MATHEMATICS (EXTENSION 1)

2014 HSC Course Assessment Task 3 (Trial Examination)
 Tuesday June 24, 2014

General instructions

- Working time -2 hours. (plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets + answer sheet used in the correct order within this paper and hand to examination supervisors.

SECTION I

- Mark your answers on the answer sheet provided (numbered as page 13)

SECTION II

- Commence each new question on a new page. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

STUDENT NUMBER:
\# BOOKLETS USED

Class (please $\boldsymbol{\checkmark}$)12M3A - Mr Zuber
O $12 \mathrm{M} 4 \mathrm{~A}-\mathrm{Ms}$ Ziaziaris
○ 12M3B - Mr Berry
○ 12M4B - Mr Lam
○ $12 \mathrm{M} 3 \mathrm{C}-\mathrm{Mr}$ Lowe
○ $12 \mathrm{M} 4 \mathrm{C}-\mathrm{Mr}$ Ireland

Marker's use only.

QUESTION	$1-10$	11	12	13	14	Total	$\%$
MARKS	$\overline{10}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{70}$	

Section I

10 marks

Attempt Question 1 to 10

Allow approximately 15 minutes for this section

Mark your answers on the answer sheet provided.

Questions

Marks

1. What is the value of x if $M P=7, R T=4, T Q=6$?

(A) $\frac{21}{2}$
(B) 5
(C) $\frac{24}{7}$
(D) 9
2. What is the remainder when $8 x^{3}+4 x^{2}-3 x-8$ is divided by $x-1$?
(A) -1
(B) 1
(C) -9
(D) -8
3. Which of the following calculations is required to calculate the acute angle between the lines $x+y=1$ and $2 x-y=1$?
(A) $\tan \theta=\left|\frac{-1+2}{1+2}\right|$
(B) $\tan \theta=\left|\frac{-1+2}{2}\right|$
(C) $\tan \theta=\left|\frac{-1-2}{1-2}\right|$
(D) $\tan \theta=\left|\frac{-1-2}{-2}\right|$
4. What is the general solution to $2 \sin \frac{x}{2}=-1$?
(A) $2 n \pi-(-1)^{n} \frac{\pi}{3}$
(B) $n \pi-(-1)^{n} \frac{\pi}{6}$
(C) $n \pi-(-1)^{n} \frac{\pi}{3}$
(D) $2 n \pi-(-1)^{n} \frac{\pi}{6}$
5. Solve: $x^{2}\left(x^{2}-9\right)-10>0$.
(A) $-\sqrt{10}<x<\sqrt{10}$
(B) $x>\sqrt{10},-1<x<1, x<-\sqrt{10}$
(C) $1<x<\sqrt{10},-\sqrt{10}<x<-1$
(D) $x>\sqrt{10}, x<-\sqrt{10}$
6. Which of the following integrals is equal to $\int \sin ^{2} 4 t d t$?
(A) $\int \frac{1+\cos 8 t}{2} d t$
(B) $\int \frac{1-\cos 8 t}{2} d t$
(C) $\int \frac{1+\cos 4 t}{2} d t$
(D) $\int \frac{1-\cos 4 t}{2} d t$
7. Which of the following integrals gives the volume of the solid formed when the area bound by $y^{2}=4 a x$, the y axis and the line $y=4 a p$ is rotated about the y axis?

(A) $\pi \int_{0}^{4 a p} 4 a x d x$
(B) $\pi \int_{0}^{4 a p} \frac{y^{4}}{16 a^{2}} d x$
(C) $\pi \int_{0}^{4 a p} \frac{y^{2}}{16 a} d y$
(D) $\pi \int_{0}^{4 a p} \sqrt{4 a x} d x$
8. Evaluate: $\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{2 x^{2}}$.
(A) $\frac{1}{2}$
(B) 1
(C) 2
(D) ∞
9. A box contains 4 coins, one of which has two heads (no tails). If a coin is selected at random and then tossed, what is the probability that heads will show?
(A) $\frac{3}{8}$
(B) $\frac{3}{4}$
(C) $\frac{5}{8}$
(D) $\frac{4}{5}$
10. Which of the following graphs represents $y=\cos \left(\cos ^{-1} x\right)$?

Examination continues overleaf. . .

Section II

60 marks

Attempt Questions 11 to 14

Allow approximately 1 hour and 45 minutes for this section.

Write your answers in the writing booklets supplied. Additional writing booklets are available. Your responses should include relevant mathematical reasoning and/or calculations.
(a) Differentiate $\cos ^{-1} \frac{x}{3}$.
i. $\int \frac{1}{\cos ^{2} x} d x$.
ii. $\int_{0}^{\frac{1}{2}} \frac{2 d x}{1+4 x^{2}}$.
(c) Evaluate $\int x \sqrt{1-x} d x$ by using the substitution $u=1-x$.
(d) If α, β and γ are roots of the equation $x^{3}-3 x^{2}-5 x-7=0$, evaluate:
i. $\alpha+\beta+\gamma$.
ii. $\alpha \beta \gamma$.
iii. $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$.
(e) If $\cos x \cos y=\frac{1}{4}(\sqrt{3}-\sqrt{2})$ and $\sin x \sin y=\frac{1}{4}(\sqrt{3}+\sqrt{2})$, find the smallest 3 positive value of $(x+y)$ in radians.
(a) Prove that $\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{3}{5}=\frac{\pi}{4}$. solutions in the domain $0 \leq x \leq 2 \pi$.
(c) Two circles of equal radii and centres A and B respectively, touch externally at $E . B C$ and $B D$ are tangents from B to the circle with centre A.

Copy or trace the diagram into your working booklet.
i. Show that $B C A D$ is a cyclic quadrilateral.
ii. Show that E is the centre of the circle which passes through B, C, A and D.
iii. Show that $\angle C B A=\angle D B A=30^{\circ}$.
(d) The diagram below shows $f(x)=2 \sin ^{-1} x$. The area enclosed between the curve, the line $x=\frac{1}{2}$ and the x axis is shaded.
i. Find $f\left(\frac{1}{2}\right)$.

ii. Show that the area of the shaded region is given by

$$
\frac{\pi}{6}+\sqrt{2}-2 \text { units }^{2}
$$

(a) $\quad P Q$ is a focal chord of the parabola $x^{2}=4 a y$, where $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$. $Q R$ is the tangent at Q and $R P$ is parallel to the axis of the parabola.

i. Show that $p q=-1$.
ii. Find the equation of the locus of R.
(b) The acceleration of a particle is given by $\ddot{x}=4 x-4$. Initially, $x=6$ and $|v|=8$.
i. Show that $v^{2}=4 x^{2}-8 x-32$.
ii. Find the set of possible values of x.
(c) An object is removed from a freezer at $-5^{\circ} \mathrm{C}$ and is placed in a room where the temperature is kept constant at $15^{\circ} \mathrm{C}$. The temperature of the object T then changes according to the rule

$$
\frac{d T}{d t}=k(15-T)
$$

where t is in minutes and k is a constant.
i. Verify that $T=15-A e^{-k t}$ satisfies this condition.
ii. Find the value of A.
iii. If initially the temperature of the object was increasing at $5^{\circ} \mathrm{C}$ per minute, find the value of k.
iv. Find, correct to the nearest second, the time it takes for the object's temperature to rise to $0^{\circ} \mathrm{C}$.
(d) Prove by induction that $9^{n+2}-4^{n}$ is divisible by 5 for all positive integers n.

Question 14 (15 Marks)
Commence a NEW page.
Marks
(a) The position of a particle moving along the x axis is given by $x=t^{2} e^{2-t}$, where x is in metres and t is in seconds respectively.
i. Find an expression for the velocity in terms of time.
ii. Show that the particle is initially at rest.
iii. Find the time for which the particle is next at rest.
iv. What happens as time increases indefinitely?
(b) It is know that a solution exists near $x=2$ for the equation $\log _{e} x=(x-1)^{2}$.

Use one application of Newton's Method to find a better approximation to $x=2$, correct to two decimal places.
(c) Consider the function $y=\log _{e} \frac{2 x}{2+x}$.
i. Show that the domain of the function is

$$
D=\{x: x<-2, x>0\}
$$

ii. Find the value of x for which $y=0$.
iii. Show that $\frac{d y}{d x}=\frac{2}{x(2+x)}$ and hence show that the function is increasing for all x in the domain.
iv. Are there any points of inflexion? Justify your answer.
v. Sketch the graph of the function.

End of paper.

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}+C, \quad n \neq-1 ; \quad x \neq 0 \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x+C, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}+C, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x+C, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x+C, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x+C, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x+C, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}+C, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C, \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Answer sheet for Section I

Mark answers to Section I by fully blackening the correct circle, e.g

STUDENT NUMBER:

Class (please \boldsymbol{V})12M3A - Mr Zuber

- 12M4A - Ms Ziaziaris
- 12M3B - Mr Berry
○ $12 \mathrm{M} 4 \mathrm{~B}-\mathrm{Mr}$ Lam
○ 12M3C - Mr Lowe
○ $12 \mathrm{M} 4 \mathrm{C}-\mathrm{Mr}$ Ireland

(1) B (2) B (3) C (4) D (16) B (7) B (8) A (9) C (0) A

1. $(x+7) x=10 \times 6$
$x^{2}+7 x-60=0$
$(x+12)(x-5)=0$
$x=5$
2. $8(1)+4(1)-3(1)-8$
$=1$

$$
\frac{5}{8}
$$

3. $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$

$$
\begin{aligned}
& =\left|\frac{-1-2}{1+(-1)(2)}\right| \\
& =\left|\frac{-1-2}{1-2}\right|
\end{aligned}
$$

10. Plot points

$$
\begin{array}{lc}
\cos \left(\cos ^{-1} 1\right)=1 & \text { Restricted because } \\
\cos \left(\cos ^{-1}-1\right)=-1 & \cos ^{-1} \text { first. }
\end{array}
$$

4. $\quad \sin \frac{x}{2}=-\frac{1}{2}$

$$
\begin{aligned}
& \frac{x}{2}=n \pi+(-1)^{n}\left(-\frac{\pi}{6}\right) \\
& x=2 n \pi-(-1)^{n}\left(\frac{\pi}{3}\right)
\end{aligned}
$$

5. $x^{2}\left(x^{2}-9\right)-10>0$
$x^{4}-9 x^{2}-10>0$
$\left(x^{2}-10\right)\left(x^{2}+1\right)>0$
$(x-\sqrt{10})(x+\sqrt{10})\left(x^{2}+1\right)>0$
$x>\sqrt{10}, x<-\sqrt{10}$
6. $\int \frac{1-\cos 8 t}{2} d t$
7. $\pi \int_{0}^{4 a \varphi} x^{2} d y$
$\pi \int_{0}^{4 a p}\left(\frac{y^{2}}{4 a}\right)^{2} d y$
8. $\lim _{x \rightarrow 0} \frac{\sin x \sin x}{2 \times x}$

$$
=\frac{1}{2}
$$

11. (a) Let $y=\cos ^{-1}\left(\frac{x}{3}\right)$

$$
\frac{d y}{d x}=\frac{-1}{\sqrt{9-x^{2}}}
$$

(b) (i)

$$
\begin{aligned}
& \int \frac{1}{\cos ^{2} x} d x \\
= & \int \sec ^{2} x d x \\
= & \tan x+c
\end{aligned}
$$

$$
\text { (ii) } \begin{aligned}
& \int_{0}^{\frac{1}{2}} \frac{2 d x}{1+4 x^{2}} \\
= & \int_{0}^{\frac{1}{2}} \frac{d x}{1+4 x^{2}} \\
= & \frac{2}{4} \int_{0}^{\frac{1}{2}} \frac{d x}{\frac{1}{4}+x^{2}} \\
= & \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{d x}{\left(\frac{1}{2}\right)^{2}+x^{2}} \\
= & \frac{1}{2} \times 2\left[\tan ^{-1} 2 x\right]_{0}^{\frac{1}{2}} \\
= & \tan n^{-1} 1-\tan ^{-1} 0 \\
= & \frac{\pi}{4}
\end{aligned}
$$

OR $2 \int_{0}^{\frac{1}{2}} \frac{d x}{1+4 x^{2}} d x$

$$
=2 \times \frac{1}{2}\left[\tan ^{-1} 2 x\right]_{0}^{1 / 2}
$$

$$
\text { (c) } \begin{aligned}
& \int x \sqrt{1-x} d x
\end{aligned} \begin{aligned}
& u=1-x \\
& = \\
& =-\int(1-u) u^{1 / 2} d u \quad \frac{d u}{d x}=-1 \\
& = \\
& =-\int\left(u^{1 / 2}-u^{3 / 2}\right) d u=-d x \\
& = \\
& = \\
& = \\
& \left.=\frac{2}{5} u^{5 / 2}-\frac{2 u^{3 / 2}}{3}+C u^{1 / 2}\right) d u \\
& = \\
& =\frac{2}{5}(1-x)^{5 / 3}-\frac{2}{3}(1-x)^{3 / 2}+C
\end{aligned}
$$

(d) $x^{3}-3 x^{2}-5 x-7=0$
(1) $\alpha+\beta+\gamma=3$
(ii) $\alpha \beta \gamma=7$

$$
\text { (ii) } \begin{aligned}
\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma} & =\frac{\beta \gamma+\alpha \gamma+\alpha \beta}{\alpha \beta \gamma} \\
& =\frac{-5}{7}
\end{aligned}
$$

(e)

$$
\begin{aligned}
\cos (x+y) & =\cos x \cos y-\sin x \sin y \\
& =\frac{1}{4}(\sqrt{3}-\sqrt{2})-\frac{1}{4}(\sqrt{3}+\sqrt{2}) \\
\cos (x+y) & =-\frac{1}{2} \sqrt{2} \\
\cos (x+y) & =-\frac{1}{\sqrt{2}} \\
\therefore x+y & =\pi-\frac{\pi}{4} \\
x+y & =\frac{3 \pi}{4}
\end{aligned}
$$

12, a) Prove $\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{3}{5}=\frac{\pi}{4}$

$$
\text { Let } \begin{aligned}
\tan ^{-1} \frac{1}{4} & =\alpha & \text { and } & \tan ^{-1} \frac{3}{5}
\end{aligned}=\beta
$$

\therefore Prove $\alpha+\beta=\pi / 4$
Now, $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$

$$
=\frac{\frac{1}{4}+\frac{3}{5}}{1-\frac{1}{4} \cdot \frac{3}{5}}
$$

$$
=\frac{\frac{17}{20}}{\frac{17}{20}}
$$

$$
\begin{aligned}
\tan (\alpha+\beta) & =1 \\
\therefore \alpha+\beta & =\tan ^{-1} 1 \\
& =\pi / 4 .
\end{aligned}
$$

$\therefore \tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{3}{5}=\frac{\pi}{4}$
(b) (i) $\sqrt{2} \cos x-\sqrt{2} \sin x=R \cos (x+\alpha)$
$R=\sqrt{(\sqrt{2})^{2}+(\sqrt{2})^{2}}$
$R=2$
$\alpha=\tan ^{-1} \frac{\sqrt{2}}{\sqrt{2}}$
$\alpha=\tan ^{-1} 1$
$\alpha=\frac{\pi}{4}$
(ii) $\sqrt{2} \cos x-\sqrt{2} \sin x=2 \cos \left(x+\frac{\pi}{4}\right)$

Endpoints I mark. max/ min I mark.
(ii) $k=\sqrt{7}$
(c)

(i) $\angle A C B=90^{\circ}$ (radius is perpendicular to tangent at point of contact)

Sim, $\angle A D B=90^{\circ}$
Since opposite angles $\angle A C B, \angle A D B$ are supplementary, then $A B B C$ is cyclic.
(ii) $A E B$ is a straight line - line joining the centres of 2 circles passes through the ir point of contact.
$\angle A D B=90^{\circ}$
$\therefore A B$ is a diameter ($<$ in a semicircle is a rightangle)
$\therefore A E=E B=D E=C E$.
(iii) $\triangle A D E$ is equilateral as all sides equal from (ii)

$$
\begin{aligned}
& \therefore \angle D A E=60^{\circ} \\
& \left.\therefore \angle D B A=30^{\circ} \text { (angle sum of } \triangle A B D=180^{\circ}\right) \\
& \operatorname{sim} \angle C B A=30^{\circ} .
\end{aligned}
$$

(d) (i) $f\left(\frac{1}{2}\right)=2 \sin ^{-1}\left(\frac{1}{2}\right)$

$$
\begin{aligned}
& =2 \times \frac{\pi}{6} \\
& =\frac{\pi}{3}
\end{aligned}
$$

(i) $\frac{y}{2}=\sin ^{-1} x$

$$
\therefore \sin \frac{y}{2}=x
$$

$$
A=\text { Area of rectangle }-\int_{0}^{\pi / 3} x d y
$$

$$
\begin{array}{ll}
=\left(\frac{\pi}{3} \times \frac{1}{2}\right)-\int_{0}^{\pi / 3} \sin \frac{y}{2} d y & \frac{\pi}{6}+2\left[\cos \frac{\pi}{6}-\cos 0\right] \\
=\frac{\pi}{6}+2\left[\cos \frac{4}{2}\right]_{0}^{\pi / 3} & =\frac{\pi}{6}+2\left(\frac{\sqrt{3}}{2}-1\right) \\
& =\left(\frac{\pi}{6}+\sqrt{3}-2\right) u^{2}
\end{array}
$$

$$
\text { Area of rect }=1 \text { monk }
$$

$$
\text { Int gration = } 1 \text { mark }
$$

13. (a) (i)

$$
\begin{aligned}
m_{P Q} & =\frac{a q^{2}-a p^{2}}{2 a q-2 a p} \\
& =\frac{a(q-p)(q+p)}{2 a(q-p)} \\
& =\frac{q+p}{2}
\end{aligned}
$$

Eqứn $P Q: y-a p^{2}=\frac{(p+q)}{2}(x-2 a p)$

$$
\begin{aligned}
2 y-2 a p^{2} & =(p+q) x-2 a p^{2}-a p q \\
y & =\frac{(p+q) x}{2}-a p q
\end{aligned}
$$

But $P Q$ is a focal chord
$\therefore(0, a)$ satisfies equiv.

$$
\begin{aligned}
a & =0-a p q \\
\therefore p q & =-1
\end{aligned}
$$

(ii) Equ'n $Q R$

$$
\begin{aligned}
y & =\frac{x^{2}}{4 a} \\
\frac{d y}{d x} & =\frac{x}{2 a}
\end{aligned}
$$

At $x=2 a q$

$$
m=q
$$

Equin QR: $y-a q^{2}=q(x-2 a q)$

$$
\begin{align*}
y-a q^{2} & =q x-2 a q^{2} \\
y & =q x-a q^{2}
\end{align*}
$$

Coords R: Sub $x=2 a p$ into

$$
\begin{equation*}
y=2 a p q-a q^{2} \tag{1}
\end{equation*}
$$

But $p q=-1$

$$
\begin{gathered}
y=-2 a-a q^{2} \\
\therefore R\left(2 a p,-2 a-a q^{2}\right) \\
\text { ie. } R\left(-\frac{2 a}{q},-2 a,-a q^{2}\right)
\end{gathered}
$$

Locus R: $\quad x=-\frac{2 a}{q}$
sub $q=\frac{-2 a}{x}$ into y

$$
\begin{aligned}
& y=-2 a-a q^{2} \\
& y=-2 a-a\left(-\frac{2 a}{x}\right)^{2} \\
& y=-2 a-a\left(\frac{4 a^{2}}{x^{2}}\right) \\
& y=-2 a-\frac{4 a^{3}}{x^{2}}
\end{aligned}
$$

(b) $\ddot{x}=4 x-4$
(i) $\frac{d}{d x}\left(\frac{1}{z} v^{2}\right)=\ddot{x}$

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =4 x-4 \\
\frac{1}{2} v^{2} & =\int(4 x-4) d x \\
\frac{1}{2} v^{2} & =2 x^{2}-4 x+c \\
x=6, v & =8 \\
32 & =2 \times 36-4 \times 6+c \\
32 & =72-24+c \\
-16 & =c \\
\therefore \frac{1}{2} v^{2} & =2 x^{2}-4 x-16 \\
v^{2} & =4 x^{2}-8 x-32
\end{aligned}
$$

(ii) $4 x^{2}-8 x-32 \geqslant 0$

$$
\begin{gathered}
x^{2}-2 x-8 \geqslant 0 \\
(x-4)(x+2) \geqslant 0
\end{gathered}
$$

$x \leqslant-2, x \geqslant 4$ OR $x \geqslant 4$ only as initilly $x=6$.
(c) (i) $L H S=\frac{d T}{d t}$

$$
=A k e^{-k t}
$$

RHS $=k(15-T)$
$=k\left(15-\left(15-A e^{-k t}\right)\right)$
$=k\left(15-15+A e^{-k t}\right)$
$=A k e^{-k t}$
LHS:RHS
(ii) $T=15-A e^{-k t}$

$$
\begin{aligned}
& t=0, T=-5 \\
& -5=15-A e^{0} \\
& A=20
\end{aligned}
$$

(ii) $\frac{d T}{d t}=5$ when $t=0$

$$
\frac{d t}{d t}=A k e^{-k t}
$$

$5=20 k e^{0}$
$k=\frac{i}{4}$
(iv) $0=15-20 e^{-0.25 t}$

$$
\begin{aligned}
& \frac{-15}{-20}=e^{-0.25 t} \\
& \frac{3}{4}=e^{-0.25 t}
\end{aligned}
$$

$$
\ln \frac{3}{4}=-0.25 t
$$

$$
t=-4 \ln \frac{3}{4}
$$

$t=1.15 \mathrm{~min}$ OR i min 9 s
d) $9^{n+2}-4^{n}$ is div. by 5 .

Step 1: Show true for $n=1$

$$
\begin{aligned}
& 9^{3}-4^{1}=725 \\
& 725 \text { is div. by } 5
\end{aligned}
$$

\therefore True for $n=1$
Step 2: Assume true for $n=k$ ie. $9^{n+2}-4^{n}$ is div. by 5 .

$$
\text { ie. } 9^{k+2}-4^{k}=5 m \text { for } m \text { a pos. integer. }
$$

Step ${ }^{3}$: Prove true for $n=k+1$

$$
\begin{aligned}
& \text { ie. } 9^{k+3}-4^{k+1} \text { is div. by } 5 \text {. } \\
& 9.9^{k+2}-4.4^{k}=9\left(5 m+4^{k}\right)-4.4^{k} \\
& =45 m+9.4^{k}-4.4^{k} \\
& =45 m+5.4^{k} \\
& =5\left(9 m+4^{k}\right) \\
& \begin{array}{l}
\text { From step } 2 \\
\left.9^{k+2}=5 m+4^{k}\right)
\end{array}
\end{aligned}
$$

14.(a) $\quad x=t^{2} e^{2-t}$
(i) $v=e^{2-t} \cdot 2 \cdot t+t^{2} \cdot(-1) e^{2-t}$

$$
=2 t e^{2-t}-t^{2} e^{2-t}
$$

(ii) At rest initially then $t=0, v=0$
sub t $=0$

$$
\begin{aligned}
& v=0-0 \\
& v=0
\end{aligned}
$$

(ii) At next $v=0$

$$
\begin{aligned}
& 0=2 t e^{2-t}-t^{2} e^{2-t} \\
& 0=t e^{2-t}(2-t) \\
& \therefore t=0, t=2
\end{aligned}
$$

Next at rest when $t=2$
(w)

$$
\begin{aligned}
\text { As } t & \rightarrow \infty \\
x & =t^{2} e^{2-t} \\
& =\frac{t^{2}}{e^{2-t}} \\
\text { ie } & \rightarrow 0
\end{aligned}
$$

b)

$$
\begin{aligned}
& \text { Let } f(x)=\log _{e} x-(x-1)^{2} \\
& f^{\prime}(x)=\frac{1}{x}-2(x-1) \\
& f(2)=\ln 2-1 \\
& f^{\prime}(2)=\frac{1}{2}-2=-\frac{3}{2} \\
& \begin{aligned}
a & =a_{1}-\frac{f\left(a_{1}\right)}{f^{\prime}\left(a_{1}\right)} \\
& =2-\frac{(\ln 2-1)}{-\frac{3}{2}} \\
& =2+2 \frac{(\ln 2-1)}{3} \\
& =1.795 \\
& =1.80
\end{aligned} \\
&
\end{aligned}
$$

(c) $y=\log _{e}\left(\frac{2 x}{2+x}\right)$
(i)

$$
\begin{aligned}
& \frac{2 x}{2+x}>0 \\
& \frac{2 x(2+x)^{2}}{2+x}>0(2+x)^{2} \\
& 2 x(2+x)>0 \\
& \frac{1}{-2} y_{0} \\
& x<-2, x>0
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& 0=\log _{e}\left(\frac{2 x}{2+x}\right) \\
& e^{0}=\frac{2 x}{2+x} \\
& 2+x=2 x \\
& 2=x
\end{aligned}
$$

(iii)

$$
\begin{aligned}
y & =\log _{2} 2 x-\log _{e}(2+x) \\
\frac{d y}{d x} & =\frac{2}{2 x}-\frac{1}{2+x} \\
& =\frac{2+x-x}{x(2+x)} \\
& =\frac{2}{x(2+x)}
\end{aligned}
$$

For $x>0: \frac{d y}{d x}$ is always positive
For $x<-2: \frac{2}{x(2+x)}$ is always positive. $x(2+x)$
b negative negative

$$
\therefore \frac{d y}{d x}>0 \text { for } x>0, x<-2
$$

(iv) Inflexion pts : $\frac{d^{2} y}{d x^{2}}=0$ a change in concanty

$$
\begin{aligned}
\frac{d y}{d x^{2}} & =\frac{x(2+x) \cdot 0-2 \cdot(2+2 x)}{x^{2}(2+x)^{2}} \\
& =\frac{-4(1+x)}{x^{2}(2+x)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
-4(1+x) & =0 \\
\therefore x & =-1
\end{aligned}
$$

But $x=-1$ is out of domain
\therefore No inflexion points.
(v)

As $x \rightarrow+\infty: y=\ln 2 x-\ln (2+x)$

$$
=\ln 2+\ln x-\ln (2+x)
$$

As $x_{i^{+}}^{+\infty} \Rightarrow \ln 2$ regardless of x. this cancels each other out.

