

2015 HSC ASSESSMENT TASK 3

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write on one side of the paper (with lines) in the booklet provided
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Each new question is to be started on a **new page**.
- Attempt all questions

Class Teacher:

(Please tick or highlight)

- O Mr Berry
- O Mr Ireland
- O Mr Lin
- O Mr Weiss
- O Ms Ziaziaris
- O Mr Zuber

Student Number:

Question No	1-10	11	12	13	14	Total	Total
Mark	10	15	15	15	15	70	100

(To be used by the exam markers only.)

Section I

10 marks Attempt Questions 1 - 10 Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1 - 10

1.	What is the value of
	$\lim_{x\to 0}\frac{\sin 4x}{5x}?$
	(A) 0
	(B) ⁴ / ₅
	(C) 1

(D) ⁵/4

$y = f(x)$ is a linear function with gradient $\frac{1}{4}$, find the gradient of $y = f^{-1}$	(x).
(A) 4	

- (B) $\frac{1}{4}$ (C) -4
- (D) $-\frac{1}{4}$

Which of the following best describes the above function?

(A) $y = \sin^{-1}(x + 1)$ (B) $y = \sin^{-1}(x) + 1$ (C) $y = \cos^{-1}(x + 1)$ (D) $y = \cos^{-1}(x) + 1$

What are the coordinates of the point that divides the interval joining the points A(-6,4) and B(-2, -10) externally in the ratio 1:3?

- (A) <mark>(-8,8)</mark>
- (B) <mark>(-8, 11)</mark>
- (C) <mark>(2,8)</mark>
- (D) (2,11)

5. Which of the following is the solution to $\frac{2}{x-2} < 2$? (A) x < 2 or x > 3(B) 2 < x < 3(C) -2 < x < 3(D) -3 < x < 2

6.

- (A) 2
- (B) -2
- (C) 4
- (D) -4

7.

The line TA is a tangent to the circle at A and TB is a secant meeting the circle at B and C.

Given that TA = 4, CB = 6 and TC = x, what is the value of x?

- (A) 2
- (B) 4
- (C) 6
- (D)8

8.

Given that $\log_a 4 = x$, find an expression for $a^{\frac{1}{2}}$ (A) 2 (B) 4 (C) 8

(D) 16

9.

Find the gradient of the normal to the parabola x = 6t, $y = 3t^2$ at the point where t = -2.

3*X*

- (A) -2
- (B) $-\frac{1}{2}$
- (C) ¹/₂
- (D) 2

An approximate solution to the equation $f(x) = x + 2 \log_e x$ is x = 0.5. Using one application of Newton's method, a more accurate approximation is given by:

(A)
$$0.5 - \frac{0.5 + \log_{\theta} 0.25}{5}$$

(B) $0.5 + \frac{0.5 + \log_{\theta} 0.25}{5}$
(C) $0.5 - \frac{5}{0.5 + \log_{\theta} 0.25}$

(D)
$$0.5 + \frac{5}{0.5 + \log_{\theta} 0.25}$$

Section II

60 Marks Attempt Questions **11** – **14** Allow about 1 hour and 45 minutes for this section

Answer each question on a NEW page. Extra writing booklets are available.

In Questions 11 – 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks) Start a NEW page.

(a) When the polynomial $P(x) = 2x^2 - 3x^2 + ax - 2$ is divided by (x + 1) the remainder is 7. What is the value of a?

(b) (i)

$$\int \frac{1}{(x+4)^2} dx$$

(ii)

$$\int \frac{1}{x^2 + 4} dx$$

(iii)

$$\int \frac{x}{x^2 + 4} dx$$

(iv)

$$\int \frac{x}{(x^2+4)^2} dx$$

(c) Find the acute angle between the lines
$$y = 2x + 1$$
 and $2x + 5y - 2 = 0$ 2

(d) Evaluate

$$\int_{0}^{\frac{\pi}{6}} \sin^2 2x \, dx$$

(e) Find the general solution to $2\cos^2 x = 1$

2

2

1

Question 12 (15 Marks) Start a NEW page.

(a) (i) Without using calculus, sketch the graph of
$$P(x) = x(x+2)(1-x)^2$$
 2

(ii) Hence solve $x(x+2)(1-x)^2 < 0$

(b) Using the substitution $u = \frac{1}{x}$ find the exact value of:

$$\int_{1}^{2} \frac{e^{\frac{1}{x}}}{x^2} dx$$

1

(c) (i) A chef takes an onion tart out of the fridge at 4°C into a room where the air temperature is 25°C. The rate at which the onion tart warms follows Newton's law, that is:

$$\frac{dT}{dt} = -k(T - 25)$$

where k is a positive value, time t is measured in minutes and temperature T is measured in degrees Celsius.

Show that
$$T = 25 - Ae^{-kt}$$
 is a solution to $\frac{dT}{dt} = -k(T - 25)$ and find the value of A. 2

(ii) The temperature of the onion tart reaches $15^{\circ}C$ in 45 minutes. Find the exact value of k. 2

(iii) Find the temperature of the onion tart 90 minutes after being removed from the fridge. **1**

ABC is a triangle inscribed in a circle. MAN is the tangent at A to the circle ABC. CD and BE are altitudes of the triangle.

Copy the diagram into your answer booklet.

- (ii) Give a reason why *BCED* is a cyclic quadrilateral
- (iii) Hence show that *DE* is parallel to *MAN*.

1

Question 13 (15 Marks) Start a NEW page

(a) I	the graph of $y = \log_e x^2$ identical to $y = 2 \log_e x$? Give a reason for your answer.
-------	--

(b) (i) A particle is moving in a straight line. At time t seconds it has displacement x metres from a fixed point O on the line, velocity $v ms^{-1}$ and acceleration $a ms^{-2}$ given by $a = x + \frac{3}{2}$. Initially the particle is 5m to the right of O and moving towards O with a speed of 6 ms^{-1} .

Explain whether the particle is initially speeding up or slowing down.

- (ii) Find an expression for v^2 in terms of x.
- (iii) Find where the particle changes direction.

(c) (i) Express
$$3\cos\theta - \sqrt{3}\sin\theta$$
 in the form $A\cos(\theta + \alpha)$ 2

(ii) Hence, or otherwise, solve $3\cos\theta - \sqrt{3}\sin\theta + 3 = 0$ for $0 \le \theta \le 2\pi$ 2

(d) (i)

A square *ABCD* of side 1 unit is gradually 'pushed over' to become a rhombus. The angle at A (θ) decreases at a constant rate of 0.1 radian per second.

At what rate is the area of rhombus ABCD decreasing when $\theta = \frac{\pi}{6}$?

(ii) At what rate is the shorter diagonal of the rhombus ABCD decreasing when $\theta = \frac{\pi}{2}$

3

3

1

1

2

Question 14 (15 Marks) Start a NEW page.

(a)Prove that
$$11^{2n} + 11^n + 8$$
 is a multiple of 10 for all positive integers n3(b) (i)Show that $\frac{d}{dx}(x \sin^{-1}x + \sqrt{1 - x^2}) = \sin^{-1}x$ 2(ii)Hence, using a similar expression, find a primitive for $\cos^{-1}x$ 1(iii)The curves $y = \sin^{-1}x$ and $y = \cos^{-1}x$ intersect at $P\left(\frac{1}{\sqrt{2}}, \frac{\pi}{4}\right)$.
The curve $y = \cos^{-1}x$ also intersects with the x axis at Q.
Find the area enclosed by the x-axis and the arcs OP and PQ .3(c) (i)A parabola has parametric equations
 $x = t^2 + 1$
 $y = 2(2t + 1)$
Sketch the parabola showing its orientation and vertex.1(ii)Point P is the point on the parabola where $t = p$
Point P^T is the point on the parabola where $t = -p$
Find the equation of the locus of the midpoint of PP^T and state its geometrical significance2

(iii) A line with gradient *m* passes through (0.5) and cuts the parabola at <u>distinct</u> points Q and R.Find the range of possible values for *m*.

End of Examination.

Multiple Choice Answers 1./ B 2/ A 3./ C 4/ B 5./ A . 6./ C PHE PART 7./ А 8./ C 9./ C 10./ А

$$\begin{array}{c} (a) \quad P(x) = 2x^{3} - 3x^{2} + ax - 2 \\ P(-1) = 2(-1)^{3} - 3(-1)^{3} + a(-1) - 2 \\ z = -a - 7 \\ \vdots = 2 - a - 7 \\ \vdots = \frac{1}{2} + a - 7 \\ \vdots = \frac{1}{2} (x + 4)^{-2} dx \\ z = (x + 4)^{-1} + c \\ z = \frac{-1}{2c + 4} + c \\ z = \frac{-1}{2c + 4} + c \\ z = \frac{-1}{2c + 4} + c \\ \vdots = \frac{1}{2} + an^{-1} \left(\frac{x}{2}\right) + c \\ (ii) \quad \int \frac{x}{x^{2} + 4} dx \\ z = \frac{1}{2} \int \frac{2x}{x^{2} + 4} dx \\ z = \frac{1}{2} \int \frac{2x}{x^{2} + 4} dx \\ z = \frac{1}{2} \log_{2} (x^{2} + 4) + c \end{array}$$

(iv)
$$\int \frac{\pi}{(x^{2} + 4)^{2}} dx$$

$$= \int x (x^{2} + 4)^{-2} dx$$

$$= (-\frac{1}{2}) (x^{2} + 4)^{-1} + C$$

$$= -\frac{1}{2(x^{2} + 4)} + C$$

(c) $y = 2x + 1$
 $\therefore m_{1} = 2$
 $2x + 5y - 2 = 0$
 $5y = -2x + 2$
 $y = -\frac{2}{5}x + \frac{2}{5}$
 $\therefore m_{2} = -\frac{2}{5}$
 $\tan \theta = \left| \frac{m_{1} - m_{2}}{1 + m_{1} m_{2}} \right|$

$$= \left| \frac{2 - (-\frac{2}{5})}{1 + (2)(-\frac{2}{5})} \right|$$

$$= \left| \frac{2^{2}/5}{1/5} \right|$$

 $= |(2|)$
 $\theta = 85^{\circ} 14^{\circ} 11^{\circ} (nearest second)$

´ v

(d)
$$\int_{0}^{\frac{\pi}{6}} \sin^{3}(2x) dx$$

$$: \int_{0}^{\frac{\pi}{6}} \left(\frac{1}{2} - \frac{1}{2} \cos 4x\right) dx$$

$$: \left[\frac{\pi}{2} - \frac{1}{8} \sin 4x\right]_{0}^{\frac{\pi}{6}}$$

$$: \left(\frac{\pi}{12} - \frac{1}{8} \sin 4x\right]_{0}^{\frac{\pi}{6}}$$

$$: \left(\frac{\pi}{12} - \frac{1}{8} x \frac{\sqrt{3}}{2}\right)$$

$$: \frac{\pi}{12} - \frac{\sqrt{3}}{8} x \frac{\sqrt{3}}{2}$$

$$: \frac{\pi}{12} - \frac{\sqrt{3}}{16}$$

(e) $2 \cos^{3} x = 1$
 $\cos^{3} x = \frac{1}{2}$
 $\cos x = \frac{1}{\sqrt{2}}$
 $\cos x = \frac{1}{\sqrt{2}}$
 $(\cos x = \frac{1}{\sqrt{2}})$
 $($

(a)
Question 12

$$\int_{-2}^{2} \int_{1}^{2} \int_{1}$$

$$= \left[e^{u}\right]_{\frac{1}{2}}^{1}$$

$$= e - e^{\frac{1}{2}}$$

$$= e - \sqrt{e}$$
(c) (i) $T = 25 - Ae^{-kt}$

$$\frac{uT}{ut} = k Ae^{-kt}$$

$$= -k \left(-Ae^{-kt}\right)$$

$$= -k \left(-Ae^{-kt}\right)$$

$$= -k \left(T - 25\right), \text{ as required}$$
when $t = 0$ $T = 4$

$$4 = 25 - Ae^{-0k}$$

$$4 = 21$$

$$4 = 25 - Ae^{-0k}$$

$$4 = 21 = 25 - 21e^{45k}$$

$$4 = 21 = 25 - 21e^{45k}$$

$$21e^{-45R} = 10$$

$$e^{-45R} = \frac{10}{21}$$

$$-45R = \log_{e}\left(\frac{10}{21}\right)$$

$$K = -\frac{\log_{e}\left(\frac{10}{21}\right)}{45}$$
(iii) $T = 25 - 21e^{-90R}$

$$= 20.238^{\circ} (3 J. p.)$$

Question 13
(a) No.
$$y = \log e^{x}$$
 has domain all real x ,
 $x \neq 0$ while $y = 2\log e^{x}$ has domain
 $x > 0$.
(b) (i) It is slowing down since velocity is
negative while acceleration is positive.
(i) $\frac{d}{dx}(\frac{1}{2}v^{x}) = q$
 $\frac{d}{dx}(\frac{1}{2}v^{x}) = x + \frac{2}{2}$
 $\frac{d}{dx}v^{2} = 2 \operatorname{oc} + 3$
 $v^{2} + \int (2x + 3) dx$
 $v^{3} = x^{2} + 3x + C$
when $x = 5$, $v = -6$
(-6)^a = 5^a + 3x S + C
 $36 = 25 + 15 + C$
 $\therefore c = 36 - 40$
 $c = -4$
 $\therefore v^{2} = x^{2} + 3x - 4$

(111) when
$$v^2 = 0$$

 $a^2 + 3x - 4 = 0$
 $(x + u)(x - 1) = 0$
 $x = -4$ or $x = 1$
 \therefore the particle changes direction of
 $x = 1$ (not at $x = -4$ since it turns
back oround at $x = 1$ and continues
in the positive direction indefinitely)
.(c) (i) $A\cos(\theta + a) = A\cos\theta\cos d - A\sin\theta \sin d$
 $A\sin d = \sqrt{3}$... (2)
 $A\sin d = \sqrt{3}$... (2)
 $A\sin d = \sqrt{3}$... (2)
 $A^2 \sin^2 d + A^2 \cos^2 d = (\sqrt{3})^2 + 3^2$
 $A^2 (\sin^2 d + \cos^2 d) = 3 + 9$
 $A = \sqrt{12}$ (tuke $A = \sqrt{3}$)
 $A = 2\sqrt{3}$
sub into (2)

$$\sqrt{12} \text{ sind} = \sqrt{3}$$
$$\sin d = \frac{\sqrt{3}}{2\sqrt{3}}$$

sind =
$$\frac{1}{2}$$

$$d = \frac{\pi}{6}$$

$$3\cos\Theta - \sqrt{3}\sin\Theta = \sqrt{12}\cos(\Theta + \frac{\pi}{6})$$

$$3\cos\Theta - \sqrt{3}\sin\Theta + 3 = 0$$

$$3\cos\Theta - \sqrt{3}\sin\Theta + 3 = 0$$

$$\sqrt{12}\cos\Theta - \sqrt{3}\sin\Theta = -3$$

$$(\sqrt{12}\cos(\Theta + \frac{\pi}{6}) = -\frac{3}{\sqrt{12}}$$

$$\cos(\Theta + \frac{\pi}{6}) = -\frac{3\sqrt{12}}{12}$$

$$\cos(\Theta + \frac{\pi}{6}) = -\frac{3\sqrt{12}}{12}$$

$$\cos(\Theta + \frac{\pi}{6}) = -\frac{\sqrt{3}}{2}$$

$$\sin(\Theta + \frac{\pi}{6}) = -\frac{\sqrt{3}}{2}$$
since $0 \le \Theta \le 2\pi$, $\frac{\pi}{6} \le \Theta + \frac{\pi}{6} \le \frac{13\pi}{6}$

$$\Theta + \frac{\pi}{6} = \frac{5\pi}{6} \text{ or } \frac{7\pi}{6}$$

$$\Theta = \frac{4\pi\pi}{6} \text{ or } \frac{6\pi}{6}$$

$$\Theta = \frac{2\pi}{3} \text{ or } \pi$$

(d) (i)
$$A = 2 \times \frac{1}{2} \times 1 \times 1 \times \sin \theta$$

(area of 2 congruent isosceles triangles)
 $A = \sin \theta$
 $\frac{dA}{d\theta} = \cos \theta$
 $\frac{dA}{d\theta} = \frac{dA}{d\theta} \times \frac{d\theta}{d\theta}$
 $= \cos(\pi) \times \theta \cdot 1$
 $= \frac{\sqrt{3}}{20} - \frac{\sin^2/\sec - \theta}{1}$
(ii) let the shorter diagonal be b
 $1^2 = 1^2 + 1^2 - 2 \times 1 \times 1 \times \cos \theta$
 $1^2 = 2 - 2\cos \theta$
 $1 = \sqrt{2 - 2\cos \theta} - (170)$
 $\frac{d1}{d\theta} = 2 \sin \theta \times (2 - 2\cos \theta)^{-\frac{1}{2}} \times \frac{1}{2}$
 $= \frac{-\sin \theta}{\sqrt{2 - 2\cos \theta}}$

(a) Question 14
(b) Base case (n=1)

$$11^{2x1} + 11^{2} + 8 = 121 + 11 + 8$$

 $= 140$
 $= 14x + 10$
which is divisible by 10
Aasume true for n=R
i e assume $11^{2R} + 11^{R} + 8 = 10$ M
where M is an integer...
 $11^{2R} = 10$ M - 11^R - 8 ... 0
Prove true for n=R+1
i.e. prove $11^{2(R+1)} + 11^{R4} + 8$ is divisible by 10
 $11^{2(R+1)} + 11^{R+1} + 8 = 11^{2R+2} + 11^{R+1} + 8$
 $= 11^{2} \times 11^{2R} + 11^{R+1} + 8$
 $= 11^{2} \times 11^{2R} + 11^{R+1} + 8$
 $= 121x(10M - 11^{R} - 8) + 11 \times 11^{R} + 8$
 $= 1210$ M - $110 \times 11^{R} - 960$
 $= 10(121$ M - $11 \times 11^{R} - 96)$

Murbs:
which is divisible by 10
the proposition is true by the
process of mathematical induction
(b) (i)
$$\frac{d}{dx} (x \sin^{-1}(x) + \sqrt{1-x^{2}})$$

 $z : (\frac{d}{dx}(x)) \sin^{-1}(x) + x(\frac{d}{dx} \sin^{-1}(x)) + (\frac{1}{2})(2x)(1-x^{2})^{\frac{1}{2}}$
 $z : 1 \sin^{-1}(x) + \frac{x}{\sqrt{1-x^{2}}} + \frac{-2x}{2\sqrt{1-x^{2}}}$
 $z : \sin^{-1}(x) + \frac{x}{\sqrt{1-x^{2}}} - \frac{x}{\sqrt{1-x^{2}}}$
 $z : \sin^{-1}(x) + \frac{x}{\sqrt{1-x^{2}}} - \sqrt{1-x^{2}}$
(ii) $x \cos^{-1}(x) - \sqrt{1-x^{2}}$

(iii)

$$A = \int_{\frac{1}{2}}^{1} (\cos^{-1}x) dx + \int_{0}^{\frac{1}{2}} \sin^{-1}x dx$$

$$= \left[-x \cos^{-1}x - \sqrt{1-x^{2}} \right]_{\frac{1}{2}}^{1} + \left[-x \sin^{-1}x + \sqrt{1-x^{2}} \right]_{0}^{\frac{1}{2}}$$

$$= (1x0 - \sqrt{1-1}) - \left(\frac{1}{\sqrt{2}} \times \frac{\pi}{4} - \sqrt{1-2} \right) + \left(\frac{1}{\sqrt{2}} \times \frac{\pi}{4} + \sqrt{1-1/2} \right)$$

$$= -\frac{\pi}{\sqrt{4}\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{\pi}{\sqrt{2}} + \frac{1}{\sqrt{2}} - 1$$

$$= -(\sqrt{2} - 1) \quad \text{anily}^{2}$$

(c) (i)
(i)
$$M = (\frac{(x^2 + i) + ((z)^2 + i)}{2}, \frac{2(2p+i) + 2(2(p) + i)}{2})$$

 $= (\frac{2p^2 + 2}{2}, \frac{4p + 2}{2}, -\frac{4p + 2}{2})$
 $= ((p^2 + i), 2)$
 $y = 2, x 7/1$
this is the axis of the parabola
(ii) equation of line is $y = mx + 5$
substituting in $(t^2 + t, 2(2t + 1))$
 $2(2t + i) = m(t^2 + t) + 5$
 $4t + 2, = mt^2 + m + 5$
 $mt^2 - 4t + m + 3 = 0$

 $\Delta 7$ \bigcirc $(-4)^2 - (4)(m)(m+3) > 0$ 4 m² - 12 m 7 0 16 m^2 + 3 m - 4 K 0 (m+4)(m-1) < 0m < 1but m = 0