2015 HSC ASSESSMENT TASK 3

Mathematics
 Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write on one side of the paper (with lines) in the booklet provided
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Each new question is to be started on a new page.
- Attempt all questions

Class Teacher:
(Please tick or highlight)
○
Mr Berry
O Mr Ireland
O Mr Lin
O Mr Weiss
O Ms Ziaziaris
O Mr Zuber

Student Number:

(To be used by the exam markers only.)

Question No	$\mathbf{1 - 1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	Total	Total
Mark	$\overline{10}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{70}$	$\overline{100}$

Section I

10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1 -10

1. What is the value of

$$
\lim _{x \rightarrow 0} \frac{\sin 4 x}{5 x} ?
$$

(A) 0
(B) $\frac{4}{5}$
(C) 1
(D) $\frac{5}{4}$
2. $y=f(x)$ is a linear function with gradient $\frac{1}{4}$, find the gradient of $y=f^{-1}(x)$.
(A) 4
(B) $\frac{1}{4}$
(C) -4
(D) $-\frac{1}{4}$
3.

Which of the following best describes the above function?
(A) $y=\sin ^{-1}(x+1)$
(B) $y=\sin ^{-1}(x)+1$
(C) $y=\cos ^{-1}(x+1)$
(D) $y=\cos ^{-1}(x)+1$
4. What are the coordinates of the point that divides the interval joining the points $A(-6,4)$ and $B(-2,-10)$ externally in the ratio $1: 3$?
(A) $(-8,8)$
(B) $(-8,11)$
(C) $(2,8)$
(D) $(2,11)$
5. Which of the following is the solution to $\frac{2}{x-2}<2$?
(A) $x<2$ or $x>3$
(B) $2<x<3$
(C) $-2<x<3$
(D) $-3<x<2$
6.
(A) 2
(B) -2
(C) 4
(D) -4
7.

Given that $\mathrm{TA}=4, \mathrm{CB}=6$ and $\mathrm{TC}=x$, what is the value of x ?
(A) 2
(B) 4
(C) 6
(D) 8
8.
(A) 2
(B) 4
(C) 8
(D) 16
9. Find the gradient of the normal to the parabola $x=6 t, y=3 t^{2}$ at the point where $t=-2$.
(A) -2
(B) $-\frac{1}{2}$
(C) $\frac{1}{2}$
(D) 2
10. An approximate solution to the equation $f(x)=x+2 \log _{g} x$ is $x=0.5$. Using one application of Newton's method, a more accurate approximation is given by:
(A) $0.5-\frac{0.5+\log _{e} 0.25}{5}$
(B) $0.5+\frac{0.5+\log _{e} 0.25}{5}$
(C) $0.5-\frac{5}{0.5+\log _{e} 0.25}$
(D) $0.5+\frac{5}{0.5+\log _{e} 0.25}$

Section II

60 Marks

Attempt Questions 11-14
Allow about 1 hour and 45 minutes for this section
Answer each question on a NEW page. Extra writing booklets are available.
In Questions $11-14$, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks) Start a NEW page.
(a) When the polynomial $P(x)=2 x^{3}-3 x^{2}+a x-2$ is divided by $(x+1)$ the remainder is 7 . What is the value of a ?
(b) (i)

$$
\int \frac{1}{(x+4)^{2}} d x
$$

(ii)

$$
\int \frac{1}{x^{2}+4} d x
$$

(iii)

$$
\int \frac{x}{x^{2}+4} d x
$$

(iv)

$$
\int \frac{x}{\left(x^{2}+4\right)^{2}} d x
$$

(c) Find the acute angle between the lines $y=2 x+1$ and $2 x+5 y-2=0$
(d)

> Evaluate

$$
\int_{0}^{\frac{\pi}{6}} \sin ^{2} 2 x d x
$$

(e) Find the general solution to $2 \cos ^{2} x=1$

Question 12 (15 Marks) Start a NEW page.
(a) (i) Without using calculus, sketch the graph of $P(x)=x(x+2)(1-x)^{2}$
(ii) \quad Hence solve $x(x+2)(1-x)^{2}<0$
(b) Using the substitution $u=\frac{1}{x}$ find the exact value of:

$$
\int_{1}^{2} \frac{e^{\frac{1}{x}}}{x^{2}} d x
$$

(c) (i) A chef takes an onion tart out of the fridge at $4^{\circ} \mathrm{C}$ into a room where the air temperature is $25^{\circ} \mathrm{C}$. The rate at which the onion tart warms follows Newton's law, that is:

$$
\frac{d T}{d t}=-k(T-25)
$$

where k is a positive value, time t is measured in minutes and temperature T is measured in degrees Celsius.

Show that $T=25-A e^{-k t}$ is a solution to $\frac{d T}{d t}=-k(T-25)$ and find the value of A.
(ii) The temperature of the onion tart reaches $15^{\circ} \mathrm{C}$ in 45 minutes. Find the exact value of k.
(iii) Find the temperature of the onion tart 90 minutes after being removed from the fridge.
(d) (i)

$A B C$ is a triangle inscribed in a circle. MAN is the tangent at A to the circle $A B C$. $C D$ and $B E$ are altitudes of the triangle.

Copy the diagram into your answer booklet.
(ii) Give a reason why $B C E D$ is a cyclic quadrilateral
(iii) Hence show that $D E$ is parallel to MAN.
(a) Is the graph of $y=\log _{\varepsilon} x^{2}$ identical to $y=2 \log _{\varepsilon} x$? Give a reason for your answer.
(b) (i) A particle is moving in a straight line. At time t seconds it has displacement x metres from a fixed point O on the line, velocity vms^{-1} and acceleration ams^{-2} given by $a=x+\frac{3}{2}$. Initially the particle is 5 m to the right of O and moving towards O with a speed of $6 \mathrm{~ms}^{-1}$.

Explain whether the particle is initially speeding up or slowing down.
(ii) Find an expression for v^{2} in terms of x.
(iii) Find where the particle changes direction.
(c) (i) Express $3 \cos \theta-\sqrt{3} \sin \theta$ in the form $A \cos (\theta+\alpha)$
(ii) Hence, or otherwise, solve $3 \cos \theta-\sqrt{3} \sin \theta+3=0$ for $0 \leq \theta \leq 2 \pi$
(d) (i)

A square $A B C D$ of side 1 unit is gradually 'pushed over' to become a rhombus. The angle at A (θ) decreases at a constant rate of 0.1 radian per second.

At what rate is the area of rhombus ABCD decreasing when $\theta=\frac{\pi}{6}$?
(ii) At what rate is the shorter diagonal of the rhombus $A B C D$ decreasing when $\theta=\frac{\pi}{a}$

Question 14 (15 Marks) Start a NEW page.
(a) Prove that $11^{2 n}+11^{n}+8$ is a multiple of 10 for all positive integers n

Find the area enclosed by the x-axis and the arcs $O P$ and $P Q$.
(c) (i) A parabola has parametric equations
$x=t^{2}+1$
$y=2(2 t+1)$
Sketch the parabola showing its orientation and vertex.
(ii) Point P is the point on the parabola where $t=p$

Point P^{t} is the point on the parabola where $t=-p$
Find the equation of the locus of the midpoint of $P P^{r}$ and state its geometrical significance
(iii) A line with gradient m passes through (0,5) and cuts the parabola at distinct points Q and R.

Find the range of possible values for m.

Multiple Choice Answers

7.) A

81 C
9./ c
10.) A

Question 11
(a)

$$
\begin{aligned}
P(x) & =2 x^{3}-3 x^{2}+a x-2 \\
P(-1) & =2(-1)^{3}-3(-1)^{2}+a(-1)-2 \\
& =-a-7 \\
7 & =-a-7 \\
\therefore a & =-14
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
& \int \frac{1}{(x+4)^{2}} d x \\
= & \int(x+4)^{-2} d x \\
= & (x+4)^{-1}+6 \\
= & \frac{-1}{x+4}+c
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \int \frac{1}{x^{2}+4} d x \\
= & \frac{1}{2} \tan ^{-1}\left(\frac{x}{2}\right)+c
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \int \frac{x}{x^{2}+4} d x \\
= & \frac{1}{2} \int \frac{2 x}{x^{2}+4} \\
= & \frac{1}{2} \log _{e}\left(x^{2}+4\right)+C
\end{aligned}
$$

(iv)

$$
\begin{aligned}
& \int \frac{x}{\left(x^{2}+4\right)^{2}} d x \\
= & \int x\left(x^{2}+4\right)^{-2} d x \\
= & \left(-\frac{1}{2}\right)\left(x^{2}+4\right)^{-1}+c \\
= & -\frac{1}{2\left(x^{2}+4\right)}+c
\end{aligned}
$$

(c)

$$
\begin{aligned}
& y=2 x+1 \\
& \therefore m_{1}=2 \\
& 2 x+5 y-2=0 \\
& 5 y=-2 x+2 \\
& y=-\frac{2}{5} x+\frac{2}{5} \\
& \therefore m_{2}=-\frac{2}{5} \\
& \tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
&=\left|\frac{2-1-2 / 5)}{1+(2)(-2 / 5)}\right| \\
&=\left|\frac{2^{2} / 5}{1 / 5}\right| \\
&=|12| \\
& \theta=85^{\circ} 14^{1} 11^{11}(\text { nearest second })
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{6}} \sin ^{2}(2 x) d x \\
& =\int_{0}^{\frac{\pi}{6}}\left(\frac{1}{2}-\frac{1}{2} \cos 4 x\right) d x \\
& =\left[\frac{x}{2}-\frac{1}{8} \sin 4 x\right]_{0}^{\frac{\pi}{6}} \\
& =\left(\pi / 12-\frac{1}{8} \sin \left(\frac{4 \pi}{6}\right)\right)-\left(\frac{0}{2}-\frac{1}{8} \sin (4 \times 0)\right) \\
& =\frac{\pi}{12}-\frac{1}{8} \times \frac{\sqrt{3}}{2} \\
& =\frac{\pi}{12}-\frac{\sqrt{3}}{16}
\end{aligned}
$$

(e)

$$
\begin{aligned}
& 2 \cos ^{2} x=1 \\
& \cos ^{2} x=\frac{1}{2} \\
& \cos x= \pm \frac{1}{\sqrt{2}}
\end{aligned}
$$

$\therefore x=n \pi \pm \frac{\pi}{4}$ (where n is an integen)
(a)

Question 12

(b)

$$
\begin{aligned}
& u=\frac{1}{x} \\
& \therefore \frac{d u}{d x}=-\frac{1}{x^{2}} \\
& d u=-\frac{1}{x^{2}} d x
\end{aligned}
$$

when $x=2$

$$
u=\frac{1}{2}
$$

when $x=1$

$$
4=1
$$

$$
\begin{aligned}
\int_{1}^{2} \frac{e^{\frac{1}{x}}}{x^{2}} d x & =\int_{1}^{\frac{1}{2}}\left(-e^{u}\right) d u \\
& =\int_{\frac{1}{2}}^{1} e^{u}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[e^{u}\right]_{\frac{1}{2}}^{1} \\
& =e-e^{1 / 2} \\
& =e-\sqrt{e}
\end{aligned}
$$

(c) (1)

$$
\begin{aligned}
T & =25-A e^{-k t} \\
\frac{d T}{d t}^{\prime} & =k A e^{-k t} \\
& =-k\left(-A e^{-k t}\right) \\
& =-k\left(25-A e^{-k t}-25\right) \\
& =-k(T-25), \text { as required }
\end{aligned}
$$

when $t=0 \quad T=4$

$$
\begin{aligned}
& 4=25-A e^{-0 k} \\
& 4=25-A \\
& A=21
\end{aligned}
$$

(ii) when $t=45 \quad T=15$

$$
\begin{aligned}
& 15=25-21 e^{-45 k} \\
& -10=-21 e^{-45 k}
\end{aligned}
$$

$$
\begin{aligned}
21 e^{-45 k} & =10 \\
e^{-45 k} & =10 / 21 \\
-45 k & =\log (10 / 21) \\
k & =-\frac{\log _{e}(10 / 21)}{45}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
T & =25-21 e^{-90 k} \\
& =20.238^{\circ}(3 \mathrm{~d} p)
\end{aligned}
$$

(d) (i)

(ii) $B C$ subtends equal angles of D and E
(ii) $\angle A B C=\angle A E D$ (exterior angle of a cyclic quadrilateral is equal to the opposite interior angie)
$\angle A B C=\angle N A C$ (angle between a chord and tangent is equal to the angle subtended by the chord at the circumference in the alternate segment)
$\therefore \angle A E D=\angle N A C$ (both equal $\angle A B C$)
$\therefore M A N / / D E$ (alternate angles are equal)
(a) No. $y=\operatorname{loge} x^{2}$ has domain all real x_{1} $x \neq 0$ while $y=2 \log _{e} x$ has domain $x>0$.
(b) (i) It is slowing down since velocity is negative while acceleration is positive.
(ii)

$$
\begin{aligned}
\frac{d}{d x} \cdot\left(\frac{1}{2} v^{2}\right) & =a \\
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =x+\frac{3}{2} \\
\frac{d}{d x} v^{2} & =2 x+3 \\
v^{2} & =\int(2 x+3) d x \\
v^{2} & =x^{2}+3 x+c
\end{aligned}
$$

when $x=5, v=-6$

$$
\begin{aligned}
(-6)^{2} & =5^{2}+3 \times 5+c \\
36 & =25+15+c \\
\therefore c & =36-40 \\
c & =-4 \\
\therefore v^{2} & =x^{2}+3 x-4
\end{aligned}
$$

(iii) when $v^{2}=0$

$$
\begin{gathered}
\therefore x^{2}+3 x-4=0 \\
(x+4)(x-1)=0 \\
\therefore x=-4 \text { ur } x=1
\end{gathered}
$$

\therefore the particle changes direction at $\dot{x}=1$ (not at $x=-4$ since it turns back around at $x=1$ and continues in the positive direction indefinitely)
(a) (i) $A \cos (\theta+\alpha)=A \cos \theta \cos \alpha-A \sin \theta \sin \alpha$
$A \cos \alpha=3$
$A \sin \alpha=\sqrt{3} \ldots(2)$

$$
\begin{aligned}
& \therefore A^{2} \sin ^{2} \alpha+A^{2} \cos ^{2} \alpha=(\sqrt{3})^{2}+3^{2} \\
& A^{2}\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)=3+9 \\
& \therefore A^{2}=12 \\
& A=\sqrt{12} \quad(\text { tube } A>0) \\
& A=2 \sqrt{3}
\end{aligned}
$$

sub into (2)

$$
\begin{aligned}
\sqrt{12} \sin \alpha & =\sqrt{3} \\
\sin \alpha & =\frac{\sqrt{3}}{2 \sqrt{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \sin \alpha=\frac{1}{2} \\
& \therefore \alpha=\frac{\pi}{6} \\
& \therefore 3 \cos \theta-\sqrt{3} \sin \theta=\sqrt{12} \cos \left(\theta+\frac{\pi}{6}\right) \\
& \therefore \quad 3 \cos \theta-\sqrt{3} \sin \theta+3=0 \\
& \therefore 3 \cos \theta-\sqrt{3} \sin \theta=-3 \\
& \therefore \sqrt{12} \cos (\theta+\pi / 6)=-3 \\
& \cos (\theta+\pi / 6)=-3 / \sqrt{12} \\
& \cos \left(\theta+\frac{\pi}{6}\right)=-3 \times \sqrt{12} \\
& \cos (\theta+\pi / 6)=-6 \sqrt{3} / 12 \\
& \therefore \cos (\theta+\pi / 6)=-\sqrt{3} / 2
\end{aligned}
$$

(ii)
since $0 \leqslant \theta \leqslant 2 \pi ; \pi / 6 \leqslant \theta+\pi / 6 \leqslant \frac{13 \pi}{6}$

$$
\begin{aligned}
\therefore \theta+\pi / 6 & =5 \pi / 6 \text { or } 7 \pi / 6 \\
\therefore \theta & =4 \pi / 6 \text { or } 6 \pi / 6 \\
\therefore \theta & =2 \pi / 3 \text { or } \pi
\end{aligned}
$$

Marks
(d) (i)

$$
A=2 \times \frac{1}{2} \times 1 \times 1 \times \sin \theta
$$

(area of 2 congruent isosceles triangles)

$$
\begin{aligned}
\therefore A & =\sin \theta \\
\therefore \frac{d A}{d \theta} & =\cos \theta \\
\frac{d A}{d t} & =\frac{d A}{d \theta} \times \frac{d \theta}{d t} \\
& =\cos (\pi / 6) \times 0.1 \\
& =\sqrt{3} / 20 \text { units }^{2} / \operatorname{secon} d
\end{aligned}
$$

(ii) let the shorter diayorial be l.

$$
\begin{aligned}
1^{2} & =1^{2}+1^{2}-2 \times 1 \times 1 \times \cos \theta \\
1^{2} & =2-2 \cos \theta \\
\therefore 1 & =\sqrt{2-2 \cos \theta}(1>0) \\
\frac{d l}{d \theta} & =\not 2 \sin \theta \times(2-2 \cos \theta)^{-\frac{1}{2}} \times \frac{1}{22} \\
& =\frac{\sin \theta}{\sqrt{2-2 \cos \theta}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d t}{d t} & =\frac{d t}{d \theta} \times \frac{d \theta}{d t} \\
& =\frac{\sin (\pi / 3)}{\sqrt{2-2 \cos \pi / 3}} \times 0.1 \\
& =\frac{\sqrt{3} / 2}{\sqrt{2-2 \times\left(\frac{1}{2}\right)}} \times 0.1 \\
& =\frac{\sqrt{3} / 2}{1} \times 0.1 \\
& =\frac{\sqrt{3}}{20} \text { units/second. }
\end{aligned}
$$

alternative solution for (d) (i)

since the diggenals of a rhumbus meet at right ongles...

$$
\begin{array}{rlrl}
\sin \left(\frac{\theta}{2}\right)=\left(\frac{t}{2}\right) / 1 \\
\therefore l & =2 \sin \frac{\theta}{2} \\
\frac{d l}{d \theta} & =2 \times \frac{1}{2} \times \cos \frac{\theta}{2} & =\frac{d l}{d \theta} \times \frac{d \theta}{d t} \\
& =\cos \left(\frac{\pi / 3}{2}\right) \times 0.1 \\
& =\sqrt{3} / 2 \times 0.1 \\
& =\frac{\sqrt{3}}{20} \text { units/secund }
\end{array}
$$

Question 14
(a) Base Case ($n=1$)

$$
\begin{aligned}
11^{2 \times 1}+11^{1}+8 & =121+11+8 \\
& =140 \\
& =14 \times 10
\end{aligned}
$$

which is divisible by 10

Assume true for $n=k$

$$
\text { i.e assume } 11^{2 n}+11^{2}+8=10 \mathrm{M}
$$

where M is an integer

$$
\therefore \quad 11^{2 R}=10 M-11^{r}-8 \ldots
$$

Prove true for $n=k+1$
ie prove $11^{2(k+1)}+11^{2+1}+8$ is divisible by 10

$$
\begin{aligned}
& 11^{2(k+1)}+11^{p+1}+8=11^{2 n+2}+11^{2+1}+8 \\
& =11^{2} \times 1^{2 k}+1^{k+1}+8 \\
& =121 \times\left(10 M-11^{2}-8\right)+11 \times 11^{2}+8 \\
& \text { (from (1)) } \\
& =1210 M-121 \times 11^{k}-968+11 \times 11^{2}+8 \\
& =1210 \mathrm{M}-110 \times 11^{2}-960 \\
& =10\left(121 M-11 \times 11^{2}-96\right)
\end{aligned}
$$

which is divisible by 10
the proposition is true by the process of mathematical induction
(b) (1)

$$
\begin{aligned}
& \frac{d}{d x}\left(x \sin ^{-1}(x)+\sqrt{1-x^{2}}\right) \\
= & \left.\left(\frac{d}{d x}(x)\right) \sin ^{-1}(x)+x\left(\frac{d}{d x} \sin ^{-1}(x)\right)+\left(\frac{1}{2}\right)(-2 x)\left(1-x^{2}\right)^{-\frac{1}{2}}\right) \\
= & 1 \sin ^{-1}(x)+\frac{x}{\sqrt{1-x^{2}}}+\frac{-2 x}{2 \sqrt{1-x^{2}}} \\
= & \sin ^{-1}(x)+\frac{x}{\sqrt{1-x^{3}}}-\frac{x}{\sqrt{1-x^{2}}} \\
= & \sin ^{-1}(x), \text { as required }
\end{aligned}
$$

(ii) $x \cos ^{-1}(x)-\sqrt{1-x^{2}}$
(ii)

$$
\begin{aligned}
A= & \int_{\frac{1}{\sqrt{2}}}^{1}\left(\cos ^{-1} x\right) d x+\int_{0}^{\frac{1}{2}} \sin ^{-1} x d x \\
= & {\left[x \cos ^{-1} x-\sqrt{1-x^{2}}\right]_{\frac{1}{\sqrt{2}}}^{1}+\left[x \sin ^{-1} x+\sqrt{1-x^{2}}\right]_{0}^{\frac{1}{\sqrt{2}}} } \\
= & (1 \times 0-\sqrt{1-1})-\left(\frac{1}{\sqrt{2}} \times \frac{\pi}{4}-\sqrt{1-\frac{1}{2}}\right)+\left(\frac{1}{\sqrt{2}} \times \frac{\pi}{4}+\sqrt{1-1 / 2}\right) \\
& -\left(0 \sin ^{-1}(u)+\sqrt{1-u^{2}}\right) \\
= & -\frac{\pi}{4 \sqrt{2}}+\frac{1}{\sqrt{2}}+\frac{\pi}{4 / \sqrt{2}}+\frac{1}{\sqrt{2}}-1 \\
= & (\sqrt{2}-1) \text { unito }
\end{aligned}
$$

(c) 16

(i)

$$
\begin{aligned}
M & =\left(\frac{\left(p^{2}+1\right)+\left((-p)^{2}+1\right)}{2}, \frac{2(2 p+1)+2(2(p)+1)}{2}\right. \\
& =\left(\frac{2 p^{2}+2}{2}+\frac{4 p+2-4 p+2}{2}\right) \\
& \left.=\left(p^{2}+1\right), 2\right) \\
y & =2, x \geqslant 1
\end{aligned}
$$

this is the axis of the parabola
(ii) equation of line is $y=m x+5$
substituting in $\left(t^{2}+1,2(2 t+1)\right)$

$$
\begin{aligned}
& 2(2 t+1)=m\left(t^{2}+1\right)+5 \\
& 4 t+2=m t^{2}+m+5 \\
& \therefore m t^{2}-4 t+m+3=0
\end{aligned}
$$

$$
\begin{aligned}
& \Delta>0 \\
& 16-4 m^{2}-12 m>0 \\
& \left.m^{2}+3 m-4\right)^{2}-(4)(m)(m+3)>0 \\
& (m+4)(m-1)<0 \\
& \therefore-4<m<1
\end{aligned}
$$

$$
\text { but } m \neq 0
$$

