquad = \ln\left(x + \sqrt{x^2 + a^2}\right) + C$$

NOTE: $\ln x = \log_e x, x > 0$

Answer sheet for Section I

Mark answers to Section I by fully blackening the correct circle, e.g "•"

STUDENT NUMBER:

Class (please \checkmark)

- $\bigcirc~12\mathrm{M4A}-\mathrm{Mr}$ Weiss
- $\bigcirc~12\mathrm{M4B}-\mathrm{Mr}$ Ireland
- \bigcirc 12M4C Mr Fletcher

- $\bigcirc~12\mathrm{M3C}$ M
s Ziaziaris
- \bigcirc 12M3D Mr Lowe
- \bigcirc 12M3E Mr Lam

1 –	(A)	B	\bigcirc	\bigcirc
2 -	\bigcirc	B	\bigcirc	\bigcirc
3 -	(A)	B	\bigcirc	\bigcirc
4 –	\bigcirc	B	\bigcirc	\bigcirc
5 -	\bigcirc	B	C	\bigcirc
6 –	\bigcirc	B	C	\bigcirc
7 -	(A)	B	C	\bigcirc
8 -	\bigcirc	B	C	\bigcirc
9 -	\bigcirc	B	C	\bigcirc
10 -	(A)	B	C	\bigcirc

Suggested Solutions

Section I

(Lowe)

(C) 2. (B) 3. (A) 4. (B) 5. (D)
 (D) 7. (C) 8. (D) 9. (A) 10. (C)

Question 11 (Lam)

(a) (3 marks)

- $\checkmark~[1]$ for multiplying by square of denominator.
- ✓ [0] for entire part if only multiplying by denominator.
- \checkmark [1] for each correct inequality.

$$\frac{1}{x} > x$$

$$\times x^{2}$$

$$x > x^{3}$$

$$x^{3} - x < 0$$

$$x(x^{2} - 1) < 0$$

$$x(x - 1)(x + 1) < 0$$

From the sketch,

$$x < -1$$
 or $0 < x < 1$

(b) (2 marks)

- \checkmark [1] for correct primitive.
- \checkmark [1] for correct evaluation of limits.

$$\int_{0}^{2} \frac{dx}{\sqrt{16 - x^{2}}} = \left[\sin^{-1}\frac{x}{4}\right]_{0}^{2}$$
$$= \sin^{-1}\frac{1}{2} - \sin^{-1}0$$
$$= \frac{\pi}{6}$$

(c) (3 marks)

- \checkmark [1] for drawing relevant right-angled triangle.
- ✓ [1] for expanding $\sin 2\alpha$.
- ✓ [1] for final answer.

Let
$$\alpha = \tan^{-1} \frac{3}{7}$$
. Then $\tan \alpha = \frac{3}{7}$:

$$\sin\left(2\tan^{-1}\frac{3}{7}\right) \equiv \sin 2\alpha$$
$$= 2\sin\alpha\cos\alpha$$
$$= 2\times\frac{3}{\sqrt{58}}\times\frac{7}{\sqrt{58}}$$
$$= \frac{42}{58} = \frac{21}{29}$$

(d) (3 marks)

- $\begin{bmatrix} 1 \end{bmatrix} \text{ for factorising expression into} \\ \sin \theta (2 \cos \theta 1) = 0.$
- ✓ [1] for solutions in positive integral multiples of π .
- \checkmark [1] for solutions in multiples of $\frac{\pi}{3}$.

$$\sin 2\theta = \sin \theta$$

$$2\sin \theta \cos \theta - \sin \theta = 0$$

$$\sin \theta (2\cos \theta - 1) = 0$$

$$\sin \theta = 0 \qquad \cos \theta = \frac{1}{2}$$

$$\theta = 0, \pi, 2\pi \qquad \theta = \frac{\pi}{3}, \frac{5\pi}{3}$$

$$\therefore \theta = 0, \pi, 2\pi, \frac{\pi}{3}, \frac{5\pi}{3}$$

- (e) (4 marks)
 - \checkmark [1] for changing limits.
 - $\checkmark~~[1]~$ for making algebraic substitution.
 - \checkmark [1] for correct primitive.
 - \checkmark [1] for final answer.

$$\int_0^{\frac{\pi}{4}} \frac{\sec^2 x}{3 + \tan^2 x} \, dx$$

Letting $u = \tan x$,

$$\frac{du}{dx} = \sec^2 x$$

$$\therefore du = \sec^2 x \, dx$$

$$x = 0 \Rightarrow u = 0$$

$$x = \frac{\pi}{4} \Rightarrow u = 1$$

$$\int_0^{\frac{\pi}{4}} \frac{\sec^2 x}{3 + \tan^2 x} \, dx$$

$$= \int_{u=0}^{u=1} \frac{\sec^2 x \, dx}{3 + u^2}$$

$$= \int_0^1 \frac{du}{3 + u^2}$$

$$= \frac{1}{\sqrt{3}} \left[\tan^{-1} \frac{u}{\sqrt{3}} \right]_0^1$$

$$= \frac{1}{\sqrt{3}} \left(\tan^{-1} \frac{1}{\sqrt{3}} - \tan^{-1} 0 \right)$$

$$= \frac{1}{\sqrt{3}} \times \frac{\pi}{6}$$

$$= \frac{\pi}{6\sqrt{3}} \left(= \frac{\pi\sqrt{3}}{18} \right)$$

Question 12 (Lowe)

- (a) i. (3 marks) \checkmark [1] for $\alpha\beta = 2$. \checkmark [1] for $\alpha + \beta = 4$. \checkmark [1] for final answer. $P(x) = x^3 - 6x^2 + ax - 4$. Let the roots be α , β and $\alpha\beta$.
 - Sum of roots:

$$\alpha + \beta + \alpha\beta = -\frac{b}{a} = 6 \quad (12.1)$$

• Pairs of roots:

$$\alpha\beta + \alpha^2\beta + \beta^2\alpha = \frac{c}{a} = a$$
(12.2)

• Product of roots:

$$\alpha\beta (\alpha\beta) = -\frac{d}{a} = 4$$
$$\alpha^2\beta^2 = 4$$
$$\therefore \alpha\beta = 2 \qquad (12.3)$$

as roots are positive. Substitute (12.3) into (12.1):

$$\alpha + \beta + 2 = 6$$

$$\therefore \alpha + \beta = 4 \qquad (12.4)$$

Substitute (12.4) into (12.2) to find a:

$$\alpha\beta + \alpha\beta(\alpha + \beta) = a \qquad (12.5)$$
$$2 + 2(4) = a$$
$$\therefore a = 10$$

- ii. (2 marks)
 - \checkmark [2] for correct application of factor theorem.

If x - 2 is a factor then P(2) = 0.

$$P(2) = 2^{3} - 6(2^{2}) + 10(2) - 4$$
$$= 8 - 24 + 20 - 4 = 0$$

(b) (3 marks)

- \checkmark [1] for $\frac{dr}{dt}$.
- \checkmark [1] for $\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$.
- \checkmark [1] for final answer.

$$\frac{dV}{dt} = 20 = \frac{dV}{dr} \times \frac{dr}{dt}$$

$$V = \frac{4}{3}\pi r^{3}$$

$$\frac{dV}{dr} = \frac{4}{3} \times \pi \times 3r^{2} = 4\pi r^{2}$$

$$\therefore \frac{dV}{dt} = 20 = 4\pi r^{2} \Big|_{r=5} \times \frac{dr}{dt}$$

$$= 4\pi \times 25 \times \frac{dr}{dt}$$

$$\therefore \frac{dr}{dt} = \frac{1}{5\pi}$$

Now
$$\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$$

 $SA = 4\pi r^2$
 $\therefore \frac{dA}{dr} = 8\pi r$
 $\frac{dA}{dt} = 8\pi r \Big|_{r=5} \times \frac{1}{5\pi}$
 $= 8 \,\mathrm{cm}^2 \mathrm{s}^{-1}$

(c) i. (3 marks)

- ✓ [1] for using $\frac{d}{dx}(\frac{1}{2}v^2)$ to find acceleration.
- \checkmark [1] obtaining $\ddot{x} = -4x + 4$.
- ✓ [1] factorising and noting form $\frac{dv}{dt} = -n^2 (x x_0)$ for SHM.

$$v^{2} = -4x^{2} + 8x + 32$$
$$\frac{1}{2}v^{2} = -2x^{2} + 4x + 16$$
$$\ddot{x} = \frac{dv}{dt} = \frac{d}{dx}\left(\frac{1}{2}v^{2}\right)$$
$$= \frac{d}{dx}\left(-2x^{2} + 4x + 16\right)$$
$$= -4x + 4 = -4(x - 1)$$

As acceleration is proportion to the opposite direction of displacement, hence the particle is moving in simple harmonic motion with centre at x = 1.

- ii. (2 marks)
 - ✓ [1] for x = 4, x = -2.
 - \checkmark [1] for finding amplitude.

The amplitude occurs when $\dot{x} = 0$.

$$-4x^{2} + 8x + 32 = 0$$

$$x^{2} - 2x - 8 = 0$$

$$(x - 4)(x + 2) = 0$$

$$\therefore x = 4, -2$$

$$a = \frac{4 + |-2|}{2} = 3$$

As the centre of motion is x = 1 and particle's maximum displacement is 4 or -2, therefore the amplitude is a = 3. iii. (1 mark)

Maximum acceleration occurs at the amplitude, i.e. x = 4 or x = -2.

$$\ddot{x} = -4(x-1)\Big|_{x=-2}$$
$$= -4(-2-1) = 12$$

Question 13 (Ziaziaris)

- (a) (3 marks)
 - \checkmark [1] for proving base case.
 - \checkmark [1] for inductive step.
 - \checkmark [1] for required proof.

Let P(n) be the statement $5^n + 2 \times 11^n$ is divisible by 3, i.e.

$$5^n + 2 \times 11^n = 3J$$

where $J \in \mathbb{N}$.

• Base case: P(1):

$$5^1 + 2 \times 11 = 5 + 22 = 27$$

which is divisible by 3. Hence P(1) is true.

- Inductive step:
 - Assume P(k) is true for some $k \in \mathbb{N}, k < n$, i.e.

 $5^k + 2 \times 11^k = 3M$

where $M \in \mathbb{N}$. Alternatively,

$$5^k = 3M - 2 \times 11^k$$

- Examine
$$P(k+1)$$
:

$$5^{k+1} + 2 \times 11^{k+1}$$

= $5^k 5^1 + 2 \times 11^{k+1}$
= $5 \left(3M - 2 \times 11^k\right) + 2 \times 11^{k+1}$
= $3 \times 5M - 10 \times 11^k + 2 \times 11 \times 11^k$
= $3 \times 5M - 10 \times 11^k + 22 \times 11^k$
= $3 \times 5M + 12 \times 11^k$
= $3 \left(5M + 4 \times 11^k\right)$
 $\in \mathbb{N}$ = $3P$

where $P \in \mathbb{N}$. Hence P(k+1) is true.

Since $k \in \mathbb{N}$ and truth in P(k) also leads to truth in P(k + 1), therefore P(n) is true by induction. (b) (3 marks)

- \checkmark [1] for coverting integrand to $\frac{\sin y}{\cos y}$
- \checkmark [1] for correct primitive
- \checkmark [1] for final answer.

$$\begin{split} A &= \int_0^{\frac{\pi}{4}} \tan y \, dy \\ &= \int_0^{\frac{\pi}{4}} \frac{\sin y}{\cos y} \, dy \\ &= \left[-\log_e \left(\cos y \right) \right]_0^{\frac{\pi}{4}} \\ &= -\log_e \cos \frac{\pi}{4} + \log_e \cos 0 \\ &= -\log_e \frac{1}{\sqrt{2}} + \log_e 1 \\ &= -\log_e 2^{-\frac{1}{2}} = \frac{1}{2} \log_e 2 \end{split}$$

(c) (4 marks) – marking scheme embedded inline. Presence of \checkmark indicates 1 mark.

- $\checkmark \quad \text{Let } \angle DCE = \alpha \text{ and } \angle DEC = \beta.$ $\therefore \angle CBA = \alpha \ (\angle \text{ in alternate segment})$
- ✓ Similarly, $∠ABE = \beta$ (∠ in alternate segment)
- ✓ Also, $\angle CDE = 180^{\circ} (\alpha + \beta)$. (Angle sum of $\triangle CDE$)
- Hence $\angle CDE + \angle CBE = 180^{\circ}$
- ✓ Opposite ∠ in *BCDE* are supplementary. Hence *BCDE* is a cyclic quadrilateral.

(d) i. (1 mark)

$$v_{-3g} = 3g_{-3g} + Ae^{-\frac{1}{3}t}$$
$$v - 3g = Ae^{-\frac{1}{3}t}$$
$$\frac{dv}{dt} = -\frac{1}{3}\underbrace{Ae^{-\frac{1}{3}t}}_{=(v-3g)}$$
$$= -\frac{1}{3}(v - 3g)$$

ii. (1 mark)

$$t = 0, v = g$$

$$\therefore g = 3g + Ae^{0}$$

$$\therefore A = -2g$$

iii. (2 marks)

$$v = 2g, t =?$$

$$2g = 3g - 2ge^{-\frac{1}{3}t}$$

$$-g = -2ge^{-\frac{1}{3}t}$$

$$\frac{1}{2} = e^{-\frac{1}{3}t}$$

$$-\frac{1}{3}t = \log_e \frac{1}{2} = -\log_e 2$$

$$\therefore t = 3\log_e 2 \approx 2.1 \text{ seconds}$$

iv. (1 mark) As $t \to \infty$, $v \to 3g$.

LAST UPDATED JULY 26, 2012

Question 14 (Ireland/Fletcher)

(a) i. (2 marks) \checkmark [1] for proving $\frac{dy}{dx} = p$ at P. \checkmark [1] for equation of tangent at P.

$$x^{2} = 4ay \quad \Rightarrow \quad y = \frac{x^{2}}{4a}$$
$$\frac{dy}{dx} = \frac{2x}{4a} = \frac{x}{2a}$$

At x = 2ap,

$$\frac{dy}{dx} = \frac{2ap}{2a} = p$$

Equation of the tangent at P:

$$y - ap2 = p(x - 2ap) = px - 2ap2$$
$$y = px - ap2$$

Similarly, the tangent at Q is

$$y = qx - aq^2$$

ii. (2 marks)

 \checkmark [1] for each y coordinate.

Coordinates of S arise from the intersection of x = 2ap and $y = qx - aq^2$:

$$y = q(2ap) - aq^{2} = 2apq - aq^{2}$$
$$\therefore S(2ap, 2apq - aq^{2})$$

Coordinates of R arise from the intersection of x = 2aq and $y = px - ap^2$:

$$y = p(2aq) - ap^{2} = 2apq - ap^{2}$$

$$\therefore R(2aq, 2apq - ap^{2})$$

- iii. (2 marks)
 - \checkmark [1] for showing $PS \parallel QR$.
 - \checkmark [1] for showing PS = QR.

$$d_{PS} = \sqrt{(2ap - 2ap)^2 + (ap^2 - (2apq - aq^2))^2}$$

= $\sqrt{(a(p - q)^2)^2}$
= $a(p - q)$
$$d_{QR} = \sqrt{(2aq - 2aq)^2 + (aq^2 - (2apq - ap^2))}$$

= $\sqrt{a(q - p)^2} = \sqrt{a(p - q)^2}$
= $a(p - q)$

As PS = QR, hence one pair of opposite sides equal and parallel. Hence PQRS is a parallelogram.

Alternatively, if PQRS is a parallelogram, then the diagonals bisect each other; i.e. QS and PR share the same midpoint. Show via midpoint formula results in

$$MP_{QS} = \left(\frac{a(p+q)}{2}, apq\right)$$
$$MP_{PR} = \left(\frac{a(p+q)}{2}, apq\right)$$

- iv. (2 marks)
 - \checkmark [1] for h (fully)
 - \checkmark [1] for area.
 - Use A = bh.
 - *h* is perpendicular distance from *Q* to *PS*.
 - Use $b = d_{PS}$.

Using the perpendicular dist formula with $x = 2ap \& Q(2aq, aq^2)$:

$$h = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$

= $\frac{|2aq(1) + 0 - 2ap|}{\sqrt{1^2 + 0}}$
= $\frac{|2aq - 2ap|}{1} = 2a |q - p|$
= $2a |p - q|$

As
$$|p - q| = |q - p|$$
.

$$A = bh$$

= $2a |p - q| \times a(p - q)^2$
= $2a^2 |p - q|^3$

LAST UPDATED JULY 26, 2012

- (b) i. (1 mark) Origin is at the base of tower.
 - ii. (2 marks) \checkmark [1] for $100 + c = -5\left(\frac{400 \times 5}{V^2}\right) + 125$. \checkmark [1] for final result shown. When $x = 20\sqrt{5}, y = 100 + c$. Using x = Vt,

$$20\sqrt{5} = Vt$$
$$\therefore t = \frac{20\sqrt{5}}{V}$$

Substitute into $y = -5t^2 + 125$,

$$100 + c = -5\left(\frac{20\sqrt{5}}{V}\right)^2 + 125$$

= $-5\left(\frac{400 \times 5}{V^2}\right) + 125$
 $-25 + c = -5 \times \frac{400 \times 5}{V^2}$
 $25 - c = \frac{25 \times 400}{V^2}$
 $V^2 = \frac{10\ 000}{25 - c}$
 $\therefore V = \frac{100}{\sqrt{25 - c}} \quad (V > 0)$

iii. (1 mark) Projectile just clears tower when c = 0.

$$V = \frac{100}{\sqrt{25 - c}} \bigg|_{c=0} = 20 \,\mathrm{ms}^{-1}$$

iv. (2 marks) \checkmark [1] for x = 100. \checkmark [1] for final answer. Projectile strikes ground when y = 0.

$$-5t^{2} + 125 = 0$$

$$5t^{2} = 125$$

$$\therefore t^{2} = 25 \implies t = 5$$

When t = 5,

$$x = Vt = 20 \times 5 = 100$$

Hence projectile will strike the ground $100 - 20\sqrt{5}$ metres past the second tower.

v. (1 mark)

$$y = -5t^{2} + 125$$
$$\dot{y} = -10t \Big|_{t=5} = -50 \,\mathrm{ms}^{-1}$$