MATHEMATICS (EXTENSION 1)
 2012 HSC Course Assessment Task 3 (Trial Examination)
 June 27, 2012

General instructions

- Working time -2 hours. (plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets + answer sheet used in the correct order within this paper and hand to examination supervisors.

SECTION I

- Mark your answers on the answer sheet provided (numbered as page 9)

SECTION II

- Commence each new question on a new page. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

STUDENT NUMBER:

\# BOOKLETS USED:

Class (please \boldsymbol{V})
O 12M4A - Mr Weiss

- 12M3C - Ms Ziaziaris
○ 12M4B - Mr Ireland
○ 12M3D - Mr Lowe
O 12M4C - Mr Fletcher
○ 12M3E - Mr Lam

Marker's use only.

QUESTION	$1-10$	11	12	13	14	Total	$\%$
MARKS	$\overline{10}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{70}$	

Section I: Objective response

Mark your answers on the multiple choice sheet provided.

1. Which is the correct value of $\lim _{x \rightarrow 0} \frac{3 x}{\sin 2 x}$?
(A) 0
(B) $\frac{2}{3}$
(C) $\frac{3}{2}$
(D) 3
2. Which of the following is the acute angle (correct to the nearest degree) between the two lines $2 x-y+1=0$ and $3 x+y-4=0$?
(A) 11°
(B) 45°
(C) 79°
(D) 135°
3. Which of the following expressions will result in the coordinates of the point P which divides the interval $A B$ externally in the ratio $3: 2$, given A is $(-5,2)$ and B is $(4,5)$?
(A) $\left(\frac{(2)(-5)+(-3)(4)}{-3+2}, \frac{(2)(2)+(-3)(5)}{-3+2}\right)$
(B) $\left(\frac{(-3)(-5)+(2)(4)}{-3+2}, \frac{(-3)(2)+(2)(5)}{-3+2}\right)$
(C) $\left(\frac{(-2)(-5)+(-3)(4)}{-3+2}, \frac{(-2)(2)+(-3)(5)}{-3+2}\right)$
(D) $\left(\frac{(2)(2)+(-3)(5)}{-3+2}, \frac{(2)(-5)+(-3)(4)}{-3+2}\right)$
4. Which of the following is the derivative of $x e^{2 x}$?
(A) $e^{2 x}(1+x)$
(B) $e^{2 x}(1+2 x)$
(C) $2 x^{2} e^{2 x}$
(D) $\frac{1}{2} x e^{2 x}$
5. Which of the following represents the complete solutions for $-180^{\circ}<\theta \leq 180^{\circ}$ to the equation

$$
\cos ^{2} \frac{\theta}{2}=\frac{1}{4}
$$

(A) $60^{\circ}, 120^{\circ}$
(B) $120^{\circ}, 240^{\circ}$
(C) $\pm 60^{\circ}, \pm 120^{\circ}$
(D) $\pm 120^{\circ}$
6. What should $\int \cos ^{2} \frac{1}{2} x d x$ be transformed into, in order to find its primitive?
(A) $\int \frac{1}{2}-\frac{\cos x}{2} d x$
(C) $\int \frac{1}{2}-\frac{\cos 2 x}{2} d x$
(B) $\int \frac{1}{2}+\frac{\cos 2 x}{2} d x$
(D) $\int \frac{1}{2}+\frac{\cos x}{2} d x$
7. It is known that $\log _{e} x+\sin x=0$ has a root close to $x=0.5$. Using one application of Newton's method, which of the following gives a better approximation to 2 decimal places?
(A) 0.43
(B) 0.73
(C) 0.57
(D) 0.27
8. Which of the following graphs represents $y=\cos ^{-1} 2 x$?
(A)

(C)

(B)

(D)

9. If $\sqrt{3} \cos x-\sin x \equiv R \cos (x+\alpha)$, which of the following gives the correct value of α ?
(A) $\frac{\pi}{6}$
(B) $\frac{5 \pi}{6}$
(C) $\frac{7 \pi}{6}$
(D) $\frac{11 \pi}{6}$
10. Zac and Mitchell play a series of games. The series ends when one player has won two games. In any game the probability that Zac wins is $\frac{3}{5}$ and the probability that Mitchell wins is $\frac{2}{5}$.

What is the probability that three games are played?
(A) $\frac{6}{25}$
(B) $\frac{19}{25}$
(C) $\frac{12}{25}$
(D) $\frac{18}{25}$

End of Section I.

Examination continues overleaf.

Section II: Short answer

Question 11 (15 Marks)
Commence a NEW page.
Marks
(a) \quad Solve for $x: \frac{1}{x}>x$
(b) Evaluate $\int_{0}^{2} \frac{d x}{\sqrt{16-x^{2}}}$.
(c) Find the exact value of $\sin \left(2 \tan ^{-1} \frac{3}{7}\right)$, showing full working.
(d) Solve $\sin 2 \theta=\sin \theta, 0 \leq \theta \leq 2 \pi$.
(e) Using the substitution $u=\tan x$, find the exact value of

$$
\int_{0}^{\frac{\pi}{4}} \frac{\sec ^{2} x}{3+\tan ^{2} x} d x
$$

Question 12 (15 Marks)
(a) If $P(x)=x^{3}-6 x^{2}+a x-4, a>0$,
i. Given all the roots of $P(x)=0$ are real and positive, and that one of the roots is the product of the other two roots, show that $a=10$.
ii. Show that $x-2$ is a factor of $P(x)=x^{3}-6 x^{2}+10 x-4$.
(b) Air is being pumped into a spherical balloon at a rate of $20 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. Find the rate of increase of the surface area of the balloon when the radius is 5 cm .
(c) A particle moves along the x axis such that its velocity $v \mathrm{~ms}^{-1}$ is given by

$$
v^{2}=-4 x^{2}+8 x+32
$$

i. By expressing the acceleration as a function in terms of x, prove that the particle is undergoing simple harmonic motion.
ii. Find the amplitude.
iii. Find the maximum accceleration.
(a) Prove by mathematical induction that $5^{n}+2 \times 11^{n}$ is divisible by 3 , where n is the first circle and E is a point on the second circle. The tangents to the circles at C and E meet at D.

Copy the diagram into your writing booklet.

Prove that $B C D E$ is a cyclic quadrilateral, without adding any construction lines.
(d) The acceleration of a raindrop which at time t seconds is falling with speed v metres per second is given by the equation

$$
\frac{d v}{d t}=-\frac{1}{3}(v-3 g)
$$

where g is a constant.
i. Show that $v=3 g+A e^{-\frac{1}{3} t}$, where A is a constant, satisfies the above equation.
ii. Given that the initial velocity has a value of g, find the value of A.
iii. After how many seconds is the raindrop falling with a speed of $2 g$ metres per second? Give your answer correct to 1 decimal place.
iv. What value does v approach as $t \rightarrow \infty$?
(a) $\quad P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ are two points on the parabola $x^{2}=4 a y$. The tangent at P and the line through Q parallel to the axis of the parabola meet at the point R.

The tangent at Q and the line through P parallel to the axis of the parabola meet at the point S.
i. Show that the equations of the tangents at P and Q are $y=p x-a p^{2}$ and $y=q x-a q^{2}$ respectively.
ii. Show that the coordinates of S and R are

$$
S\left(2 a p, 2 a p q-a q^{2}\right) \quad R\left(2 a q, 2 a p q-a p^{2}\right)
$$

iii. Show that $P Q R S$ is a parallelogram.
iv. Show that the area of this parallelogram is $2 a^{2}|p-q|^{3}$.

Question 14 continued from the previous page...
(b) A projectile is thrown horizontally from the top of a 125 m tower with velocity V metres per second. It clears a second tower of height 100 m by a distance of c metres, as shown. The two towers are $20 \sqrt{5}$ metres apart.

i. The equations of motion for this system are

$$
\left\{\begin{array}{l}
x=V t \\
y=-5 t^{2}+125
\end{array}\right.
$$

(Do not prove this)
Where is the origin of the system being taken from?
ii. Show that $V=\frac{100}{\sqrt{25-c}}$.
iii. Prove that the minimum initial speed of the projectile to just clear the 100 m tower is $20 \mathrm{~ms}^{-1}$.
iv. Hence, find how far past the 100 m tower will the projectile strike the ground.
v. Determine the vertical component of the velocity of the projectile when it strikes the ground.

End of paper.

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}+C, \quad n \neq-1 ; \quad x \neq 0 \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x+C, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}+C, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x+C, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x+C, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x+C, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x+C, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}+C, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C, \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Answer sheet for Section I

Mark answers to Section I by fully blackening the correct circle, e.g

STUDENT NUMBER:

Class (please \boldsymbol{V})12M4A - Mr Weiss

- 12M3C - Ms Ziaziaris
○ 12M4B - Mr Ireland
○ 12M3D - Mr Lowe
O 12M4C - Mr Fletcher
○ 12M3E - Mr Lam

Suggested Solutions

Section I

(Lowe)

1. (C)
2. (B) 3. (A) 4. (B) 5. (D)
3. (D) 7
4. (C)
5. (D) 9. (A) 10. (C)

Question 11 (Lam)
(a) (3 marks)
$\checkmark \quad[1]$ for multiplying by square of denominator.
$\checkmark \quad[0]$ for entire part if only multiplying by denominator.
$\checkmark \quad[1]$ for each correct inequality.

$$
\begin{gathered}
\frac{1}{x}>\underset{\times x^{2}}{x} \\
\times x^{2} \\
x>x^{3} \\
x^{3}-x<0 \\
x\left(x^{2}-1\right)<0 \\
x(x-1)(x+1)<0
\end{gathered}
$$

(c) (3 marks)
$\checkmark \quad[1]$ for drawing relevant right-angled triangle.
$\checkmark \quad$ [1] for expanding $\sin 2 \alpha$.
$\checkmark \quad$ [1] for final answer.
Let $\alpha=\tan ^{-1} \frac{3}{7}$. Then $\tan \alpha=\frac{3}{7}$:

$$
\begin{aligned}
\sin \left(2 \tan ^{-1} \frac{3}{7}\right) & \equiv \sin 2 \alpha \\
& =2 \sin \alpha \cos \alpha \\
& =2 \times \frac{3}{\sqrt{58}} \times \frac{7}{\sqrt{58}} \\
& =\frac{42}{58}=\frac{21}{29}
\end{aligned}
$$

From the sketch,

$$
x<-1 \text { or } 0<x<1
$$

(b) (2 marks)
$\checkmark \quad$ [1] for correct primitive.
$\checkmark \quad[1]$ for correct evaluation of limits.

$$
\begin{aligned}
\int_{0}^{2} \frac{d x}{\sqrt{16-x^{2}}} & =\left[\sin ^{-1} \frac{x}{4}\right]_{0}^{2} \\
& =\sin ^{-1} \frac{1}{2}-\sin ^{-1} 0 \\
& =\frac{\pi}{6}
\end{aligned}
$$

(d) (3 marks)
$\checkmark \quad[1]$ for factorising expression into $\sin \theta(2 \cos \theta-1)=0$.
$\checkmark \quad[1]$ for solutions in positive integral multiples of π.
$\checkmark \quad[1]$ for solutions in multiples of $\frac{\pi}{3}$.

$$
\begin{gathered}
\sin 2 \theta=\sin \theta \\
2 \sin \theta \cos \theta-\sin \theta=0 \\
\sin \theta(2 \cos \theta-1)=0 \\
\sin \theta=0 \quad \cos \theta=\frac{1}{2} \\
\theta=0, \pi, 2 \pi \quad \theta=\frac{\pi}{3}, \frac{5 \pi}{3} \\
\therefore \theta=0, \pi, 2 \pi, \frac{\pi}{3}, \frac{5 \pi}{3}
\end{gathered}
$$

(e) (4 marks)
$\checkmark \quad$ [1] for changing limits.
$\checkmark \quad$ [1] for making algebraic substitution.
$\checkmark \quad$ [1] for correct primitive.
$\checkmark \quad[1]$ for final answer.

$$
\int_{0}^{\frac{\pi}{4}} \frac{\sec ^{2} x}{3+\tan ^{2} x} d x
$$

Letting $u=\tan x$,

$$
\begin{gathered}
\frac{d u}{d x}=\sec ^{2} x \\
\therefore d u=\sec ^{2} x d x \\
x=0 \Rightarrow u=0 \\
x=\frac{\pi}{4} \Rightarrow u=1 \\
\int_{0}^{\frac{\pi}{4}} \frac{\sec ^{2} x}{3+\tan ^{2} x} d x \\
=\int_{u=0}^{u=1} \frac{\sec ^{2} x d x}{3+u^{2}} \\
=\int_{0}^{1} \frac{d u}{3+u^{2}} \\
=\frac{1}{\sqrt{3}}\left[\tan ^{-1} \frac{u}{\sqrt{3}}\right]_{0}^{1} \\
=\frac{1}{\sqrt{3}}\left(\tan ^{-1} \frac{1}{\sqrt{3}}-\tan ^{-1} 0\right) \\
=\frac{1}{\sqrt{3}} \times \frac{\pi}{6} \\
=\frac{\pi}{6 \sqrt{3}}\left(=\frac{\pi \sqrt{3}}{18}\right)
\end{gathered}
$$

Question 12 (Lowe)
(a) i. (3 marks)
$\checkmark \quad[1]$ for $\alpha \beta=2$.
$\checkmark \quad[1]$ for $\alpha+\beta=4$.
$\checkmark \quad$ [1] for final answer.
$P(x)=x^{3}-6 x^{2}+a x-4$. Let the roots be α, β and $\alpha \beta$.

- Sum of roots:

$$
\begin{equation*}
\alpha+\beta+\alpha \beta=-\frac{b}{a}=6 \tag{12.1}
\end{equation*}
$$

- Pairs of roots:

$$
\begin{equation*}
\alpha \beta+\alpha^{2} \beta+\beta^{2} \alpha=\frac{c}{a}=a \tag{12.2}
\end{equation*}
$$

- Product of roots:

$$
\begin{gather*}
\alpha \beta(\alpha \beta)=-\frac{d}{a}=4 \\
\alpha^{2} \beta^{2}=4 \\
\therefore \alpha \beta=2 \tag{12.3}
\end{gather*}
$$

as roots are positive.
Substitute (12.3) into (12.1):

$$
\begin{gather*}
\alpha+\beta+2=6 \\
\therefore \alpha+\beta=4 \tag{12.4}
\end{gather*}
$$

Substitute (12.4) into (12.2) to find a :

$$
\begin{gather*}
\alpha \beta+\alpha \beta(\alpha+\beta)=a \tag{12.5}\\
2+2(4)=a \\
\therefore a=10
\end{gather*}
$$

ii. (2 marks)
$\checkmark \quad$ [2] for correct application of factor theorem.
If $x-2$ is a factor then $P(2)=0$.

$$
\begin{aligned}
P(2) & =2^{3}-6\left(2^{2}\right)+10(2)-4 \\
& =8-24+20-4=0
\end{aligned}
$$

(b) (3 marks)
$\checkmark \quad[1]$ for $\frac{d r}{d t}$.
$\checkmark \quad[1]$ for $\frac{d A}{d t}=\frac{d A}{d r} \times \frac{d r}{d t}$.
$\checkmark \quad[1]$ for final answer.

$$
\begin{aligned}
& \frac{d V}{d t}=20=\frac{d V}{d r} \times \frac{d r}{d t} \\
& V=\frac{4}{3} \pi r^{3} \\
& \frac{d V}{d r}=\frac{4}{3} \times \pi \times 3 r^{2}=4 \pi r^{2} \\
& \therefore \frac{d V}{d t}=20=\left.4 \pi r^{2}\right|_{r=5} \times \frac{d r}{d t} \\
&=4 \pi \times 25 \times \frac{d r}{d t} \\
& \therefore \frac{d r}{d t}=\frac{1}{5 \pi}
\end{aligned}
$$

Now $\frac{d A}{d t}=\frac{d A}{d r} \times \frac{d r}{d t}$

$$
\begin{gathered}
S A=4 \pi r^{2} \\
\therefore \frac{d A}{d r}=8 \pi r \\
\frac{d A}{d t}=\left.8 \pi r\right|_{r=5} \times \frac{1}{5 \pi} \\
=8 \mathrm{~cm}^{2} \mathrm{~s}^{-1}
\end{gathered}
$$

iii. (1 mark)

Maximum acceleration occurs at the amplitude, i.e. $x=4$ or $x=-2$.

$$
\begin{aligned}
\ddot{x} & =-\left.4(x-1)\right|_{x=-2} \\
& =-4(-2-1)=12
\end{aligned}
$$

Question 13 (Ziaziaris)

(a) (3 marks)
$\checkmark \quad[1]$ for proving base case.
$\checkmark \quad$ [1] for inductive step.
$\checkmark \quad$ [1] for required proof.
Let $P(n)$ be the statement $5^{n}+2 \times 11^{n}$ is divisible by 3 , i.e.

$$
5^{n}+2 \times 11^{n}=3 J
$$

where $J \in \mathbb{N}$.

- Base case: $P(1)$:

$$
5^{1}+2 \times 11=5+22=27
$$

which is divisible by 3 . Hence $P(1)$ is true.

- Inductive step:
- Assume $P(k)$ is true for some $k \in \mathbb{N}, k<n$, i.e.

$$
5^{k}+2 \times 11^{k}=3 M
$$

where $M \in \mathbb{N}$. Alternatively,

$$
5^{k}=3 M-2 \times 11^{k}
$$

- Examine $P(k+1)$:

$$
\begin{aligned}
& 5^{k+1}+2 \times 11^{k+1} \\
= & 5^{k} 5^{1}+2 \times 11^{k+1} \\
= & 5\left(3 M-2 \times 11^{k}\right)+2 \times 11^{k+1} \\
= & 3 \times 5 M-10 \times 11^{k}+2 \times 11 \times 11^{k} \\
= & 3 \times 5 M-10 \times 11^{k}+22 \times 11^{k} \\
= & 3 \times 5 M+12 \times 11^{k} \\
= & 3 \underbrace{\left(5 M+4 \times 11^{k}\right)}_{\in \mathbb{N}} \equiv 3 P
\end{aligned}
$$

where $P \in \mathbb{N}$. Hence $P(k+1)$ is true.
Since $k \in \mathbb{N}$ and truth in $P(k)$ also leads to truth in $P(k+1)$, therefore $P(n)$ is true by induction.

(b) (3 marks)

$\checkmark \quad$ [1] for coverting integrand to $\frac{\sin y}{\cos y}$
$\checkmark \quad$ [1] for correct primitive
$\checkmark \quad$ [1] for final answer.

$$
\begin{aligned}
A & =\int_{0}^{\frac{\pi}{4}} \tan y d y \\
& =\int_{0}^{\frac{\pi}{4}} \frac{\sin y}{\cos y} d y \\
& =\left[-\log _{e}(\cos y)\right]_{0}^{\frac{\pi}{4}} \\
& =-\log _{e} \cos \frac{\pi}{4}+\log _{e} \cos 0 \\
& =-\log _{e} \frac{1}{\sqrt{2}}+\log _{e} 1 \\
& =-\log _{e} 2^{-\frac{1}{2}}=\frac{1}{2} \log _{e} 2
\end{aligned}
$$

(c) (4 marks) - marking scheme embedded inline. Presence of \checkmark indicates 1 mark.

$\checkmark \quad$ Let $\angle D C E=\alpha$ and $\angle D E C=\beta$.
$\therefore \angle C B A=\alpha(\angle$ in alternate segment $)$
$\checkmark \quad$ Similarly, $\angle A B E=\beta(\angle$ in alternate segment)
$\checkmark \quad$ Also, $\angle C D E=180^{\circ}-(\alpha+\beta)$.
(Angle sum of $\triangle C D E$)

- Hence $\angle C D E+\angle C B E=180^{\circ}$
\checkmark Opposite \angle in $B C D E$ are supplementary. Hence $B C D E$ is a cyclic quadrilateral.
(d) i. (1 mark)

$$
\begin{aligned}
& \underset{-3 g}{v}=3 g+A e^{-\frac{1}{3} t} \\
& v-3 g=A e^{-\frac{1}{3} t} \\
& \frac{d v}{d t}=-\frac{1}{3} \underbrace{A e^{-\frac{1}{3} t}}_{=(v-3 g)} \\
&=-\frac{1}{3}(v-3 g)
\end{aligned}
$$

ii. (1 mark)

$$
\begin{gathered}
t=0, v=g \\
\therefore g=3 g+A e^{0} \\
\therefore A=-2 g
\end{gathered}
$$

iii. (2 marks)

$$
\begin{gathered}
v=2 g, t=? \\
2 g=3 g-2 g e^{-\frac{1}{3} t} \\
-g=-2 g e^{-\frac{1}{3} t} \\
\frac{1}{2}=e^{-\frac{1}{3} t} \\
-\frac{1}{3} t=\log _{e} \frac{1}{2}=-\log _{e} 2 \\
\therefore t=3 \log _{e} 2 \approx 2.1 \text { seconds }
\end{gathered}
$$

iv. (1 mark)

As $t \rightarrow \infty, v \rightarrow 3 g$.

Question 14 (Ireland/Fletcher)

(a) i. (2 marks)

$\checkmark \quad$ [1] for proving $\frac{d y}{d x}=p$ at P.
$\checkmark \quad[1]$ for equation of tangent at P.

$$
\begin{gathered}
x^{2}=4 a y \quad \Rightarrow \quad y=\frac{x^{2}}{4 a} \\
\frac{d y}{d x}=\frac{2 x}{4 a}=\frac{x}{2 a}
\end{gathered}
$$

At $x=2 a p$,

$$
\frac{d y}{d x}=\frac{2 a p}{2 a}=p
$$

Equation of the tangent at P :

$$
\begin{gathered}
y-a p^{2}=p(x-2 a p)=p x-2 a p^{2} \\
y=p x-a p^{2}
\end{gathered}
$$

Similarly, the tangent at Q is

$$
y=q x-a q^{2}
$$

ii. (2 marks)
$\checkmark \quad$ [1] for each y coordinate.
Coordinates of S arise from the intersection of $x=2 a p$ and $y=q x-a q^{2}$:

$$
\begin{aligned}
y= & q(2 a p)-a q^{2}=2 a p q-a q^{2} \\
& \therefore S\left(2 a p, 2 a p q-a q^{2}\right)
\end{aligned}
$$

Coordinates of R arise from the intersection of $x=2 a q$ and $y=p x-a p^{2}$:

$$
\begin{aligned}
y= & p(2 a q)-a p^{2}=2 a p q-a p^{2} \\
& \therefore R\left(2 a q, 2 a p q-a p^{2}\right)
\end{aligned}
$$

iii. (2 marks)
$\begin{array}{ll}\checkmark & \text { [1] for showing } P S \| Q R . \\ \checkmark & {[1]}\end{array}$ for showing $P S=Q R . ~ \$$

As $P S=Q R$, hence one pair of opposite sides equal and parallel. Hence $P Q R S$ is a parallelogram.

Alternatively, if $P Q R S$ is a parallelogram, then the diagonals bisect each other; i.e. $Q S$ and $P R$ share the same midpoint. Show via midpoint formula results in

$$
\begin{aligned}
& M P_{Q S}=\left(\frac{a(p+q)}{2}, a p q\right) \\
& M P_{P R}=\left(\frac{a(p+q)}{2}, a p q\right)
\end{aligned}
$$

iv. (2 marks)
$\checkmark \quad$ [1] for h (fully)
$\checkmark \quad$ [1] for area.

- Use $A=b h$.
- h is perpendicular distance from Q to $P S$.
- Use $b=d_{P S}$.

Using the perpendicular dist formula with $x=2 a p \& Q\left(2 a q, a q^{2}\right)$:

$$
\begin{aligned}
h & =\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}} \\
& =\frac{|2 a q(1)+0-2 a p|}{\sqrt{1^{2}+0}} \\
& =\frac{|2 a q-2 a p|}{1}=2 a|q-p| \\
& =2 a|p-q|
\end{aligned}
$$

As $|p-q|=|q-p|$.

$$
\begin{aligned}
A & =b h \\
& =2 a|p-q| \times a(p-q)^{2} \\
& =2 a^{2}|p-q|^{3}
\end{aligned}
$$

$$
\begin{aligned}
d_{P S} & =\sqrt{(2 a p-2 a p)^{2}}+\left(a p^{2}-\left(2 a p q-a q^{2}\right)\right)^{2} \\
& =\sqrt{\left(a(p-q)^{2}\right)^{2}} \\
& =a(p-q) \\
d_{Q R} & =\sqrt{(2 a q-2 a q)^{2}}+\left(a q^{2}-\left(2 a p q-a p^{2}\right)\right) \\
& =\sqrt{a(q-p)^{2}}=\sqrt{a(p-q)^{2}} \\
& =a(p-q)
\end{aligned}
$$

(b) i. (1 mark)

Origin is at the base of tower.
ii. (2 marks)
\checkmark [1] for $100+c=-5\left(\frac{400 \times 5}{V^{2}}\right)+125$.
$\checkmark \quad[1]$ for final result shown.
When $x=20 \sqrt{5}, y=100+c$. Using $x=V t$,

$$
\begin{aligned}
& 20 \sqrt{5}=V t \\
& \therefore t=\frac{20 \sqrt{5}}{V}
\end{aligned}
$$

Substitute into $y=-5 t^{2}+125$,

$$
\begin{gathered}
100+c=-5\left(\frac{20 \sqrt{5}}{V}\right)^{2}+125 \\
=-5\left(\frac{400 \times 5}{V^{2}}\right)+125 \\
-25+c=-5 \times \frac{400 \times 5}{V^{2}} \\
25-c=\frac{25 \times 400}{V^{2}} \\
V^{2}=\frac{10000}{25-c} \\
\therefore V=\frac{100}{\sqrt{25-c}}(V>0)
\end{gathered}
$$

iii. (1 mark) Projectile just clears tower when $c=0$.

$$
V=\left.\frac{100}{\sqrt{25-c}}\right|_{c=0}=20 \mathrm{~ms}^{-1}
$$

iv. (2 marks)
$\checkmark \quad[1]$ for $x=100$.
$\checkmark \quad$ [1] for final answer.
Projectile strikes ground when $y=0$.

$$
\begin{gathered}
-5 t^{2}+125=0 \\
5 t^{2}=125
\end{gathered}
$$

$$
\therefore t^{2}=25 \quad \Rightarrow \quad t=5
$$

When $t=5$,

$$
x=V t=20 \times 5=100
$$

Hence projectile will strike the ground $100-20 \sqrt{5}$ metres past the second tower.
v. (1 mark)

$$
\begin{gathered}
y=-5 t^{2}+125 \\
\dot{y}=-\left.10 t\right|_{t=5}=-50 \mathrm{~ms}^{-1}
\end{gathered}
$$

