

MATHEMATICS (EXTENSION 1)

2014 HSC Course Assessment Task 3 (Trial Examination) Tuesday June 24, 2014

General instructions

- Working time 2 hours. (plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- Attempt **all** questions.
- At the conclusion of the examination, bundle the booklets + answer sheet used in the correct order within this paper and hand to examination supervisors.

(SECTION I)

• Mark your answers on the answer sheet provided (numbered as page 13)

SECTION II

- Commence each new question on a new page. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

STUDENT NUMBER: # BOOKLETS USED:
Class (please ✓)
12M3A - Mr Zuber
12M3B - Mr Berry
12M4B - Mr Lam
12M3C - Mr Lowe
12M4C - Mr Ireland

Marker's use only.

QUESTION	1-10	11	12	13	14	Total	%
MARKS	10	15	15	15	15	70	

Section I

10 marks Attempt Question 1 to 10 Allow approximately 15 minutes for this section

Mark your answers on the answer sheet provided.

Questions

1. What is the value of x if MP = 7, RT = 4, TQ = 6?

- (A) $\frac{21}{2}$
- (B) 5
- (C) $\frac{24}{7}$
- (D) 9

(A) -1

- **2.** What is the remainder when $8x^3 + 4x^2 3x 8$ is divided by x 1?
 - (B) 1 (C) -9 (D) -8
- 3. Which of the following calculations is required to calculate the acute angle between the lines x + y = 1 and 2x y = 1?

(A)
$$\tan \theta = \left| \frac{-1+2}{1+2} \right|$$

(B) $\tan \theta = \left| \frac{-1+2}{2} \right|$
(C) $\tan \theta = \left| \frac{-1-2}{1-2} \right|$
(D) $\tan \theta = \left| \frac{-1-2}{-2} \right|$

TUESDAY JUNE 24, 2014

Marks

 $\mathbf{1}$

1

4. What is the general solution to $2\sin\frac{x}{2} = -1$? (A) $2n\pi - (-1)^n \frac{\pi}{3}$ (B) $n\pi - (-1)^n \frac{\pi}{6}$ (C) $n\pi - (-1)^n \frac{\pi}{3}$ (D) $2n\pi - (-1)^n \frac{\pi}{6}$

5. Solve:
$$x^2 (x^2 - 9) - 10 > 0.$$

(A) $-\sqrt{10} < x < \sqrt{10}$
(B) $x > \sqrt{10}, -1 < x < 1, x < -\sqrt{10}$
(C) $1 < x < \sqrt{10}, -\sqrt{10} < x < -1$
(D) $x > \sqrt{10}, x < -\sqrt{10}$

6. Which of the following integrals is equal to $\int \sin^2 4t \, dt$?

(A)
$$\int \frac{1 + \cos 8t}{2} dt$$

(B)
$$\int \frac{1 - \cos 8t}{2} dt$$

(C)
$$\int \frac{1 + \cos 4t}{2} dt$$

(D)
$$\int \frac{1 - \cos 4t}{2} dt$$

TUESDAY JUNE 24, 2014

1

7. Which of the following integrals gives the volume of the solid formed when the area bound by $y^2 = 4ax$, the y axis and the line y = 4ap is rotated about the y axis?

(A) $\pi \int_0^{4ap} 4ax \, dx$

(B)
$$\pi \int_0^{\frac{1}{16a^2}} \frac{1}{16a^2} dx$$

(C) $\pi \int_0^{4ap} \frac{y^2}{16a} dy$

(D)
$$\pi \int_0^{4ap} \sqrt{4ax} \, dx$$

8. Evaluate:
$$\lim_{x \to 0} \frac{\sin^2 x}{2x^2}$$
.

- (A) $\frac{1}{2}$
- (B) 1
- (C) 2
- (D) ∞
- 9. A box contains 4 coins, one of which has two heads (no tails). If a coin is selected1 at random and then tossed, what is the probability that heads will show?

(A)
$$\frac{3}{8}$$
 (B) $\frac{3}{4}$ (C) $\frac{5}{8}$ (D) $\frac{4}{5}$

 $\mathbf{1}$

10. Which of the following graphs represents $y = \cos(\cos^{-1} x)$?

Examination continues overleaf...

Section II

60 marks Attempt Questions 11 to 14 Allow approximately 1 hour and 45 minutes for this section.

Write your answers in the writing booklets supplied. Additional writing booklets are available. Your responses should include relevant mathematical reasoning and/or calculations.

Ques	stion 11 (15 Marks)	Commence a NEW page.	Marks
(a)	Differentiate $\cos^{-1}\frac{x}{3}$.		1
(b)	Evaluate the following integrals: i. $\int \frac{1}{\cos^2 x} dx.$		1
	ii. $\int_0^{\frac{1}{2}} \frac{2 dx}{1 + 4x^2}.$		3
(c)	Evaluate $\int x\sqrt{1-x} dx$ by using the	e substitution $u = 1 - x$.	3
(d)	If α , β and γ are roots of the equation	on $x^3 - 3x^2 - 5x - 7 = 0$, evaluate:	
	i. $\alpha + \beta + \gamma$.		1
	ii. $\alpha\beta\gamma$.		1
	iii. $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$.		2
(e)	If $\cos x \cos y = \frac{1}{4} (\sqrt{3} - \sqrt{2})$ and si positive value of $(x + y)$ in radians.	$\ln x \sin y = \frac{1}{4} \left(\sqrt{3} + \sqrt{2} \right)$, find the smallest	t 3

Question 12 (15 Marks)

Commence a NEW page.

(a) Prove that
$$\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{3}{5} = \frac{\pi}{4}$$
.

- (b) i. Express $\sqrt{2}\cos x \sqrt{2}\sin x$ in the form $R\cos(x+\alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$.
 - ii. Hence sketch $y = \sqrt{2}\cos x \sqrt{2}\sin x$ for $0 \le x \le 2\pi$.
 - iii. Hence find the value of k for which $\sqrt{2}\cos x \sqrt{2}\sin x = k$ will have 3 1 solutions in the domain $0 \le x \le 2\pi$.
- (c) Two circles of *equal radii* and centres A and B respectively, touch externally at E. BC and BD are tangents from B to the circle with centre A.

Copy or trace the diagram into your working booklet.

- i. Show that BCAD is a cyclic quadrilateral.
- ii. Show that E is the centre of the circle which passes through **1** B, C, A and D.
- iii. Show that $\angle CBA = \angle DBA = 30^{\circ}$.
- (d) The diagram below shows $f(x) = 2\sin^{-1}x$. The area enclosed between the curve, the line $x = \frac{1}{2}$ and the x axis is shaded.

ii. Show that the area of the shaded region is given by

$$\frac{\pi}{6} + \sqrt{2} - 2 \text{ units}^2$$

NORTH SYDNEY BOYS' HIGH SCHOOL

3

Marks

1 2

2

Question 13 (15 Marks)

Commence a NEW page.

 $\mathbf{2}$

3

 $\mathbf{2}$

1

(a) PQ is a focal chord of the parabola $x^2 = 4ay$, where $P(2ap, ap^2)$ and $Q(2aq, aq^2)$. QR is the tangent at Q and RP is parallel to the axis of the parabola.

- i. Show that pq = -1.
 ii. Find the equation of the locus of R.
- (b) The acceleration of a particle is given by $\ddot{x} = 4x 4$. Initially, x = 6 and |v| = 8.
 - i. Show that $v^2 = 4x^2 8x 32$.
 - ii. Find the set of possible values of x.
- (c) An object is removed from a freezer at -5° C and is placed in a room where the temperature is kept constant at 15° C. The temperature of the object T then changes according to the rule

$$\frac{dT}{dt} = k(15 - T)$$

where t is in minutes and k is a constant.

i.	Verify that $T = 15 - Ae^{-kt}$ satisfies this condition.	1
ii.	Find the value of A .	1
iii.	If initially the temperature of the object was increasing at 5°C per minute, find the value of k .	1
iv.	Find, correct to the nearest second, the time it takes for the object's temperature to rise to 0° C.	1
Prov	e by induction that $9^{n+2} - 4^n$ is divisible by 5 for all positive integers n .	3

(d)

Ques	stion :	14 (15 Marks) Commence a NEW page.	Marks	
(a)	The position of a particle moving along the x axis is given by $x = t^2 e^{2-t}$, where x is in metres and t is in seconds respectively.			
	i.	Find an expression for the velocity in terms of time.	1	
	ii.	Show that the particle is initially at rest.	1	
	iii.	iii. Find the time for which the particle is next at rest.		
	iv.	What happens as time increases indefinitely?	1	
(b)	It is	know that a solution exists near $x = 2$ for the equation $\log_e x = (x - 1)^2$.	2	
	Use one application of Newton's Method to find a better approximation to $x = 2$, correct to two decimal places.			
(c)	Consider the function $y = \log_e \frac{2x}{2+x}$.			
	i.	Show that the domain of the function is	2	
		$D = \{x : x < -2, x > 0\}$		
	ii.	Find the value of x for which $y = 0$.	1	
	iii.	Show that $\frac{dy}{dx} = \frac{2}{x(2+x)}$ and hence show that the function is increasing for all x in the domain	g 2	
	iv.	for all x in the domain. Are there any points of inflexion? Justify your answer.	2	

v. Sketch the graph of the function.

End of paper.

 $\mathbf{2}$

STANDARD INTEGRALS

$$\int x^n \, dx \qquad = \frac{1}{n+1} x^{n+1} + C, \qquad n \neq -1; \quad x \neq 0 \text{ if } n < 0$$

$$\int \frac{1}{x} \, dx \qquad \qquad = \ln x + C, \qquad \qquad x > 0$$

$$\int e^{ax} dx \qquad \qquad = \frac{1}{a}e^{ax} + C, \qquad \qquad a \neq 0$$

$$\int \cos ax \, dx \qquad = \frac{1}{a} \sin ax + C, \qquad a \neq 0$$

$$\int \sin ax \, dx \qquad = -\frac{1}{a} \cos ax + C, \qquad a \neq 0$$

$$\int \sec^2 ax \, dx \qquad = \frac{1}{a} \tan ax + C, \qquad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax + C, \qquad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} \, dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a} + C, \qquad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx \qquad = \sin^{-1} \frac{x}{a} + C, \qquad \qquad a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} \, dx \qquad = \ln\left(x + \sqrt{x^2 - a^2}\right) + C, \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx \qquad = \ln\left(x + \sqrt{x^2 + a^2}\right) + C$$

NOTE: $\ln x = \log_e x, x > 0$

Answer sheet for Section I

Mark answers to Section I by fully blackening the correct circle, e.g "•"

STUDENT NUMBER:

Class (please \checkmark)

- $\bigcirc~12\mathrm{M3A}$ Mr Zuber
- \bigcirc 12M3B Mr Berry
- \bigcirc 12M3C Mr Lowe

- \bigcirc 12M4A Ms Ziaziaris
- $\bigcirc~12\mathrm{M4B}-\mathrm{Mr}$ Lam
- $\bigcirc~12\mathrm{M4C}-\mathrm{Mr}$ Ireland

1 –	\bigcirc	B	C	\bigcirc
2 -	\bigcirc	B	\bigcirc	\bigcirc
3 –	(A)	B	C	\bigcirc
4 -	\bigcirc	B	C	\bigcirc
5 -	\bigcirc	B	C	\bigcirc
6 –	\bigcirc	B	C	\bigcirc
7 -	\bigcirc	B	C	\bigcirc
8 -	(A)	(B)	(C)	(D)
	\bigcirc	J	J	J
9 -	A	B	C	©

EXT I MATHEMATICS 2014 HSC ASSESSMENT TASK 3 - SOLUTIONS

() B @ B ③ C ⊕ A € D © B Ø B Ø B ④ A ④ C Ø. A

1. $(x+7) \chi = 10 \times 6$ $\chi^{2}+7\chi - 60 = 0$ $(x+12)(\chi-5) = 0$ $\chi = 5$

2.
$$8(1) + 4(1) - 3(1) - 8$$

= 1

3, $\tan \theta = \left| \frac{M_1 - M_2}{1 + M_1 M_2} \right|$ = $\left| \frac{-1 - 2}{1 + (-1)(2)} \right|$ = $\left| \frac{-1 - 2}{1 - 2} \right|$

4.
$$\sin \frac{x}{2} = -\frac{1}{2}$$

 $\frac{x}{2} = n\pi + (-1)^{n} (-\frac{\pi}{6})$
 $x = 2n\pi - (-1)^{n} (\frac{\pi}{3})$

5.
$$x^{2}(x^{2}-q) = 10 > 0$$

 $x^{4} = 9x^{2} = 10 > 0$
 $(x^{2} = 10)(x^{2} + 1) > 0$
 $(x = \sqrt{10})(x + \sqrt{10})(x^{2} + 1) > 0$
 $x > \sqrt{10}, x < -\sqrt{10}$

 $\int \underbrace{1 - \cos 8t}_{2} dt$

7.
$$\pi \int_{0}^{4af} x^{2} dy$$
$$\pi \int_{0}^{4af} \left(\frac{y^{2}}{4a}\right)^{2} dy$$

8. Lim <u>Sinx sinx</u> x70 2 x. x.

10. Plot points $\cos(\cos^{-1} - 1) = 1$ Restricted because $\cos(\cos^{-1} - 1) = -1$ $\cos^{-1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1}$

11. (a)
$$1x^{4} = \cos^{-3}\left(\frac{\pi}{3}\right)$$

$$\frac{dy}{dx} = -\frac{1}{\sqrt{q-x^{2}}}$$
(b) (i) $\int \frac{1}{\cos^{2}x} dx$

$$= \int \sec^{2} x dx$$

$$= \tan x + C$$
(i) $\int_{0}^{\frac{1}{2}} \frac{2dx}{1+4x^{2}}$

$$= ^{2} \int_{0}^{\frac{1}{2}} \frac{dx}{1+4x^{2}}$$

$$= \frac{2}{4} \int_{0}^{\frac{1}{2}} \frac{dx}{4+4x^{2}}$$

$$= \frac{1}{4} \int_{0}^{\frac{1}{2}} \frac{dx}{(3)^{2} + x^{2}}$$

$$= \frac{1}{4} \int_{0}^{\frac{1}{2}} \frac{dx}{(3)^{2} + x^{2}}$$

$$= \frac{1}{2} x^{2} \left[+\alpha x^{2} 2x \right]_{0}^{\frac{1}{2}}$$
(ii) $x^{2} = \frac{1}{4} \int_{0}^{\frac{1}{2}} \frac{dx}{(1+4x)^{2}}$

$$= \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{dx}{(1+4x)^{2}}$$

$$= \frac{1}{2} x^{2} \left[+\alpha x^{-1} 2x \right]_{0}^{\frac{1}{2}}$$
(iv) $x^{2} = \frac{1}{2} x^{2} \left[+\alpha x^{-1} 2x \right]_{0}^{\frac{1}{2}}$

(c)
$$\int x \sqrt{1-x} dx$$
 $u = 1-x$

$$= -\int (1-u) u^{1/2} du$$

$$= -\int (u^{1/2} - u^{3/2}) du$$

$$= \int (u^{3/2} - u^{1/2}) du$$

$$= \frac{2}{5} (1-x)^{5/2} - \frac{2}{3} (1-x)^{3/2} + C$$

$$= \frac{2}{5} (1-x)^{5/2} - \frac{2}{3} (1-x)^{3/2} + C$$

(d)
$$\chi^{3} - 3\chi^{2} - 5\chi - 7 = 0$$

(i) $\chi + \beta + \chi = 3$
(ii) $\chi \beta \chi = 7$
(iii) $\chi \beta \chi = 7$
(iii) $\frac{1}{\chi} + \frac{1}{\beta} + \frac{1}{\chi} = \frac{\beta \chi + 2\chi + 2}{\chi \beta \chi}$
 $= \frac{-5}{7}$

dβ

(e)
$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

 $= \frac{1}{4}(\sqrt{3}-\sqrt{2}) - \frac{1}{4}(\sqrt{3}+\sqrt{2})$
 $\cos(x+y) = -\frac{1}{2}\sqrt{2}$
 $\cos(x+y) = -\frac{1}{\sqrt{2}}$
 $\frac{1}{\sqrt{2}} = \pi - \frac{\pi}{4}$
 $x+y = \frac{3\pi}{4}$

12, a) Prove
$$\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{3}{5} = \frac{\pi}{4}$$

Let $\tan^{-1}\frac{1}{4} = \alpha$ and $\tan^{-1}\frac{3}{5} = \beta$
 $\therefore \tan \alpha = \frac{1}{4}$ $\tan \beta = \frac{3}{5}$
 \therefore Prove $\alpha + \beta = \pi/4$
Now, $\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$
 $= \frac{1}{4} + \frac{3}{5}$
 $= \frac{17}{20}$
 $\tan (\alpha + \beta) = 1$

$$\frac{1}{2} \times \frac{1}{\beta} = \frac{1}{1} + \frac{1}{2} + \frac{1}$$

$$\frac{1}{2}, \tan^{-1}\frac{1}{4} + \tan^{-1}\frac{3}{5} = \frac{1}{4}$$

:-

(b) (i)
$$\sqrt{2} \cos x - \sqrt{a} \sin x = R \cos(x + \alpha)$$

 $R = \sqrt{(52)^2 + (52)^2}$
 $\frac{1}{R = 2}$
 $\alpha = 4\alpha n^{-1} \sqrt{2}$
 $\kappa = 4\alpha n^{-1} 1$
 $\boxed{x = \frac{\pi}{4}}$
(ii) $\sqrt{2} \cos x - \sqrt{2} \sin x = 2 \cos(x + \frac{\pi}{4})$

Endpoints Imark. Max/Min Imark,

· .

(0)

13. (a) (i)
$$m_{PQ} = \frac{aq^2 - ap^2}{2aq - 2ap}$$

$$= \frac{a(q - p)(q + p)}{2a(q - p)}$$

$$= \frac{q + p}{2}$$
Equin PQ: $y - ap^2 = (p+q)(x - 2ap)$
 $2y - 2ap^2 = (p+q)x - 2ap^2 - apq$
 $y = (p+q)x - apq$
But PQ is a focal chord
 $\therefore (0,a)$ satisfies equin.
 $q = 0 - apq$
 $-1pq = -1$
(i) Equin QR
 $y = \frac{x^2}{4a}$

$$\frac{dy}{dx} = \frac{x}{2a}$$

$$\frac{A+x=2aq}{M=q}$$

$$m = q$$

$$\frac{Eqv\ln QR}{K} : y - aq^{2} = q(x-2aq)$$

$$y - aq^{2} = qx - 2aq^{2}$$

$$y = qx - aq^{2} - 0$$

$$\frac{Coords R}{y} : Sub x = 2ap \text{ into } -0$$

$$y = 2apq - aq^{2}$$

$$But pq = -1$$

$$y = -2a - aq^{2}$$

$$\therefore R (2ap, -2a - aq^{2})$$

$$ie \cdot R (-\frac{2a}{q}, -2a, -aq^{2})$$

Locus R: $x = -\frac{2a}{9}$ Sub $q = -\frac{2a}{x}$ into y .

$$y = -2a - aq^{2}$$

$$y = -2a - a\left(\frac{-2a}{x}\right)^{2}$$

$$y = -2a - a\left(\frac{4a^{2}}{x^{2}}\right)$$

$$y = -2a - 4a^{3}$$

$$y = -2a - 4a^{3}$$

(b)
$$\dot{x} = 4x - 4$$

(i) $\frac{d}{dx} (\frac{1}{2}v^2) = \dot{x}$
 $\frac{d}{dy} (\frac{1}{2}v^2) = 4x - 4$
 $\frac{1}{2}v^2 = \int (4x - 4) dx$
 $\frac{1}{2}v^2 = 2x^2 - 4x + C$
 $32 = 2x3b - 4xb + C$
 $32 = 72 - 24 + C$
 $-16 = C$
 $\dot{y} = \frac{1}{2}v^2 = 2x^2 - 4x - 1b$
 $v^2 = 4x^2 - 8x - 32$

(ii)
$$4x^2 - 8x - 32 = 30$$

 $x^2 - 2x - 8 = 30$
 $(x - 4)(x + 2) > 0$
 $-\frac{1}{-2} + \frac{1}{4}$
 $x \le -2, x > 4$ OR $x > 4$ only as initially $x = 6$.

(c) (i) LHS =
$$\frac{dT}{dt}$$

= Ake^{-kt}
RHS = $k(15-T)$
= $k(15 - (15 - Ae^{-kt}))$
= $k(15 - 15 + Ae^{-kt})$
= Ake^{-kt}
LHS = RHS.

(ii)
$$T = 15 - Ae^{-kt}$$

 $t = 0, T = -5$
 $-5 = 15 - Ae^{0}$
 $\overline{A} = 207$

 $(\dot{w}) \quad 0 = 15 - 20e^{-0.25t}$ $\frac{-15}{-20} = e^{-0.25t}$ $\frac{3}{4} = e^{-0.25t}$ $\ln \frac{3}{4} = -0.25t$ $t = -4 \ln \frac{3}{4}$ t = 1.15 mm or 1mm 9.5

d)
$$q^{n+2} - 4^{n}$$
 is div. by 5.
step 1: Show true for n=1
 $q^{3} - 4^{i} = 725$
725 is div. by 5
.'. True for n=1
step 2: Assume +rive for n=k.
ie. $q^{n+2} - 4^{n}$ is div. by 5.
ie. $q^{k+2} - 4^{k} = 5M$ for M a pos. integar.
step 3: Prove true for n=k+1
ie. $q^{k+3} - 4^{k+1}$ is div. by 5.
 $q.q^{k+2} - 4.4^{k} = q(5M+4^{k}) - 4.4^{k}$ (From step 2
 $= 45M + 9.4^{k} - 4.4^{k}$ $q^{k+2} = 5M + 4^{k}$)
 $= 45M + 5.4^{k}$
 $= 5(9M + 4^{k})$ This is integral for M, k pos. inf.

14. (a)
$$\chi = t^2 e^{2-t}$$

(i) $v = e^{2-t}, 2t + t^2, (-1)e^{2-t}$
 $= 2te^{2-t} - t^2 e^{2-t}$
(ii) At rest initially then $t=0, v=0$
Subt=0
 $v=0-0$
 $v=0$
(ii) At rest $v=0$
 $v=0$
(iii) At rest $v=0$
 $v=0$

b) Let
$$f(x) = \log_{e} x - (x-1)^{2}$$

 $f'(x) = \frac{1}{x} - 2(x-1)$
 $f(2) = \ln 2 - 1$
 $f'(2) = \frac{1}{2} - 2 = -\frac{3}{2}$
 $a = a_{1} - \frac{f(a_{1})}{f'(a_{1})}$
 $= 2 - \frac{(\ln 3 - 1)}{-\frac{3}{2}}$
 $= 1.795$
 $= 1.80$

(c)
$$y = \log_{e}\left(\frac{2x}{2+x}\right)$$

(i) $\frac{\partial x}{\partial + \pi} > 0$
 $\frac{\partial x(2+x)^{2}}{2+x} > 0 (2+x)^{2}$
 $2x(2+x) > 0$
 $\frac{1}{-2} \sqrt{0}$
(ii) $0 = \log_{e}\left(\frac{2x}{2+\pi}\right)$
 $e^{0} = \frac{2x}{2+\pi}$
 $2+x = 2x$
 $2=x$

(iii)
$$y = \log 2x - \log (2+x)$$

$$\frac{dy}{dx} = \frac{2}{2x} - \frac{1}{2+x}$$

$$= \frac{2+x-x}{x(2+x)}$$

$$\frac{2}{x(2+x)}$$
For $x > 0$: $\frac{dy}{dx}$ is alwrawye positive
For $x < -2$: $\frac{2}{x(2+x)}$ is alwrawye positive.
For $x < -2$: $\frac{2}{x(2+x)}$ is alwrawye positive.

$$\frac{1}{dx} > 0 \text{ for } x > 0, x < -2.$$
(iv) Inflexion Pts : $\frac{d^2y}{dx^2} = 0$: drange in concavity

$$\frac{dy}{dx^3} = \frac{x(2+x)^2}{x^2(2+x)^2}$$

$$= -\frac{4(1+x)}{x^2(2+x)^2}$$

