MATHEMATICS (EXTENSION 1)
 2013 HSC Course Assessment Task 3 (Trial Examination)
 June 26, 2013

General instructions

- Working time -2 hours. (plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets + answer sheet used in the correct order within this paper and hand to examination supervisors.

SECTION I

- Mark your answers on the answer sheet provided (numbered as page 9)

SECTION II

- Commence each new question on a new page. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

STUDENT NUMBER:
\# BOOKLETS USED: \qquad

Class (please \boldsymbol{V})12M3A - Mr Lam
O 12M4A - Mr Fletcher12M3B - Mr Berry
○ 12M4B - Ms Beevers
O 12M3C - Mr Lin
○ 12M4C - Ms Ziaziaris

Marker's use only.

QUESTION	$1-10$	11	12	13	14	Total	$\%$
MARKS	$\overline{10}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{70}$	

Section I

10 marks

Attempt Question 1 to 10

Allow approximately 15 minutes for this section

Mark your answers on the answer sheet provided.

Questions

1. What is the acute angle between the lines $y=2 x-3$ and $3 x+5 y-1=0$, correct to the nearest degree?
(A) 32°
(B) 50°
(C) 82°
(D) 86°
2. The coordinates of the points that divide the interval joining $(-7,5)$ and $(-1,-7)$ externally in the ratio $1: 3$ are
(A) $(-10,8)$
(B) $(-10,11)$
(C) $(2,8)$
(D) $(2,11)$
3. $C T$ is a tangent to the circle. $A B$ is a secant, intersecting the circle at A and B. $A B$ intersects $C T$ at T.

Which of the following statements is correct?
(A) $C T^{2}=A C \times B C$
(C) $C T^{2}=A C \times B T$
(B) $C T^{2}=A B \times B C$
(D) $C T^{2}=A T \times B T$
4. What is the domain and range of $y=\cos ^{-1}\left(\frac{3 x}{2}\right)$?
(A) $D=\left\{x:-\frac{2}{3} \leq x \leq \frac{2}{3}\right\}, R=\{y: 0 \leq y \leq \pi\}$
(B) $D=\{x:-1 \leq x \leq 1\}, R=\{y: 0 \leq y \leq \pi\}$
(C) $D=\left\{x:-\frac{2}{3} \leq x \leq \frac{2}{3}\right\}, R=\{y:-\pi \leq y \leq \pi\}$
(D) $D=\{x:-1 \leq x \leq 1\}, R=\{y:-\pi \leq y \leq \pi\}$
5. Which of the following is equivalent to $\int \frac{d x}{4 x^{2}+9}$, ignoring the constant of integration?
(A) $\tan ^{-1} \frac{2 x}{3}$
(C) $\frac{2}{3} \tan ^{-1} \frac{2 x}{3}$
(B) $\frac{1}{6} \tan ^{-1} \frac{2 x}{3}$
(D) $\frac{3}{2} \tan ^{-1} \frac{2 x}{3}$
6. Which of the following is the general solution to $3 \tan ^{2} x-1=0$?
(A) $n \pi \pm \frac{\pi}{6}$
(C) $n \pi \pm \frac{\pi}{3}$
(B) $2 n \pi \pm \frac{\pi}{6}$
(D) $2 n \pi \pm \frac{\pi}{3}$
7. What is the value of $\sin (\alpha+\beta)$ if $\sin \alpha=\frac{8}{17}$ and $\sin \beta=\frac{4}{5}$?
(A) $\frac{36}{85}$
(C) $\frac{84}{85}$
(B) $\frac{77}{85}$
(D) $\frac{88}{85}$
8. Which of the following represents the exact value of $\int_{0}^{\frac{\pi}{8}} \cos ^{2} x d x$?
(A) $\frac{\pi-2 \sqrt{2}}{16}$
(C) $\frac{\pi+2 \sqrt{2}}{16}$
(B) $\frac{\pi-2 \sqrt{2}}{8}$
(D) $\frac{\pi+2 \sqrt{2}}{8}$
9. Which of the following represents the derivative of $y=\cos ^{-1}\left(\frac{1}{x}\right)$?
(A) $-\frac{1}{\sqrt{x^{2}-1}}$
(C) $\frac{1}{\sqrt{x^{2}-1}}$
(B) $-\frac{1}{x \sqrt{x^{2}-1}}$
(D) $\frac{1}{x \sqrt{x^{2}-1}}$
10. Which of the following expressions is true?
(A) $\tan ^{-1} x=\sin ^{-1} \frac{1}{\sqrt{1-x^{2}}}$
(C) $\tan ^{-1} x=\sin ^{-1} \frac{x}{\sqrt{1-x^{2}}}$
(B) $\tan ^{-1} x=\sin ^{-1} \frac{1}{\sqrt{1+x^{2}}}$
(D) $\tan ^{-1} x=\sin ^{-1} \frac{x}{\sqrt{1+x^{2}}}$

Examination continues overleaf. . .

Section II

60 marks

Attempt Questions 11 to 14

Allow approximately 1 hour and 45 minutes for this section.

Write your answers in the writing booklets supplied. Additional writing booklets are available. Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks)

Commence a NEW page.
Marks
(a) Solve for x : $\frac{5}{x-1}>2$
(b) Find the value of θ, such that

$$
\sqrt{3} \cos \theta-\sin \theta=1
$$

where $0 \leq \theta \leq 2 \pi$.
(c) A freshly baked cake is cooling in a room of constant temperature of $20^{\circ} \mathrm{C}$. At time t minutes, its temperature T decreases according to the equation

$$
\frac{d T}{d t}=-k(T-20)
$$

where k is a positive constant.
The initial temperature of the cake is $150^{\circ} \mathrm{C}$ and it cools to $100^{\circ} \mathrm{C}$ after 15 minutes.
i. Show that $T=20+A e^{-k t}$ (where A is a constant) is a solution to this equation.
ii. Find the values A and k, giving k correct to 3 decimal places.
iii. How long will it take for the cake to cool to $25^{\circ} \mathrm{C}$?
(Use the value of k obtained in the previous part)
(d) A particle is moving in a straight line. After time t seconds, it has displacement x metres from a fixed point O on the line. Its velocity $v \mathrm{~ms}^{-1}$ is given by

$$
v=\sqrt{x}
$$

Initially, the particle is 1 m to the right of O.
i. Show that its acceleration a is independent of x.
ii. Express x in terms of t.
iii. Find the distance travelled by the particle during the third second of its 1 motion.
(a) Show that $\frac{\sin x}{1-\cos x}=\cot \frac{x}{2}$.
(b) Use the substitution $u=\sin ^{2} x$ to evaluate

$$
\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin 2 x}{1+\sin ^{2} x} d x
$$

Give your answer in simplest exact form.
(c) Let $f(x)=x^{2}-2 x$ for $x \geq 1$.
i. On the same set of axes, sketch the graphs of $y=f(x), y=x$ and the inverse $y=f^{-1}(x)$.
ii. Find an expression for $f^{-1}(x)$.
iii. Evaluate $f^{-1}(2)$.
(d) Use mathematical induction to show that for all positive integers $n \geq 2$,

$$
2 \times 1+3 \times 2+4 \times 3+\cdots+n(n-1)=\frac{n\left(n^{2}-1\right)}{3}
$$

Question 13 (15 Marks)
Commence a NEW page.
(a) i. Show that $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$.
ii. Hence evaluate $\int 2 \sin ^{3} \theta d \theta$
ii. Evaluate $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$.
(c) $\quad A B$ is a diameter of the circle and C is a point on the circle. The tangent to the circle at A meets $B C$ produced at $D . E$ is a point on $A D$ and F is a point on $C D$ such that $E F \| A C$.

i. State why $\angle E A C=\angle A B C$.
ii. Hence show that $E A B F$ is a cyclic quadrilateral.
iii. Show that $B E$ is a diameter of the circle through E, A, B and F.
(d) $\quad P\left(2 a t, a t^{2}\right)$ is a point on the parabola $x^{2}=4 a y$. The normal to the parabola at P cuts the y axis at $N . M$ is the midpoint of $P N$.

i. Show that the normal has equation $x+t y=2 a t+a t^{3}$.
ii. Find the equation of the locus of M as P moves on the parabola.
(a) The radius of a spherical balloon is expanding at a constant rate of $6 \mathrm{cms}^{-1}$.
i. At what rate is the volume of the balloon expanding when its radius is 4 cm ?
ii. At what rate is the surface area of the balloon expanding if the rate of change of volume is $15 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$?
(b) From a point X due east of a tower, the angle of elevation of the top of the tower H is 31°. From another point Y due south of X, the angle of elevation is 25°. $X Y=150 \mathrm{~m}$.

i. Show that $h=\frac{150 \tan 25^{\circ} \tan 31^{\circ}}{\sqrt{\tan ^{2} 31^{\circ}-\tan ^{2} 25^{\circ}}}$.
ii. Hence, find the height of the tower.
(c) $A O B$ is the diameter of the circle with centre O and radius 1 metre. $A C$ is a chord of the circle such that $\angle B A C=\theta$, where $0<\theta<\frac{\pi}{2}$.

The area of the part of the circle contained between $A B$ and $A C$ is equal to one quarter of the area of the circle.
i. Show that $\theta+\frac{1}{2} \sin 2 \theta-\frac{\pi}{4}=0$.
ii. Show that $0.4<\theta<0.5$.
iii. Use one application of Newton's Method with an initial approximation of $\theta_{0}=0.4$ to find the next approximation to θ, correct to 2 decimal places.

End of paper.

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}+C, \quad n \neq-1 ; \quad x \neq 0 \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x+C, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}+C, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x+C, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x+C, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x+C, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x+C, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}+C, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C, \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Answer sheet for Section I

Mark answers to Section I by fully blackening the correct circle, e.g

STUDENT NUMBER:

Class (please \boldsymbol{V})12M3A - Mr Lam
O 12M4A - Mr Fletcher

- 12M3B - Mr Berry
○ 12M4B - Ms Beevers
O 12M3C - Mr Lin
- 12M4C - Ms Ziaziaris

Suggested Solutions

Section I

1. (D) 2. (B) 3. (D) 4. (A) 5. (B) 6. (A) 7. (C) 8. (C) 9. (D) 10. (D)

Question 11 (Ziaziaris)

(a) (2 marks)

$$
\begin{gathered}
\frac{5}{x-1}>2 \\
5(x-1)>2(x-1)^{2} \\
5(x-1)-2(x-1)^{2}>0 \\
(x-1)(5-2(x-1))>0 \\
(x-1)(7-2 x)>0
\end{gathered}
$$

$$
\therefore 1<x<\frac{7}{2}
$$

(b) (4 marks)

$$
\begin{align*}
\sqrt{3} \cos \theta & -\sin \theta=1 \\
& \equiv R \cos (\theta+\alpha) \\
& =R \cos \theta \cos \alpha-R \sin \theta \sin \alpha \\
& \begin{cases}R \cos \alpha=\sqrt{3} \\
R \sin \alpha=1\end{cases} \tag{1}
\end{align*}
$$

$(1)^{2}+(2)^{2}:$

$$
\begin{aligned}
& R^{2}=3+1=4 \\
& \quad \therefore R=2
\end{aligned}
$$

(2) $\div(1)$:

$$
\begin{gathered}
\tan \alpha=\frac{1}{\sqrt{3}} \\
\therefore \alpha=\frac{\pi}{6} \\
\therefore \sqrt{3} \cos \theta-\sin \theta=2 \cos \left(\theta+\frac{\pi}{3}\right)=1 \\
\therefore \cos \left(\theta+\frac{\pi}{6}\right)=\frac{1}{2} \\
\theta+\frac{\pi}{6}=\frac{\pi}{3}, \frac{5 \pi}{3} \\
\therefore \theta=\frac{\pi}{6}, \frac{3 \pi}{2}
\end{gathered}
$$

(c) i. (1 mark)

$$
\begin{gathered}
T=20+A e^{-k t} \\
\therefore T-20=A e^{-k t} \\
\frac{d T}{d t}=-k \cdot A e^{-k t} \\
=-k(T-20)
\end{gathered}
$$

ii. (2 marks)

$$
T=20+A e^{-k t}
$$

When $t=0, T=150$:

$$
\begin{gathered}
150=20+A e^{0} \\
\therefore A=130 \\
\therefore T=20+130 e^{-k t}
\end{gathered}
$$

When $t=15, T=100$

$$
100=20+130 e^{-15 k}
$$

$$
\frac{80}{130}=e^{-15 k}
$$

$$
-15 k=\log _{e} \frac{8}{13}
$$

$$
k=-\frac{1}{15} \log _{e} \frac{8}{13} \approx 0.032(3 \mathrm{dp})
$$

iii. (2 marks)

$$
\begin{gathered}
25=20+130 e^{-0.032 t} \\
\frac{5}{13}=e^{-0.032 t} \\
-0.032 t=\log _{e} \frac{5}{13} \\
t=\frac{1}{-0.032} \log _{e} \frac{5}{13} \\
\approx 100.66 \mathrm{~min}
\end{gathered}
$$

If exact values are used,

$$
\begin{aligned}
t & \approx 101.82 \mathrm{~min} \\
& =101 \mathrm{~min} 49 \mathrm{~s} \\
& \approx 102 \mathrm{~min}
\end{aligned}
$$

(d) i. (1 mark)

$$
\begin{gathered}
v=\sqrt{x} \\
\therefore v^{2}=x \\
\ddot{x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) \\
=\frac{d}{d x}\left(\frac{1}{2} x\right) \\
= \\
\frac{1}{2}
\end{gathered}
$$

which is independent of x.
ii. (2 marks)

$$
\frac{d x}{d t}=x^{\frac{1}{2}}
$$

Separating variables,

$$
\begin{gathered}
\frac{d x}{x^{\frac{1}{2}}}=d t \\
\int x^{-\frac{1}{2}} d x=\int d t \\
\therefore t=2 x^{\frac{1}{2}}+C
\end{gathered}
$$

When $t=0, x=1$.

$$
\begin{gathered}
0=2+C \\
\therefore C=-2 \\
\therefore t=2 x^{\frac{1}{2}}-2 \\
2 \sqrt{x}=t+2 \\
\therefore x=\left(\frac{t+2}{2}\right)^{2} \quad\left(=\frac{1}{4} t^{2}+t+1\right)
\end{gathered}
$$

iii. (1 mark)

$$
\begin{gathered}
x(2)=\left(\frac{2+2}{2}\right)^{2}=4 \\
x(3)=\left(\frac{3+2}{2}\right)^{2}=\frac{25}{4}
\end{gathered}
$$

Dist travelled $=\frac{25}{4}-4=2.25 \mathrm{~m}$

Question 12 (Lin)
(a) (2 marks)

Let $t=\tan \left(\frac{\theta}{2}\right)$:

$$
\frac{\sin x}{1-\cos x}=\frac{\frac{2 t}{1+t^{2}}}{1-\left(\frac{1-t^{2}}{1+t^{2}}\right)}
$$

$$
=\frac{\frac{2 t}{1+t^{2}}}{\frac{1+t^{2}-\left(1-t^{2}\right)}{1+t^{2}}}
$$

$$
=\frac{2 t}{2 t^{2}}
$$

$$
=\frac{1}{t}=\cot \frac{x}{2}
$$

(b) (4 marks)

$$
\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin 2 x}{1+\sin ^{2} x} d x
$$

Let $u=\sin ^{2} x$:

$$
\begin{gathered}
\frac{d u}{d x}=2 \sin x \cos x=\sin 2 x \\
\therefore d u=\sin 2 x d x \\
x=\frac{\pi}{4} \rightarrow u=\sin ^{2} \frac{\pi}{4}=\frac{1}{2} \\
x=\frac{\pi}{3} \rightarrow u=\sin ^{2} \frac{\pi}{3}=\frac{3}{4} \\
\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin 2 x}{1+\sin ^{2} x} d x
\end{gathered} \begin{aligned}
u=\frac{3}{4} & 1 \\
& =\left[\log _{e}(1+u)\right]_{\frac{1}{2}}^{\frac{3}{4}} \\
& =\log _{e}\left(\frac{7}{4}\right)-\log _{e}\left(\frac{3}{2}\right) \\
& =\log _{e} \frac{\frac{7}{4}}{\frac{3}{2}}=\log _{e} \frac{7}{6}
\end{aligned}
$$

(c) i. (3 marks)

ii. (2 marks)

$$
y=x^{2}-2 x \quad x \geq 1
$$

Interchanging variables,

$$
\begin{gathered}
x=y^{2}-2 y \quad y \geq 1 \\
x+1=y^{2}-2 y+1 \\
\therefore(y-1)^{2}=x+1 \\
y-1=\sqrt{x+1}(\text { as } y \geq 1, \text { take positive root }) \\
\therefore y=1+\sqrt{x+1}
\end{gathered}
$$

iii. (1 mark)

$$
f^{-1}(2)=1+\sqrt{2+1}=1+\sqrt{3}
$$

(d) (3 marks)

Let $P(n)$ be the proposition

$$
\begin{aligned}
P(n): \quad 2 \times 1+3 \times 2+4 \times 3 & +\cdots+n(n-1) \\
& =\frac{n\left(n^{2}-1\right)}{3}
\end{aligned}
$$

- Base case: $P(2)-$

$$
\begin{gathered}
2(2-1)=2 \\
\frac{2\left(2^{2}-1\right)}{3}=\frac{2 \times 3}{3}=2
\end{gathered}
$$

Hence $P(2)$ is true.

- Inductive hypothesis: assume that $P(k)$ is true for some $k \in \mathbb{Z}^{+}$, i.e.

$$
\begin{array}{r}
P(k): \quad 2 \times 1+3 \times 2+4 \times 3+\cdots+k(k-1) \\
=\frac{k\left(k^{2}-1\right)}{3}
\end{array}
$$

Now examine $P(k+1)$:

$$
\begin{aligned}
& \overbrace{2 \times 1+3 \times 2+4 \times 3+\cdots+k(k-1)}^{=P(k)} \\
& =\begin{array}{c}
\frac{k\left(k^{2}-1\right)}{3}+k(k+1) \\
= \\
=\frac{k(k-1)(k+1)+3 k(k+1)}{3} \\
= \\
=\frac{(k+1)\left(k^{2}-k+3 k\right)}{3} \\
= \\
=\frac{(k+1)\left(k^{2}+2 k\right)}{3} \\
=
\end{array} \\
& =\frac{(k+1)\left((k+1)^{2}-1\right)}{3}
\end{aligned}
$$

(b) i. (2 marks)

Question 13 (Berry)
(a) i. (2 marks)

$$
\begin{aligned}
\sin 3 \theta & =\sin (2 \theta+\theta) \\
& =\sin 2 \theta \cos \theta+\cos 2 \theta \sin \theta \\
& =2 \sin \theta \cos \theta \cos \theta+\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \sin \theta \\
& =2 \sin \theta \cos ^{2} \theta+\sin \theta \cos ^{2} \theta-\sin ^{3} \theta \\
& =2 \sin \theta\left(1-\sin ^{2} \theta\right)+\sin \theta\left(1-\sin ^{2} \theta\right)-\sin ^{3} \theta \\
& =2 \sin \theta-2 \sin ^{3} \theta+\sin \theta-\sin ^{3} \theta-\sin ^{3} \theta \\
& =3 \sin \theta-4 \sin ^{3} \theta
\end{aligned}
$$

ii. (1 mark)

$$
\begin{aligned}
\int 2 \sin ^{3} \theta d \theta & =\frac{1}{2} \int 4 \sin ^{3} \theta d \theta \\
& =\frac{1}{2} \int(3 \sin \theta-\sin 3 \theta) d \theta \\
& =\frac{1}{2}\left[-3 \cos \theta+\frac{1}{3} \cos 3 \theta\right]+C \\
& =\frac{1}{6} \cos 3 \theta-\frac{3}{2} \cos \theta+C
\end{aligned}
$$

$$
P(x)=a x^{3}-7 x^{2}+k(4)+4
$$

As $(x-4)$ is a factor, by the factor theorem:

$$
\begin{gathered}
P(4)=0 \\
\therefore a \times\left(4^{3}\right)-7\left(4^{2}\right)+4 k+4=0 \\
64 a-112+4 k+4=0 \\
16 a+k-27=0
\end{gathered}
$$

Using the remainder theorem,

$$
\begin{gather*}
P(1)=-6 \\
\therefore a\left(1^{3}\right)-7\left(1^{2}\right)+k(1)+4=-6 \\
a-7+k+4=-6 \\
a+k-3=-6 \\
k=-3-a \\
\left\{\begin{array}{l}
16 a+k=27 \\
k=-3-a
\end{array}\right. \tag{1}
\end{gather*}
$$

Substitute (2) to (1):

$$
\begin{gathered}
16 a+(-3-a)=27 \\
15 a=30 \\
a=2 \\
\therefore k=-5
\end{gathered}
$$

ii. (2 marks)

$$
\begin{aligned}
\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma} & =\frac{\alpha \beta+\alpha \gamma+\beta \gamma}{\alpha \beta \gamma} \\
& =\frac{\left(\frac{c}{a}\right)}{\left(-\frac{d}{a}\right)}=\frac{\left(\frac{-5}{2}\right)}{\left(-\frac{4}{2}\right)} \\
& =\frac{5}{4}
\end{aligned}
$$

(c) i. (1 mark)

The angle between a tangent and a chord through the point of contact is equal to the angle in the alternate segment.
ii. (2 marks)

- $\angle A E F=180^{\circ}-\angle E A C$
(Cointerior angles, $A C \| E F$)
- $\angle A E F=180^{\circ}-\angle A B C$
(Since $\angle E A C=\angle A B C$)
iii. (1 mark)
- $\angle E A B=90^{\circ}$ (The tangent to a circle is perpendicular to the diameter drawn to the point of contact)
- $\therefore B E$ is the diameter of the the circle through E, A, B and F as it subtends a right angle at the circumference of the circle at point A.

At the point $P\left(2 a t, a t^{2}\right)$

$$
\begin{gathered}
m_{\tan }=\frac{2 a t}{2 a}=t \\
\therefore m_{\perp}=-\frac{1}{t}
\end{gathered}
$$

Apply the point-gradient formula,

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-a t^{2}=-\frac{1}{t}(x-2 a t) \\
t y-a t^{3}=-x+2 a t \\
x+t y=2 a t+a t^{3}
\end{gathered}
$$

ii. (2 marks)

Find point N by letting $x=0$:

$$
\begin{gathered}
0+t y=2 a t+a t^{3} \\
\therefore y=2 a+a t^{2} \quad(t \neq 0)
\end{gathered}
$$

Finding the midpoint M of $P N$

$$
\begin{align*}
M & \left(\frac{0+2 a t}{2}, \frac{2 a+a t^{2}+a t^{2}}{2}\right) \\
= & \left(\frac{2 a t}{2}, \frac{2 a t+2 a t^{2}}{2}\right) \\
= & \left(a t, a+a t^{2}\right) \\
& \left\{\begin{array}{l}
x=a t \\
y=a+a t^{2}
\end{array}\right. \tag{1}
\end{align*}
$$

Substitute (1) into (2) after rearranging,

$$
\begin{gathered}
y=a+a\left(\frac{x}{a}\right)^{2} \\
=a+\frac{x^{2}}{a} \\
\therefore a y=a^{2}+x^{2} \\
x^{2}=a y-a^{2}=a(y-a)
\end{gathered}
$$

Question 14 (Lam)

(a) i. (2 marks)
ii. (3 marks)

$$
\begin{gathered}
\frac{d V}{d t}=\frac{d V}{d r} \times \frac{d r}{d t} \\
\left\lvert\, \begin{aligned}
V= & \frac{4}{3} \pi r^{3} \quad \frac{d r}{d t}=6 \mathrm{cms}^{-1} \\
\frac{d V}{d t}= & 4 \pi r^{2} \\
\frac{d V}{d t} & =4 \pi r^{2} \times\left. 6\right|_{r=4} \\
& =4 \times \pi \times 4^{2} \times 6 \\
& =384 \pi
\end{aligned}\right.
\end{gathered}
$$

(b) i. (3 marks)

- In $\triangle O H X$

$$
\begin{aligned}
& \frac{h}{x}=\tan 31^{\circ} \\
& \therefore x=\frac{h}{\tan 31^{\circ}}
\end{aligned}
$$

- Similarly in $\triangle O H Y$,

$$
\begin{aligned}
& \frac{h}{y}=\tan 25^{\circ} \\
& \therefore y=\frac{h}{\tan 25^{\circ}}
\end{aligned}
$$

- In $\triangle O X Y$,

$$
\begin{gathered}
A=4 \pi r^{2} \quad \frac{d A}{d r}=8 \pi r \\
\frac{d V}{d t}=\frac{d V}{d r} \times \frac{d r}{d t} \\
15=4 \pi r^{2} \times 6 \\
\frac{15}{24 \pi}=r^{2} \\
\therefore r=\sqrt{\frac{5}{8 \pi}} \\
\frac{d A}{d t}=\frac{d A}{d r} \times \frac{d r}{d t} \\
=8 \pi r \times 6 \\
=8 \pi \times \sqrt{\frac{5}{8 \pi}} \times 6 \\
= \\
= \\
=67.3 \mathrm{~cm}^{2} \mathrm{~s}^{-1}(1 \mathrm{dp})
\end{gathered}
$$

$$
\begin{aligned}
& x^{2}+150^{2}=y^{2} \\
& \left(\frac{h}{\tan 31^{\circ}}\right)^{2}+150^{2}=\left(\frac{h}{\tan 25^{\circ}}\right)^{2} \\
& \left(\frac{h}{\tan 25^{\circ}}\right)^{2}-\left(\frac{h}{\tan 31^{\circ}}\right)^{2}=150^{2} \\
& h^{2}\left(\frac{1}{\tan ^{2} 25^{\circ}}-\frac{1}{\tan ^{2} 31^{\circ}}\right)=150^{2} \\
& h^{2}\left(\frac{\tan ^{2} 31^{\circ}-\tan ^{2} 25^{\circ}}{\tan ^{2} 25^{\circ} \tan ^{2} 31^{\circ}}\right)=150^{2} \\
& h^{2}=\frac{150^{2} \tan ^{2} 25^{\circ} \tan ^{2} 31^{\circ}}{\tan ^{2} 31^{\circ}-\tan ^{2} 25^{\circ}} \\
& \therefore h=\frac{150 \tan 25^{\circ} \tan 31^{\circ}}{\sqrt{\tan ^{2} 31^{\circ}-\tan ^{2} 25^{\circ}}}
\end{aligned}
$$

ii. (1 mark)

$$
h=110.91 \mathrm{~m}(2 \mathrm{dp})
$$

(c) i. (2 marks)

$\angle C O B=2 \theta$ as angle at the centre is twice the angle at the circumference, subtended by the same arc. (Can also use angle sum of \triangle and exterior $\angle)$

$$
\begin{aligned}
& A_{\text {sector } O B C}+A_{\triangle O A C}=\frac{1}{4} \pi r^{2} \\
& \begin{aligned}
A_{\text {sector } O B C} & =\frac{1}{2} r^{2} \times(2 \theta) \\
& =r^{2} \theta=\theta \quad(r=1) \\
A_{\triangle O B C} & =\frac{1}{2} r^{2} \times \sin (\pi-2 \theta) \\
& =\frac{1}{2} r^{2} \sin 2 \theta=\frac{1}{2} \sin 2 \theta
\end{aligned}
\end{aligned}
$$

(As $\sin (\pi-x)=\sin x)$

Adding areas and equating,

$$
\begin{gathered}
\theta+\frac{1}{2} \sin 2 \theta=\frac{\pi}{4} \\
\therefore \theta+\frac{1}{2} \sin 2 \theta-\frac{\pi}{4}=0
\end{gathered}
$$

ii. (2 marks)

- When $\theta=0.4$,

$$
0.4+\frac{1}{2} \sin 0.8-\frac{\pi}{4} \approx-0.026 \cdots
$$

- When $\theta=0.5$,

$$
0.5+\frac{1}{2} \sin 1-\frac{\pi}{4} \approx 0.135
$$

If $f(\theta)=\theta+\frac{1}{2} \sin 2 \theta-\frac{\pi}{4}$, then $f(\theta)$ is continuous for all $x \in \mathbb{R}$ as θ and $\sin 2 \theta$ are both continuous. From above, $f(0.4)<0$ and $f(0.5)>$ 0 , therefore a zero crossing exists for $0.4<\theta<0.5$, satisfying the equation found in part (i).
iii. (2 marks)

$$
\begin{aligned}
& \begin{aligned}
\begin{aligned}
f(\theta) & =\theta+\frac{1}{2} \sin 2 \theta-\frac{\pi}{4} \\
f^{\prime}(\theta) & =1+\frac{1}{2} \times 2 \cos 2 \theta \\
& =1+\cos 2 \theta
\end{aligned} \\
\theta_{1}=\theta_{0}-\frac{f\left(\theta_{0}\right)}{f^{\prime}\left(\theta_{0}\right)}
\end{aligned} \\
& =0.4-\frac{0.4+\frac{1}{2} \sin 0.8-\frac{\pi}{4}}{1+\cos 0.8} \\
& \left(=0.4-\frac{-0.02672011 \cdots}{1.696706 \cdots}\right) \\
& =0.41574 \cdots \\
& =0.42(2 \mathrm{dp})
\end{aligned}
$$

