

NORTH SYDNEY BOYS

2018 HSC ASSESSMENT TASK 3 (TRIAL HSC)

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Each new question is to be started on a **new page**.
- Attempt all questions

Class Teacher:

(Please tick or highlight)

- O Mr Berry
- O Mr Hwang
- O Mr Ireland
- O Dr Jomaa
- O Ms Lee
- O Ms Ziaziaris

Student Number:

(To be used by the exam markers only.)

Question No	1-10	11	12	13	14	Total	Total
Mark	10	15	15	15	15	70	100

Section I

10 Marks

Attempt Questions 1 – 10

Use the multiple choice answer sheet for Questions 1-10

- 1When the polynomial P(x) is divided by (x + 1)(x 3) the remainder is 2x + 7.The remainder when P(x) is divided by x 3 is equal to1(A) 1(B) 7(C) 9(D) 13
- 2 In the circle below, CD = 10, AB = 5, BT = 3, and DT = x.

The value of *x* is

(A) $x = 1 \cdot 5$ (B) x = 2 (C) x = 6 (D) x = 4

3 Which of the following is equivalent to
$$\frac{\sin 2\theta + \sin \theta}{\cos 2\theta + \cos \theta + 1}$$
? 1

(A) $\cot \theta$ (B) $\sec \theta$ (C) $\sin \theta$ (D) $\tan \theta$

4 The acute angle between the lines y = -x - 1 and 4x + 2y = 1 is

1

- (A) 71° 34′
- (B) 45°
- (C) 30° 58'
- (D) 18° 26'

5 Given *n* is an integer, the general solution of $\tan\left(2x + \frac{\pi}{4}\right) = \sqrt{3}$ is $(12n+1)\pi$

(A)
$$x = \frac{(12n+1)\pi}{24}$$

(B) $x = \frac{(3n+1)\pi}{6}$
(C) $x = \frac{(12n-1)\pi}{24}$
(D) $x = \frac{(6n+1)\pi}{6}$

6 The solution of $x - \cos 2x = 0$ is known to be approximately $0 \cdot 5$. Using one application of Newton's Method, a second approximation to this solution is

A) x = 0.485 (B) x = 0.515 (C) x = 0.983 (D) x = 0.441

- 7 A particle moves in a straight line, and its position at time *t* is given by $x = 3\cos 2t + 4\sin 2t$. Its greatest speed is: (A) 6 (B) 10 (C) 12 (D) 5
- 8 The interval *AB* joining the points A(1,3) and B(a,b) is divided internally in the ratio 2:3 by the point (3,13). The values of *a* and *b* are
 - (A) a = 6, b = 28
 (B) a = 6, b = 37
 (C) a = 9, b = 28
 (D) a = 9, b = 37
- 9 If α , β , γ are the roots of the cubic equation $2x^3 5x^2 3x + 1 = 0$, 1 then the value of $\alpha^2 + \beta^2 + \gamma^2$ is
 - (A) $\frac{13}{4}$ (B) $\frac{37}{4}$ (C) $\frac{31}{4}$ (D) $\frac{19}{4}$
- **10** Which of the following is the domain of the function $y = log_e[x + \sqrt{x^2 + 1}]$? **1**
 - (A) $\{x: x \le -1, x \ge 1\}$ (B) $\{x: -1 \le x \le 1\}$
 - (C) {x: x is a real number} (D) { $x: x \ge 1$ }

1

1

Section II

60 Marks Attempt Questions 11-14

Answer each question on a NEW page. Extra writing booklets are available.

In Questions 11 – 14, your responses should include all relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a NEW page

(a) Find $\int \sin^2 4x \, dx$

(b) Evaluate the limit
$$\lim_{x \to 0} \frac{1 - \cos 2x}{6x^2}$$
 2

2

(c) Use the substitution
$$u = x^2 + 1$$
 to evaluate $\int_0^2 \frac{x}{(x^2+1)^3} dx$ 3

(d) Find the exact value of
$$sin^{-1}\left(\frac{1}{\sqrt{5}}\right) + sin^{-1}\left(\frac{1}{\sqrt{10}}\right)$$
 3

(e) Differentiate
$$y = tan^{-1}\frac{x}{4}$$
, giving your answer in fully simplified form. 2

(f) Solve the equation $\sqrt{3}sin\theta = 1 + cos\theta$ in the domain $0 \le \theta \le 2\pi$. 3

Question 12 (15 marks) Start a NEW page

- (a) The velocity v in cm/sec of a particle moving on the *x*-axis is given by $v^2 = -3x^2 + 20x + 7$. (*x* is the displacement from the origin, in centimetres). Show that the particle is moving in simple harmonic motion, and find the centre, amplitude and period of that motion.
- (b) *AB* and *CD* are two intersecting chords of a circle, and *CD* is parallel to the tangent to the circle at *B*.

- (i) Copy or trace the diagram to your writing booklet.
- (ii) Prove that *AB* bisects $\angle CAD$.
- (c) A loading chute is in the shape of an inverted square pyramid, with base length
- 10 metres and depth 8 metres.

Liquid is poured in the top at a constant rate of $4 m^3/min$.

(i) Show that the volume *V* of the liquid when the level is *h* metres high is given by $V = \frac{25h^3}{48}$. [You may need to draw a diagram] 2

(ii) At what rate is the level of the liquid rising when its depth is 4m? 2

3

(d) For the function $y = \sin(\cos^{-1} x)$,

(i)	State the domain.	1
(ii)	State the range.	1
(iii)	Sketch the function neatly, using at least 1/3 of a page.	2

Question 13 (15 marks) Start a NEW page

(a) *AB* represents a communications mast, height *h* metres. From points *C* and *D* in the same plane as the base of the mast, the angles of elevation of the top of the mast are 15° and 10° respectively. From the base of the mast, the bearings of points *C* and *D* are 230° T and 100° T respectively.

(i) Copy the diagram to your answer page.

(ii)	Find the size of $\angle CBD$.	1

1

3

(iii) Show that $BD = h \cot 10^{\circ}$.

(iv) If *CD* is 450 metres, find the height of the mast (to 1 decimal place). **3**

- (b) A particle *P* moves in a straight line with acceleration given by $\ddot{x} = 9(x 2)$, where *x* is the displacement in metres from the origin *O* after *t* seconds. Initially *P* is 4 metres to the right of *O*, with velocity v = -6 metres per second.
 - (i) Show that $v^2 = 9(x-2)^2$ 2
 - (ii) Find *x* as a function of *t*.

(c) A forensic scientist is called to a murder scene. At 10:23pm, she measures the temperature of the body as $26 \cdot 7^{\circ}C$. The ambient temperature of the room is $20^{\circ}C$. Exactly 60 minutes later, a second reading gives the body's temperature as $25 \cdot 8^{\circ}C$.

Assume that the victim's body before death was a normal 37°*C*, and that Newton's Law of cooling applies, that is, $\frac{dT}{dt} = -k(T - 20)$ where *k* is a constant, *t* is measured in minutes and temperature is in degrees Celsius,

- (i) Show that $T = 20 + Ae^{-kt}$ is a solution of the above equation. 1
- (ii) Evaluate *A*, then determine *k* to 6 decimal places. 2
- (iii) Calculate at what time of day the victim was murdered. 2

Question 14 (15 marks) Start a NEW page

- (a) Given that x is a positive integer, prove by the method of mathematical 3 induction that $(1 + x)^n - 1$ is divisible by x for all positive integers $n \ge 1$.
- (b) A parabola has parametric equations x = t, y = t²
 (i) Sketch the parabola, marking the points *P* and *Q* that correspond to t = -1 and t = 2 respectively.
 (ii) Derive the tangents at *P* and *Q*, and show they intersect at R(¹/₂, -2).
 (iii) Let T(t, t²) be the point on the parabola between *P* and *Q* such that the tangent at *T* meets *QR* at the midpoint of *QR*. Show that the tangent at *T* is parallel to *PQ*.

(c) The diagram shows a unit square with vertices A(1,0), B(1,1), C(2,1), D(2,0).

A line passing through the origin with gradient m cuts the sides AB and CD at P and Q respectively. For what values of m does the line divide the area of the square in the ratio 2:1?

(d) (i) Find the shaded area *A*.

3 2

$$M.C. 2018 Y12 Ext. 1 Task 3 Suggested Solutions
$$P(x) = (x+1)(x-3) \cdot \theta(x) + 2x+7$$

$$\therefore pen = P(3) = 2(3) + 7 = 13 \qquad (D)$$

$$S(3) = (10+x)(x)$$

$$2q = x^{1} + 10x$$

$$x^{2} + 10x - 2q = 2$$

$$(x + 12)(x-2) = 0 \quad \therefore x = 2 \qquad (B)$$

$$Sin 20 + Sin \theta = \frac{2 \sin \theta (\cos \theta + \sin \theta)}{2 \cos^{2} \theta - 1 + \cos \theta + 1}$$

$$= Sin \theta (2 \cos^{2} \theta + 1)$$

$$= 4 \sin \theta \qquad (D)$$

$$(P) + 4 \sin \theta = \left| \frac{-1 - (-2)}{1 + (-1)(-4)} \right| = \left| \frac{1}{3} \right|$$

$$\theta = 18^{\circ} 26' \qquad (D)$$

$$S + 4 \sin \left(2x + \frac{\pi}{q} \right) = \sqrt{3}$$

$$(x + \pi \pi - 2x) = \sqrt{3}$$$$

 $= \frac{\pi(1+12n)}{24}$

A

MC 2018 Y12 Ext.1 Task 3 Suggested Solutions (a) $x_2 = x_1 - \frac{f(x_1)}{g'(x_1)}$ $f(x) = x - \cos 2x$ $f'(x) = 1 + 2\sin 2x$ $\vdots \quad \chi_2 = 0.5 - \frac{0.5 - \cos 1}{1 + 2\sin 1}$ $\vdots \quad B$

$$\begin{array}{rcl} (9) & \alpha^{2} + \beta^{2} + \beta^{2} &=& (k + \beta + \beta)^{2} - 2(\alpha\beta + d\beta + \beta\delta) \\ &=& \left(\frac{5}{2}\right)^{2} - 2\left(-\frac{3}{2}\right) \\ &=& 25 + 3 = \frac{37}{4} \qquad \therefore \qquad B \end{array}$$

(1)
$$D: q y: ln \left[x + \sqrt{x^2 + 1} \right]$$

is all real R .: (C)

2018 Y12 Ext.1 Task 3

(a)
$$\int \sin^2 43x \, dx = \int \left(\frac{1}{2} - \frac{1}{2}\cos 8x\right) \, dx \, v$$

= $\frac{1}{2}x - \frac{1}{16}\sin 8x + c \, v$

$$\begin{array}{rcl}
\text{Lim} & \frac{1-\cos 2x}{6x^2} \\
= & \frac{1}{6x^2} \\
= & \frac{1-(1-2\sin^2 x)}{6x^2} \\
= & \frac{1}{6x^2} \\
= & \frac{1}{$$

$$\bigcirc$$

 $\frac{1}{4} - \frac{16 + x^2}{16} = \frac{4}{16 + x^2} \quad \forall$

(5)
$$\sqrt{3} \sin \theta - 1.65\theta = 1$$

Let $\sqrt{3} \sin \theta - 1.65\theta = k \sin (\theta - \alpha)$
 $= k \sin \theta \cos \alpha - k \cos \theta \sin \alpha$
 $\therefore \int k \cos \alpha = \sqrt{3}$
 $\int k \sin \alpha = 1$
 $\therefore 2 \sin (\theta - \frac{\pi}{6}) = 1$
 $\sin (\theta - \frac{\pi}{6}) = \frac{1}{2}$, $\frac{\pi}{6} \le 0 - \frac{\pi}{6} \le \frac{\pi}{6}$.
 $\sin (\theta - \frac{\pi}{6}) = \frac{1}{2}$, $\frac{\pi}{6} \le 0 - \frac{\pi}{6} \le \frac{\pi}{6}$.
 $\therefore \theta - \frac{\pi}{6} = \frac{\pi}{6} = \frac{5\pi}{6}$
 $\therefore \theta = \frac{\pi}{3}$, π \checkmark
2018 Y12 Ext.1 Task 3 Suggested Solutions

:. $t = -\frac{1}{3} \ln (t^{2} - 2) + C$ at t=0, x=4 $i: 0 = -\frac{1}{3} \ln (2) + C$ $:: C = \frac{1}{3} \ln 2. V$ $\therefore t = -\frac{1}{3} \ln(x-2) + \frac{1}{3} \ln 2$ $= \frac{1}{3} \left(\ln 2 - \ln(x-2) = \frac{1}{3} \ln \left(\frac{2}{x-2} \right) \right)$ $\frac{3t}{e} = \frac{2}{\chi - 2}$ $\therefore \quad \chi - 2 = 2e$ $\therefore \quad \chi = 2 + 2e$ Y12 Ext.1 Task 3 2018

 $\therefore \frac{dx}{at} = -3(x-2) \quad \therefore \quad \frac{dt}{dx} = -\frac{1}{3} \cdot \frac{1}{x-2} \left\{ \begin{array}{c} \\ \\ \end{array} \right.$

:. v = -3(x-2)

Suggested Solutions

2018 Y12 Ext.1 Task 3 Suggested Solutions

13

(c) were given
$$\frac{dT}{dt} = -k(T-20)$$
.
(i) $Tf T = 20 + Ae^{-kt}$, is $Ae^{-kt} = T-20$,
 $Ten \frac{dT}{dt} = -kAe^{-kt}$
 $= -k(T-20)$

(11) Let
$$t=0$$
 at 10.23 pm .
at $t=0$, $T = 26.7$
 $\therefore 26.7 = 20 + Ae^{\circ}$
 $A = 6.7$ V

$$at t=60, T = 25.8 - 60k$$

$$\therefore 25.8 = 20 + 6.7e$$

$$\therefore e^{-60k} = \frac{5.8}{6.7}$$

$$-60k = \ln\left(\frac{5.8}{6.7}\right)$$

$$\therefore k = -\frac{1}{60} \ln\left(\frac{5.8}{6.7}\right)$$

$$K = -0.002404 (6dp)$$

(iii) We want t when
$$T = 37$$
;
 $: 37 = 20 + 6.7e^{-kt}$
 $: e^{-kt} = \frac{17}{6.7}$ $: -kt = ln\left(\frac{17}{6.7}\right)$
 $t = -\frac{1}{0.002404}$ $: ln\left(\frac{17}{6.7}\right) = -387.315$ mins.
 $= -6h, 27.3$ mins
 $: 3:50 \text{ pm}$ was time 2
 $death.$

 \checkmark

(a) when
$$n=1$$

 $(1+2c)^{1}-1 = 1+x-1 = x$,
which is divisible by 2c.
i. force for $n=1$

Assume the for
$$n = k$$

il assume $(1 + \alpha)^{k} - 1 = M \alpha$
for some integer M .
 $i^{k} = (1 + \alpha)^{k} = M \alpha + 1$

Then for
$$n=k+1$$
,
 $(1+x)^{k+1}-1 = (1+x)(1+x)^{k}-1$
 $= (1+x)(Mx+1)-1$ by assumption $\sqrt{2}$
 $= (Mx+1) + (Mx^{2}+x)-1$
 $= (M+1)x + Mx^{2}$
 $= x (M+1+Mx)$
 $= x (M+1+Mx)$
 $= Nx , N animtegu, as M, x are integer.
 \therefore thus for $n=k+1$ if thus for $n=k$.
Hence thus by induction if$

2018 Y12 Ext.1 Task 3 Suggested Solutions

(b) (ii) otd. But $t \neq 2$ (so $t \leq 2 \Rightarrow 0$) $t = \frac{1}{2}$ at T tangent at is $y - t^2 = 2t(x-t)$ $tangent at is <math>2t = 2(\frac{1}{2}) = 1$. $M_T = graduent is 2t = 2(\frac{1}{2}) = 1$. $M_T = M_T = m_T = 1$ $M_T = m_T = m_T = 1$ $M_T = m_T = m_T = 1$ $M_T = m_T = m_T = 1$

(c)
Let the line be
$$y = mx$$
.
 \therefore when $x = 1$, $y = m$
 $wlen x = 2$, $y = 2m$.
 $\int \frac{1}{2m} \frac{1}{2m} x = 1$

Thus shaded area to

$$A = \frac{m+2m}{2} \times 1 = \frac{3m}{2} / \sqrt{2}$$
is remaining area is $1 - \frac{3m}{2} = \frac{2-3m}{2}$

Thus we have

$$\frac{3m}{2} = 2 \quad av \quad \frac{3m}{2} = 1 \quad v$$

$$\frac{2-3m}{2} \quad 1 \quad \frac{2}{2} \quad \frac{2-3m}{2} \quad \frac{2}{2} \quad \frac$$

2018 Y12 Ext.1 Task 3 Suggested Solutions

(d)

14

(i) We integrate along the y-axis: Now, if $y = \sqrt{\frac{2-\pi}{\pi}}$ then $y^2 = \frac{2-\pi}{\pi}$ $\therefore xy^2 = 2-\pi$ $x(y^2+1) = 2$ $\therefore x = \frac{2}{1+y^2}$ $\therefore Area A = \int \frac{2}{1+y^2} dy = 2 [tan'y]_{o}^{k}$ y=o $A = 2 tan'k units^2$.

