North Sydney Boys HIGH SCHOOL

2017 HSC ASSESSMENT TASK 3 (TRIAL HSC)

Mathematics
 Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Each new question is to be started on a new page.
- Attempt all questions

Class Teacher:

(Please tick or highlight)
OMr Berry
O Mr Hwang
O Mr Ireland
O Dr Jomaa
OMs Lee
O Mr Lin
O Ms Ziaziaris

Student Number:

(To be used by the exam markers only.)

Question No	$1-10$	11	12	13	14	Total	Total
Mark	$\overline{10}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{70}$	$\overline{100}$

Section I

10 Marks

Attempt Questions 1 - 10

Use the multiple choice answer sheet for Questions 1 - 10
$1 \int \frac{d x}{\sqrt{64-9 x^{2}}}$ is equal to
(A) $\frac{1}{9} \sin ^{-1}\left(\frac{9 x}{64}\right)$
(B) $\frac{1}{3} \sin ^{-1}\left(\frac{3 x}{8}\right)$
(C) $\frac{1}{9} \sin ^{-1}\left(\frac{3 x}{8}\right)$
(D) $\frac{1}{3} \sin ^{-1}\left(\frac{9 x}{64}\right)$

2 The domain and range of the function $f(x)=3 \sin ^{-1}(4 x-1)$ are respectively
(A) $0 \leq x \leq \frac{1}{2} \quad$ and $\quad-\frac{3 \pi}{2} \leq y \leq \frac{3 \pi}{2}$
(B) $-\frac{1}{2} \leq x \leq 0$ and $-\frac{\pi}{2} \leq y \leq \frac{5 \pi}{2}$
(C) $0 \leq x \leq \frac{1}{2}$ and $-\frac{\pi}{2} \leq y \leq \frac{5 \pi}{2}$
(D) $-\frac{1}{2} \leq x \leq 0$ and $\frac{-3 \pi}{2} \leq y \leq \frac{3 \pi}{2}$

3 If $y=f(x)$ is a linear function with slope $\frac{1}{2}$, then the slope of $y=f^{-1}(x)$ is
(A) 2
(B) $\frac{1}{2}$
(C) -2
(D) $-\frac{1}{2}$

4 The derivative of $y=\cos ^{-1} 3 x+x \cos ^{-1} 3 x$ is
(A) $\cos ^{-1} 3 x-\frac{x+1}{\sqrt{9-x^{2}}}$
(B) $\cos ^{-1} 3 x-\frac{3(x+1)}{\sqrt{1-9 x^{2}}}$
(C) $\cos ^{-1} 3 x+\frac{x-1}{\sqrt{9-x^{2}}}$
(D) $\cos ^{-1} 3 x+\frac{3(x-1)}{\sqrt{1-9 x^{2}}}$

5 Given that α, β, γ are roots of $3 x^{3}-2 x^{2}+x-1=0$, then $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$ is equal to
(A) 2
(B) -1
(C) 1
(D) -2

6 The points A, B and C lie on a circle with centre $O . O A$ is parallel to $C B$. $A C$ intersects $O B$ at D, and $\angle O D C=\alpha$. What is the size of $\angle O A D$ in terms of α ?

(A) $\frac{\alpha}{2}$
(B) $\frac{\alpha}{3}$
(C) $\frac{2 \alpha}{3}$
(D) 3α

7 Find the acute angle (to the nearest degree) between the lines $2 x-3 y+6=0$ and $x+2 y-12=0$
(A) 7°
(B) 60°
(C) 14°
(D) 30°

8 The point P divides the interval $A B$ joining $A(-4,-3)$ and $B(1,5)$ externally in the ratio 3:2. The coordinates of P are
(A) $(-14,-19)$
(B) $(-11,-21)$
(C) $(11,21)$
(D) $(14,19)$

9 The equation of the normal to the parabola $x=6 t, y=3 t^{2}$ at the point where $t=-2$ is
(A) $x-3 y+24=0$
(B) $x-2 y+36=0$
(C) $2 x+y+12=0$
(D) $2 x-y-12=0$

10 The solution to the inequality $\frac{|3 x+1|}{x} \leq 1$ is
(A) $-\frac{1}{2} \leq x<-\frac{1}{4}$
(B) $x<0$
(C) $x \leq-\frac{1}{2}$
(D) No solution

Section II

60 Marks
Attempt Questions 11-14
Answer each question on a NEW page. Extra writing booklets are available.
In Questions 11-14, your responses should include all relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a NEW page
(a) Evaluate $\lim _{x \rightarrow 0} \frac{\sin 2 x \cos 2 x}{3 x}$.
(b) Find the exact value of $\cos ^{-1} \cos \left(\frac{5 \pi}{4}\right)$.
(c) Find $\int \cos ^{2} 9 x d x$.
(d) Solve $\sin x+\cos x=1$ for $0 \leq x \leq 2 \pi$
(e) When the polynomial $P(x)$ is divided by $1-x^{2}$ it gives $4-x$ as the remainder.

What is the remainder when $P(x)$ is divided by $1+x$?
(f) If the three roots of $x^{3}-6 x^{2}+3 x+k=0$ form an arithmetic progression, find the value of k.
(g) Prove using mathematical induction that $n^{3}+(n+1)^{3}+(n+2)^{3}$ is divisible by 9 for $n=1,2,3, \ldots$.

Question 12 (15 marks) Start a NEW page
(a) Use the substitution $x=u^{2}-1$ for $u>0$ to evaluate $\int_{3}^{8} \frac{x-1}{\sqrt{x+1}} d x$.
(b) A bar of gold is initially at a temperature of -8 degrees Celsius.

It is taken into a nearby room where the air temperature is 22 degrees Celsius.
The rate at which the bar warms follows Newton's Law, that is, $\frac{d T}{d t}=-k(T-22)$, where k is a constant, time t is measured in minutes and temperature T is in degrees Celsius.
(i) Show that $T=22-A e^{-k t}$ is a solution of the equation above, and evaluate A.
(ii) Given that the bar's temperature reaches 4 degrees Celsius in 90 minutes, find the exact value of k.
(iii) Find the temperature of the bar after another 90 minutes.
(c) An arc $A B$ of a circle subtends an angle of θ radians at the centre of a circle of radius r. The arc's length is L, and the associated chord's length is d. (See diagram).

(i) If $L: d=4: 3$, show that $3 \theta=8 \sin \frac{\theta}{2}$.
(ii) Using $\theta=2.5$ as a first approximation, use Newton's method once to find a second approximation (to 3 decimal places) for θ.

Question 13 (15 marks) Start a NEW page
(a) In the circle, $\angle A B D+\angle B C A=90^{\circ}$, and $X Y$ is tangent to the circle at D.

The chords $A C$ and $B D$ intersect at I. (Copy or trace the diagram in your writing booklet.)

(i) Prove $\angle B C D=90^{\circ}$ and hence that BD is a diameter of the circle.
(ii) Prove that if $\triangle A B C$ is isosceles with $A B=B C$, then $A C|\mid X Y$.
(b) The velocity of a particle moving in a straight line is given by $\frac{d x}{d t}=1+x^{2}$, where x is the displacement in metres from the origin, and t is the time in seconds. Initially the particle is at $x=1$.
(i) Find an expression for the acceleration of the particle in terms of x.
(ii) Find an expression for the displacement of the particle in terms of t.
(c) Assume that a spherical snowball melts so that its volume V decreases at a rate proportional to its surface area S (and also that it stays spherical as it melts).
(i) If r is its radius in centimetres at time t hours, show that the rate of change of r is constant.
(ii) Given that it takes 3 hours for the snowball to decrease to half its original volume, show that $r=k t+R$, where R is the initial radius and

$$
k=\frac{R}{3}\left(\frac{1}{\sqrt[3]{2}}-1\right)
$$

(iii) How much longer will it take for the snowball to melt completely?
(d) Find the value of the following limit: $\lim _{x \rightarrow-5} \frac{\sqrt{20-x}-5}{5+x}$

Question 14 (15 marks) Start a NEW page
(a) $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$.
(i) Find the coordinates of the point of intersection T of the tangents to the parabola at P and Q.
(ii) Given that the tangents at P and Q intersect at 45° show that

$$
p-q=1+p q \text { where } p>q .
$$

(iii) Find the equation of the locus of T when the tangents at P and Q intersect as given in (ii).
(b) A plane flying horizontally at a speed of $180 \mathrm{~km} / \mathrm{h}$ is observed from point E on the ground (see diagram). Initially it is observed to be at A, on a bearing $337^{\circ} \mathrm{T}$ and at an elevation of 34°. After 2 minutes it is observed to be at B, bearing $018^{\circ} \mathrm{T}$ at an elevation of 27°.
(i) Show that $\angle D E C=41^{\circ}$
(ii) Find the height h (in metres) of the plane.

(c) Given the function $f(x)=e^{x}+e^{2 x}$,
(i) Write down the domain and range of $f(x)$.
(ii) Hence write down the domain and range of its inverse function $f^{-1}(x)$.
(iii) Find the equation of $f^{-1}(x)$.

Multiple Choice
(1) B
(6) B
(2) A
(7) B
(3) A
(8) C
(4) B
(9) B
(5) C
(10) B
(a) $\lim _{x \rightarrow 0} \frac{\sin 2 x \cos 2 x}{3 x}=\frac{2}{3}$
(b) $\cos ^{-1} \cos \left(\frac{5 \pi}{4}\right)=\frac{3 \pi}{4}$
(c)

$$
\begin{aligned}
\int \cos ^{2} 9 x d x & =\int \frac{1}{2}(1+\cos 18 x) d x \\
& =\frac{x}{2}+\frac{\sin 18 x}{36}+c
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \sin x+\cos x=\sqrt{2} \sin \left(x+\frac{\pi}{4}\right) \\
& \therefore \quad \sqrt{2} \sin \left(x+\frac{\pi}{4}\right)=1,0 \leqslant x \leqslant 2 \pi \\
& \therefore \quad \sin \left(x+\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}, \quad \frac{\pi}{4} \leqslant x+\frac{\pi}{4} \leqslant 2 \pi+\frac{\pi}{4} \\
& \therefore \quad x+\frac{\pi}{4}=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{\pi}{4}+2 \pi \\
& \therefore \quad x=0, \frac{\pi}{2}, 2 \pi .
\end{aligned}
$$

[alt: can use t-method:

$$
\left.\begin{array}{rl}
\frac{2 t}{1+t^{2}}+\frac{1-t^{2}}{1+t^{2}}=1 & \rightarrow t=0 \text { or } 1 \\
& \rightarrow \tan \frac{x}{2}=0 \text { ar } 1 \quad \therefore \frac{x}{2}=0, \pi, \frac{\pi}{4} \\
& \therefore x=0,2 \pi, \frac{\pi}{2} \quad 巴 \text { most test } \\
x=\pi
\end{array}\right]
$$

2017412 Ext. 1 Test 3 (Trial) S Solutions
Q11 etd.
(e) $\quad P(x)=(1-x)(1+x) \cdot Q(x)+4-x$
remainder when divided by $1+x$, ie by $x+1$, is $P(-1)$

$$
\therefore \text { rem. }=P(-1)=4-(-1)=5
$$

(f) $\quad p(x)=x^{3}-6 x^{2}+3 x+k=0$

Let roots be $a-d, a, a+d$

$$
\therefore \text { sum roots }=3 a=6 \quad \therefore a=2
$$

\therefore Since 2 is aroot, $P(2)=0$

$$
\begin{array}{rl}
\therefore \quad 2^{3}-6 \cdot 2^{2}+3 & 2+k=0 \\
& -10+k=0 \quad \therefore \quad k=10
\end{array}
$$

(9) when $n=1$,

$$
\begin{aligned}
n^{3}+(n+1)^{3}+(n+2)^{3} & =1^{3}+2^{3}+3^{3} \\
& =36 \\
& =9 \times 4 \\
& \therefore \text { true for } n=1
\end{aligned}
$$

Assume true for $n=k$,
ie. assume $k^{3}+(k+1)^{3}+(k+2)^{3}=9 M, \quad M$ an integer.
Then $(k+1)^{3}+(k+2)^{3}+(k+3)^{3}=\left(9 m-k^{3}\right)+(k+3)^{3}$, by assumption 2

$$
\begin{aligned}
& =9 m-k^{3}+k^{3}+3 \cdot k^{2} \cdot 3+3 \cdot k \cdot 3^{2} \\
& =9 m+9 k^{2}+27 k+27 \\
& =9\left[m+k^{2}+3 k+3\right] \\
& =9 N, \quad \text { an integer, } \\
& \text { as } m \text { are integers. }
\end{aligned}
$$

\therefore true for $n=k+1$ if true for $n=k$
Since true for $n=1, \therefore$ tree for $n=1,2,3, \ldots$. by induction.

Q 12
(a)

$$
I=\int_{3}^{8} \frac{x-1}{\sqrt{x+1}} d x
$$

Let $x=u^{2}-1, u>0$.

$$
\left\{\begin{array}{l}
x=3 \rightarrow u=2 \\
x=8 \rightarrow u=3
\end{array}\right.
$$

(b) (i)

$$
T=22-A e^{-k t} \therefore \begin{aligned}
\frac{d T}{d t} & =k A e^{-k t} \\
& =k(22-T) \\
& =-k(T-22)
\end{aligned}
$$

when $t=0, T=8 \quad \therefore \quad-8=22-A \quad \therefore \quad A=30$
(ii)

$$
\begin{array}{ll}
\text { when } t=90, T=4 \quad & \therefore \quad 4=22-30 e^{-90 k} \\
& \therefore \quad e^{-90 k}=\frac{18}{30}=\frac{3}{5} \\
\therefore \quad-90 k=\ln \frac{3}{5} \quad \therefore \quad k=-\frac{1}{90} \ln \left(\frac{3}{5}\right)
\end{array}
$$

(iii) when $t=180$, -180k

$$
\begin{aligned}
T & =22-30 e \\
& =22-30 e^{2 \ln \left(\frac{3}{5}\right)}=22-30 \times \frac{9}{25}=11.2^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore d x=2 u d u \\
& \left\{\begin{array}{l}
x-1=u^{2}-2 \\
\sqrt{x+1}=u
\end{array}\right. \\
& \therefore I=\int_{2}^{3} \frac{u^{2}-2}{u} \cdot 2 u d u \\
& =2 \int_{2}^{3}\left(u^{2}-2\right) d u \\
& =2\left[\frac{u^{3}}{3}-2 u\right]_{2}^{3}=2\left[\left(\frac{27}{3}-6\right)-\left(\frac{8}{3}-4\right)\right] \\
& =\frac{26}{3}
\end{aligned}
$$

Q12-ctd
(c) (1)

Join O to the midpoint of $A B$. It meets it at 90° (circle geom. theorems

$$
\begin{aligned}
& \therefore \sin \frac{\theta}{2}=\frac{\frac{d}{2}}{r}=\frac{d}{2 r} \\
& \therefore d=2 r \sin \left(\frac{\theta}{2}\right)
\end{aligned}
$$

Also, $L=r \theta$
Since

$$
\begin{aligned}
& =r \theta \\
& \frac{L}{d}=\frac{4}{3} \quad \therefore \frac{\lambda \theta}{2 k \sin \left(\frac{\theta}{2}\right)}=\frac{4}{3} \\
& \therefore \quad 3 \theta=8 \sin \left(\frac{\theta}{2}\right)
\end{aligned}
$$

(ii) Let $f(\theta)=3 \theta-8 \sin \frac{\theta}{2}$
then $f^{\prime}(\theta)=3-4 \cos \frac{\theta}{2}$
Thus $\theta_{2}=\theta_{1}-\frac{f\left(\theta_{1}\right)}{f^{\prime}\left(\theta_{1}\right)}$

$$
\begin{aligned}
& =2.5-\frac{3(2.5)-8 \sin (1.25)}{3-4 \cos 1.25} \\
& \doteqdot 2.5528420 \ldots \\
\therefore \theta_{2} & =2.553 \quad(3 \mathrm{~d} . \mathrm{p})
\end{aligned}
$$

Q13
(a)

Join $D C$.
(i) $\angle B C D=\angle B C A+\angle A C D$.

But $\angle A C D=\angle A B D$ (angles in the same segment)

$$
\therefore \angle B C D=\angle B C A+\angle A B D
$$

$$
=90^{\circ} \quad \text { (given) }
$$

Hence $B D$ is a diameter (Converse of "angle in a sencicirde is $90^{\circ \prime}$ Reorem)
(ii) Since $A B=B C$,
$\therefore \angle B A C=\angle B C A$ (equal angles opposite to equal sides in $\triangle A B C$)
So $\angle A I D=\angle B A C+\angle A B D$ (exterior angle gt triangle equals sum of opposite interior angles)

$$
\begin{aligned}
& =\angle B C A+\angle A B D \\
& =90^{\circ} \quad \text { (from (i)) }
\end{aligned}
$$

But $\angle I D X=90^{\circ}$ (tangent is perpendicular to radius to point of contact)
$\therefore A C \| X Y$ (alternate angles equal)
[note: alternate routes possible to solution here].

2017412 Ext. 1 Test 3 (Trial)

Q13 ct
(b) (i)

$$
\begin{aligned}
& v=1+x^{2} \quad \therefore \quad \frac{1}{2} v^{2}=\frac{1}{2}\left(1+x^{2}\right)^{2} \\
& \therefore \quad a=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) \\
&=\frac{1}{2} \cdot 2 \cdot 2 x\left(1+x^{2}\right) \\
& \therefore a=2 x\left(1+x^{2}\right)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\frac{d x}{d t} & =1+x^{2} \therefore \quad \frac{d t}{d x}=\frac{1}{1+x^{2}} \\
\therefore \quad t & =\tan ^{-1} x+c
\end{aligned}
$$

at $t=0, x=1$

$$
\begin{aligned}
\therefore \quad 0 & =\tan ^{-1} 1+c \\
& =\frac{\pi}{4}+c \quad \therefore \quad c=-\frac{\pi}{4}
\end{aligned}
$$

$$
\therefore t=\tan ^{-1} x-\frac{\pi}{4}
$$

$$
\therefore \tan ^{-1} x=t+\frac{\pi}{4}
$$

$$
\therefore \quad x=\tan \left(t+\frac{\pi}{4}\right)
$$

(c)
$\frac{d V}{d t} \propto S \quad \therefore \quad \frac{d V}{d t}=k S$, for some constant K.
But $\quad \frac{d V}{d t}=\frac{d V}{d r} \cdot \frac{d r}{d t}$

$$
\therefore \quad k S=4 \pi r^{2} \cdot \frac{d r}{d t}
$$

$$
\text { (as } V=\frac{4}{3} \pi r^{3} \text {) }
$$

But $S=4 \pi r^{2}$

$$
\therefore \quad k=\frac{d r}{d t}
$$

ie $\frac{d r}{d t}$ is constant.

QBTotd
(c) (ii)
from (i), $\frac{d r}{d t}=k$

$$
\therefore \quad r=k t+c
$$

at $t=0, r=R \quad \therefore \quad R=0+c \quad \therefore c=R$

$$
\therefore \quad r=k t+R
$$

\therefore at $t=3, r=3 k+R$.
So we have:

$$
\begin{aligned}
& \frac{4}{3} \pi(3 k+R)^{3}=\frac{1}{2} \cdot \frac{4}{3} \pi R^{3} \quad \text { (from the } \\
& \text { given data) } \\
& 3 k+R=\frac{1}{\sqrt[3]{2}} \cdot R \\
& 3 k=R\left(\frac{1}{\sqrt[3]{2}}-1\right) \quad \therefore \quad K=\frac{R}{3}\left(\frac{1}{\sqrt[3]{2}}-1\right)
\end{aligned}
$$

(iii) $r=\frac{R}{3}\left(\frac{1}{\sqrt[3]{2}}-1\right) t+R$

When fully melted, $r=0$

$$
\begin{gathered}
\therefore \quad \frac{1}{3}\left[\frac{1}{\sqrt[3]{2}}-1\right] t+1=0 \\
\therefore t\left(\frac{1}{\sqrt[3]{2}}-1\right)=-3 \quad \therefore t=\frac{-3}{\left(\frac{1}{\sqrt[3]{2}}-1\right)} \neq 14.54196 \ldots
\end{gathered}
$$

So extra time taken is $\doteq 11.54$ hours (ie. 11 h 33 mins).
(d)

$$
\begin{aligned}
\lim _{x \rightarrow-5} \frac{\sqrt{20-x}-5}{5+x} & =\lim _{x \rightarrow-5} \frac{\sqrt{20-x}-5}{5+x} \times \frac{\sqrt{20-x}+5}{\sqrt{20-x}+5} \\
& =\lim _{x \rightarrow-5} \frac{20-x-25}{(5+x) \sqrt{20-x}+5} \\
& =\lim _{x \rightarrow-5} \frac{-1}{\sqrt{20-x}+5}=\frac{-1}{10}
\end{aligned}
$$

Q14
(a)
(i) Using the formula sheet, at T we have

$$
\begin{aligned}
& p x-a p^{2}=q x-a q^{2} \\
& (p-q)^{x}=a p^{2}-a q^{2} \\
& \therefore \quad x=a(p+q) \text { as } p \neq q \\
& \therefore y=p a(p+q)-a p^{2}=a p q \\
& \therefore T=[a(p+q), a p q]
\end{aligned}
$$

(some working required)
(ii) The tangents have gradients p, q.

$$
\begin{aligned}
\therefore \quad \tan 45^{\circ} & =\left|\frac{p-q}{1+p q}\right| \\
\therefore \quad 1= & \frac{p-q}{1+p q} \quad(p>q) \\
& \text { ie. } \quad p-q=1+p q
\end{aligned}
$$

(iii)
from (i),

$$
\begin{array}{ll}
x=a(p+q) & \therefore p+q=\frac{x}{a} \\
y=a p q & \therefore p q=\frac{y}{a}
\end{array}
$$

Now $(p-q)^{2}=(p+q)^{2}-4 p q$

$$
\begin{aligned}
\therefore \quad(1+p q)^{2} & =(p+q)^{2}-4 p q \quad \text { from (ii) } \\
\therefore \quad\left(1+\frac{y}{a}\right)^{2} & =\left(\frac{x}{a}\right)^{2}-\frac{4 y}{a} \\
1+\frac{2 y}{a} & +\frac{y^{2}}{a^{2}}=\frac{x^{2}}{a^{2}}-\frac{4 y}{a} \\
\frac{x^{2}}{a^{2}} & =\frac{y^{2}}{a^{2}}+1+\frac{6 y}{a} \\
\text { ie } \quad x^{2} & =y^{2}+a^{2}+6 a y
\end{aligned}
$$

Q14-ctd.
(b)

(i) The bearing of A (hence of D) is $337^{\circ} \mathrm{T}$, \& the bearing of $B\left(\right.$ hence of C) is $018^{\circ} \mathrm{T}$.

$$
\begin{aligned}
\therefore \quad \angle D E C & =\left(360^{\circ}-337^{\circ}\right)+018^{\circ} \\
& =23^{\circ}+18^{\circ}=41^{\circ}
\end{aligned}
$$

(must not assume flies W-E)
(ii) $\frac{h}{D E}=\tan 34^{\circ} \therefore D E=\frac{h}{\tan 34^{\circ}} \quad \therefore D E=h \cot 34^{\circ}$

Likeurise, $C E=h \cot 27^{\circ}$
(in 2mins@ $180 \mathrm{~km} / \mathrm{h}$, it goes $6 \mathrm{~km}=6000 \mathrm{~m}$)
By cosine rule in $\triangle D E C$,

$$
\begin{aligned}
\text { cosine rule } m & \left.\begin{array}{rl}
6000^{2} & =h^{2} \cot ^{2} 34+h^{2} \cot ^{2} z 7-2 h \cot 34 \cdot h \cot 27 \cdot \cos 41 \\
& =h^{2}\left[\cot ^{2} 34+\cot ^{2} 27-2 \cot 34 \cot 27 \cos 41\right] \\
\therefore h & =\frac{6000}{\sqrt{\cot ^{2} 34+\cot ^{2} 27-2 \cot 34 \cot 27 \cos 41}} \\
& =\frac{6000}{\sqrt{\tan ^{2} 56+\tan ^{2} 63-2 \tan 56 \tan 63 \cos 41}} \\
\therefore h & \div 4659.87 \mathrm{~m} \\
h & =4660 \mathrm{~m} \text { (nearest metre) }
\end{array}\right\} .
\end{aligned}
$$

(incorrect Cosine rule terminates)

- cannotuse sine rule)

Q14-ctd.
(c) $f(x)=e^{x}+e^{2 x}$, i.e. $y=e^{x}+e^{2 x}$
(i) For f, D : all real x

$$
R: \quad y>0
$$

(ii) For f^{-1},

D: $x>0$
R : all real y
(iii) for inverse, $x=e^{y}+e^{2 y}$
i.e. $e^{2 y}+e^{y}-x=0$

Let $u=e^{y}$

$$
\begin{aligned}
\therefore u^{2}+u-x & =0 \\
u & =\frac{-1 \pm \sqrt{u^{2}+4 x}}{2} \\
\therefore e^{y}=\frac{-1+\sqrt{1+4 x}}{2} & \text { or } \frac{-1-\sqrt{1+4 x}}{2}
\end{aligned}
$$

But $e^{y}>0 \quad \therefore \quad e^{y}=\frac{-1+\sqrt{1+4 x}}{2}$

$$
\therefore \quad y=\ln \left[\frac{\sqrt{1+4 x}-1}{2}\right]
$$

must reject one solution
/

