North Sydney Boys HIGH SCHOOL

2018 HSC ASSESSMENT TASK 3 (TRIAL HSC)

Mathematics

Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Each new question is to be started on a new page.
- Attempt all questions

Class Teacher:

(Please tick or highlight)
O Mr Berry
O Mr Hwang
O Mr Ireland
O Dr Jomaa
O Ms Lee
O Ms Ziaziaris

Student Number:
(To be used by the exam markers only.)

Question No	$1-10$	11	12	13	14	Total	Total
Mark	$\overline{10}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{70}$	$\overline{100}$

Section I

10 Marks

Attempt Questions $1 \mathbf{- 1 0}$

Use the multiple choice answer sheet for Questions 1-10

1 When the polynomial $P(x)$ is divided by $(x+1)(x-3)$ the remainder is $2 x+7$.
The remainder when $P(x)$ is divided by $x-3$ is equal to
(A) 1
(B) 7
(C) 9
(D) 13

2 In the circle below, $C D=10, A B=5, B T=3$, and $D T=x$.

The value of x is
(A) $x=1 \cdot 5$
(B) $x=2$
(C) $x=6$
(D) $x=4$

3 Which of the following is equivalent to $\frac{\sin 2 \theta+\sin \theta}{\cos 2 \theta+\cos \theta+1}$?
(A) $\cot \theta$
(B) $\sec \theta$
(C) $\sin \theta$
(D) $\tan \theta$

4 The acute angle between the lines $y=-x-1$ and $4 x+2 y=1$ is
(A) $71^{\circ} 34^{\prime}$
(B) 45°
(C) $30^{\circ} 58^{\prime}$
(D) $18^{\circ} 26^{\prime}$

5 Given n is an integer, the general solution of $\tan \left(2 x+\frac{\pi}{4}\right)=\sqrt{3}$ is
(A) $x=\frac{(12 n+1) \pi}{24}$
(B) $x=\frac{(3 n+1) \pi}{6}$
(C) $x=\frac{(12 n-1) \pi}{24}$
(D) $x=\frac{(6 n+1) \pi}{6}$

6 The solution of $x-\cos 2 x=0$ is known to be approximately $0 \cdot 5$. Using one application of Newton's Method, a second approximation to this solution is
A) $x=0 \cdot 485$
(B) $x=0.515$
(C) $x=0 \cdot 983$
(D) $x=0 \cdot 441$

7 A particle moves in a straight line, and its position at time t is given by $x=3 \cos 2 t+4 \sin 2 t$. Its greatest speed is:
(A) 6
(B) 10
(C) 12
(D) 5

8 The interval $A B$ joining the points $A(1,3)$ and $B(a, b)$ is divided internally in the ratio $2: 3$ by the point $(3,13)$. The values of a and b are
(A) $a=6, b=28$
(B) $a=6, b=37$
(C) $a=9, b=28$
(D) $a=9, b=37$

9 If α, β, γ are the roots of the cubic equation $2 x^{3}-5 x^{2}-3 x+1=0$, then the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$ is
(A) $\frac{13}{4}$
(B) $\frac{37}{4}$
(C) $\frac{31}{4}$
(D) $\frac{19}{4}$
$\mathbf{1 0}$ Which of the following is the domain of the function $y=\log _{e}\left[x+\sqrt{x^{2}+1}\right]$? 1
(A) $\{x: x \leq-1, x \geq 1\}$
(B) $\{x:-1 \leq x \leq 1\}$
(C) $\{x: x$ is a real number $\}$
(D) $\{x: x \geq 1\}$

Section II

60 Marks
Attempt Questions 11-14
Answer each question on a NEW page. Extra writing booklets are available.
In Questions 11-14, your responses should include all relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a NEW page
(a) Find $\int \sin ^{2} 4 x d x \quad 2$
(b) Evaluate the limit $\lim _{x \rightarrow 0} \frac{1-\cos 2 x}{6 x^{2}}$
(c) Use the substitution $u=x^{2}+1$ to evaluate $\int_{0}^{2} \frac{x}{\left(x^{2}+1\right)^{3}} d x$
(d) Find the exact value of $\sin ^{-1}\left(\frac{1}{\sqrt{5}}\right)+\sin ^{-1}\left(\frac{1}{\sqrt{10}}\right)$
(e) Differentiate $y=\tan ^{-1} \frac{x}{4^{\prime}}$ giving your answer in fully simplified form.
(f) Solve the equation $\sqrt{3} \sin \theta=1+\cos \theta$ in the domain $0 \leq \theta \leq 2 \pi$.
(a) The velocity v in $\mathrm{cm} / \mathrm{sec}$ of a particle moving on the x-axis is given by $v^{2}=-3 x^{2}+20 x+7 . \quad(x$ is the displacement from the origin, in centimetres). Show that the particle is moving in simple harmonic motion, and find the centre, amplitude and period of that motion.
(b) $A B$ and $C D$ are two intersecting chords of a circle, and $C D$ is parallel to the tangent to the circle at B.

(i) Copy or trace the diagram to your writing booklet.
(ii) Prove that $A B$ bisects $\angle C A D$.
(c) A loading chute is in the shape of an inverted square pyramid, with base length

10 metres and depth 8 metres.
Liquid is poured in the top at a constant rate of $4 \mathrm{~m}^{3} / \mathrm{min}$.

(i) Show that the volume V of the liquid when the level is h metres high is given by $V=\frac{25 h^{3}}{48}$. [You may need to draw a diagram]
(ii) At what rate is the level of the liquid rising when its depth is 4 m ?
(d) For the function $y=\sin \left(\cos ^{-1} x\right)$,
(i) State the domain.
(ii) State the range. 1
(iii) Sketch the function neatly, using at least $1 / 3$ of a page.

Question 13 (15 marks) Start a NEW page
(a) $A B$ represents a communications mast, height h metres. From points C and D in the same plane as the base of the mast, the angles of elevation of the top of the mast are 15° and 10° respectively. From the base of the mast, the bearings of points C and D are $230^{\circ} \mathrm{T}$ and $100^{\circ} \mathrm{T}$ respectively.

(i) Copy the diagram to your answer page.
(ii) Find the size of $\angle C B D$.
(iii) Show that $B D=h \cot 10^{\circ}$.
(iv) If $C D$ is 450 metres, find the height of the mast (to 1 decimal place).
(b) A particle P moves in a straight line with acceleration given by $\ddot{x}=9(x-2)$, where x is the displacement in metres from the origin O after t seconds.

Initially P is 4 metres to the right of O, with velocity $v=-6$ metres per second.
(i) Show that $v^{2}=9(x-2)^{2} \quad 2$
(ii) Find x as a function of t. 3
(c) A forensic scientist is called to a murder scene. At 10:23pm, she measures the temperature of the body as $26 \cdot 7^{\circ} \mathrm{C}$. The ambient temperature of the room is $20^{\circ} \mathrm{C}$. Exactly 60 minutes later, a second reading gives the body's temperature as $25 \cdot 8^{\circ} \mathrm{C}$.

Assume that the victim's body before death was a normal $37^{\circ} \mathrm{C}$, and that Newton's Law of cooling applies, that is, $\frac{d T}{d t}=-k(T-20)$ where k is a constant, t is measured in minutes and temperature is in degrees Celsius,
(i) Show that $T=20+A e^{-k t}$ is a solution of the above equation. 1
(ii) Evaluate A, then determine k to 6 decimal places. 2
(iii) Calculate at what time of day the victim was murdered. 2
(a) Given that x is a positive integer, prove by the method of mathematical induction that $(1+x)^{n}-1$ is divisible by x for all positive integers $\mathrm{n} \geq 1$.
(b) A parabola has parametric equations $x=t, y=t^{2}$
(i) Sketch the parabola, marking the points P and Q that correspond to $t=-1$ and $t=2$ respectively.
(ii) Derive the tangents at P and Q, and show they intersect at $R\left(\frac{1}{2},-2\right)$.
(iii) Let $T\left(t, t^{2}\right)$ be the point on the parabola between P and Q such that the tangent at T meets $Q R$ at the midpoint of $Q R$. Show that the tangent at T is parallel to $P Q$.
(c) The diagram shows a unit square with vertices $A(1,0), B(1,1), C(2,1), D(2,0)$.

A line passing through the origin with gradient m cuts the sides $A B$ and $C D$ at P and Q respectively. For what values of m does the line divide the area of the square in the ratio $2: 1$?
(d) (i) Find the shaded area A.

(ii) Find $\lim _{k \rightarrow \infty} A$
M.
(1)

$$
\begin{align*}
P(x) & =(x+1)(x-3) \cdot Q(x)+2 x+7 \\
\therefore \text { rem } & =P(3)=2(3)+7=13 \tag{D}
\end{align*} \therefore
$$

(2)

$$
\begin{align*}
& 8(3)=(10+x)(x) \\
& 24=x^{2}+10 x \\
& x^{2}+10 x-24=0 \\
&(x+12)(x-2)=0 \quad \therefore x=2
\end{align*}
$$

(3)

$$
\begin{aligned}
\frac{\sin 2 \theta+\sin \theta}{\cos 2 \theta+\cos \theta+1} & =\frac{2 \sin \theta \cos \theta+\sin \theta}{2 \cos ^{2} \theta-1+\cos \theta+1} \\
& =\frac{\sin \theta(2 \cos \theta+1)}{\cos \theta(2 \cos \theta+1)} \\
& =\tan \theta
\end{aligned}
$$

(4)

$$
\begin{aligned}
\tan \theta=\left|\frac{-1-(-2)}{1+(-1)(-2)}\right| & =\left|\frac{1}{3}\right| \\
\theta & =18^{\circ} 26^{\prime}
\end{aligned}
$$

(5) $\quad \tan \left(2 x+\frac{\pi}{4}\right)=\sqrt{3}$

$$
\begin{align*}
2 x+\frac{\pi}{4} & =\frac{\pi}{3}+n \pi \\
2 x & =\frac{\pi}{12}+n \pi \\
2 x & =\frac{\pi+12 n \pi}{12} \\
& =\frac{\pi(1+12 n)}{24}
\end{align*}
$$

$$
\begin{align*}
f(x) & =x-\cos 2 x \\
f^{\prime}(x) & =1+2 \sin 2 x \\
\therefore x_{2} & =0.5-\frac{0.5-\cos 1}{1+2 \sin 1} \tag{B}\\
& \therefore 0.515021 \ldots
\end{align*}
$$

(7)

$$
\begin{aligned}
x & =3 \cos 2 t+4 \sin 2 t \\
& =5 \cos (2 t-\alpha) \\
\dot{x} & =-10 \sin (2 t-\alpha)
\end{aligned}
$$

$\therefore \max \cdot$ speed $=10$
(8) $A(1,3) \quad B(a, b)$

(9)

$$
\begin{align*}
\alpha^{2}+\beta^{2}+\gamma^{2} & =(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma) \\
& =\left(\frac{5}{2}\right)^{2}-2\left(-\frac{3}{2}\right) \\
& =\frac{25}{4}+3=\frac{37}{4}
\end{align*}
$$

\therefore A
(10) $D:$ of $y=\ln \left[x+\sqrt{x^{2}+1}\right]$ is all real \mathbb{R}
(a)

$$
\begin{aligned}
\int \sin ^{2} 4 x d x & =\int\left(\frac{1}{2}-\frac{1}{2} \cos 8 x\right) d x \\
& =\frac{1}{2} x-\frac{1}{16} \sin 8 x+c
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{1-\cos 2 x}{6 x^{2}} \\
= & \lim _{x \rightarrow 0} \frac{1-\left(1-2 \sin ^{2} x\right)}{6 x^{2}} \\
= & \lim _{x \rightarrow 0} \frac{2 \sin ^{2} x}{6 x^{2}} \\
= & \frac{1}{3} \lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{2}=\frac{1}{3}
\end{aligned}
$$

(c) $I=\int_{0}^{2} \frac{x}{\left(x^{2}+1\right)^{3}} d x$

$$
\left\{\begin{array}{l}
u=x^{2}+1 \\
d u=2 x d x \\
x=0 \rightarrow u=1 \\
x=2 \rightarrow u=5
\end{array}\right]
$$

$$
\begin{aligned}
& =\frac{1}{2} \int_{1}^{5} u^{-3} d u \\
& =\frac{1}{2}\left[\frac{u^{-2}}{-2}\right]_{1}^{5} \\
& =-\frac{1}{4}\left[\frac{1}{5^{2}}-\frac{1}{1^{2}}\right]=\frac{1}{4}\left[1-\frac{1}{25}\right] \\
& =\frac{1}{4} \cdot \frac{24}{25}=\frac{6}{25}
\end{aligned}
$$

[11 (d) Let $\alpha=\sin ^{-1}\left(\frac{1}{\sqrt{x}}\right), \beta=\sin ^{-1}\left(\frac{1}{\sqrt{x}}\right)$
The $\sin \left[\sin ^{-1}\left(\frac{1}{\sqrt{5}}\right)+\sin ^{-1}\left(\frac{1}{\sqrt{10}}\right)\right]$

$$
\begin{aligned}
& =\sin (\alpha+\beta) \\
& =\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
& =\frac{1}{\sqrt{5}} \cdot \frac{3}{\sqrt{10}}+\frac{2}{\sqrt{5}} \cdot \frac{1}{\sqrt{10}} \\
& =\frac{5}{\sqrt{50}}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

But $\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}$

$$
\begin{aligned}
& \sin \frac{\pi}{4}=\frac{\sqrt{2}}{8} \quad \sin ^{-1}\left(\frac{1}{\sqrt{5}}\right)+\sin ^{-1}\left(\frac{1}{\sqrt{12}}\right)=\frac{\pi}{4}
\end{aligned}
$$

(e)

$$
\begin{aligned}
\frac{d}{d x}\left(\tan ^{-1} \frac{x}{4}\right) & =\frac{1}{4} \cdot \frac{1}{1+\left(\frac{x}{4}\right)^{2}} \\
& =\frac{1}{4} \cdot \frac{1}{1+\frac{x^{2}}{16}} \\
& =\frac{1}{4} \cdot \frac{1}{\frac{16+x^{2}}{16}}=\frac{1}{4} \cdot \frac{16}{16+x^{2}} \\
& =\frac{4}{16+x^{2}}
\end{aligned}
$$

(f) $\sqrt{3} \sin \theta-1 . \cos \theta=1$

Let $\sqrt{3} \sin \theta-1-\cos \theta=R \sin (\theta-\alpha)$

$$
\begin{aligned}
& =R \sin (0 \cos \alpha-R \cos \theta \sin \alpha \\
& =R \sin \theta \cos
\end{aligned}
$$

$$
\therefore\left\{\begin{array}{l}
R \cos \alpha=\sqrt{3} \\
R \sin \alpha=1
\end{array}\right.
$$

$$
\therefore \quad 2 \sin \left(\theta-\frac{\pi}{6}\right)=1
$$

$$
\begin{aligned}
& \sin \left(\theta-\frac{\pi}{6}\right)=1 \\
& \sin \left(\theta-\frac{\pi}{6}\right)=\frac{1}{2}, \frac{-\pi}{6} \leq \theta-\frac{\pi}{6} \leqslant \frac{7 \pi}{6}
\end{aligned}
$$

$$
\therefore \quad \theta-\frac{\pi}{6}=\frac{\pi}{6} \text { as } \frac{5 \pi}{6}
$$

$$
\therefore \quad \theta=\frac{\pi}{3}, \pi
$$

[11) (8) | 2018 | Y12Ext. 1 | Task 3 | Suggested Solutions |
| :--- | :--- | :--- | :--- |

alt. let $t=\tan \frac{\theta}{2} \therefore \sin \theta=\frac{2 t}{1+t^{2}}, \cos \theta=\frac{1-t^{2}}{1+t^{2}}$

Thens

$$
\begin{aligned}
& \sqrt{3} \cdot \frac{2 t}{1+t^{2}}-\frac{1-t^{2}}{1+t^{2}}=1 \\
& 2 \sqrt{3} t-1+t^{2}=1+t^{2} \\
& 2 \sqrt{3} t=2 \\
& t=\frac{1}{\sqrt{3}} \quad \therefore \quad \tan \frac{\theta}{2}=\frac{1}{\sqrt{3}}, 0 \leq \frac{\theta}{2} \leq \pi \\
& \frac{\theta}{2}=\frac{\pi}{6} \therefore \theta=\pi / 3
\end{aligned}
$$

But need theck $\theta=\pi$

$$
\left.\begin{array}{rl}
\text { LHS } & =\sqrt{3} \sin \pi-\cos \pi \\
& =\sqrt{3}(0)-(-1) \\
& =1=\text { RHS }
\end{array}\right\}
$$

$$
\therefore \quad \theta=\pi \quad \text { is a soln. }
$$

$$
\therefore \theta=\pi / 3, \pi
$$

12
©

$$
\begin{aligned}
& v^{2}=-3 x^{2}+20 x+7 \\
& \ddot{x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=\frac{d}{d x}\left(-\frac{3}{2} x^{2}+10 x+\frac{7}{2}\right) \\
&=-3 x+10
\end{aligned}
$$

8

$$
\begin{aligned}
& \ddot{x}=-3\left(x-\frac{10}{3}\right) \\
& \therefore \quad \ddot{x}=-(\sqrt{3})^{2}(x-1 / 3)
\end{aligned}
$$

which is of form $\dot{x}=-n^{2}\left(x-x_{0}\right)$
\therefore motion is 5 HM .
Centre 8 motion is $x=\frac{10}{3}$.

$$
\text { Deride } T=\frac{2 \pi}{n}=\frac{2 \pi}{\sqrt{3}} \text { secs. }\left(=\frac{2 \sqrt{3} \pi}{3}\right. \text { secs. }
$$

At end pto, $v=0 \therefore 3 x^{2}-20 x-7=0$

$$
\begin{aligned}
& (3 x+1)(x-7)=0 \\
& x=-\frac{1}{3}, 7 \text { are endpt. }
\end{aligned}
$$

$$
\therefore \text { cenplifude }=\frac{1}{2}\left(\frac{1}{3}+7\right)=\frac{1}{2}\left(\frac{22}{3}\right)=\frac{11}{3} \mathrm{~cm} .
$$

(b)

(i)
(ii) Gin The retries A, B, C, D.

Tan $\angle D B T=\angle B A D$ (alternate segment
Also, $\angle D B T=\angle C D B$ (alternate angles, $C D / / B T$)
But $\angle C D B=\angle C A B$ (angles in same

$$
\therefore \quad \angle B A D=\angle C A B
$$

ie $A B$ bisects $\angle C A D$.

QR
2018 Y12 Ext. 1 Task 3
Suggested Solutions

$$
\therefore \frac{x}{h}=\frac{5}{8} \text { by similarity. }
$$

when height $=h$,

$$
V=\frac{1}{3}(2 x)^{2} \cdot h
$$

But $x=\frac{5 h}{8} \quad \therefore \quad 2 x=\frac{5 h}{4}$

$$
\therefore \quad V=\frac{1}{3} \cdot\left(\frac{5 h}{4}\right)^{2} \cdot h=\frac{25 h^{3}}{48}
$$

(ii)

$$
\begin{aligned}
& \frac{d V}{d t}=\frac{d V}{d h} \cdot \frac{d h}{d t} \\
& \therefore \frac{d V}{d t}=\frac{25 h^{2}}{16} \cdot \frac{d h}{d t} \\
& \therefore \quad 4=\frac{25\left(4^{2}\right)}{16} \cdot \frac{d h}{d t} \therefore\left(\frac{d h}{d t}=\frac{4}{25} \mathrm{~m} / \mathrm{min} .\right. \\
&(=0.16 \mathrm{~m} / \mathrm{min})
\end{aligned}
$$

(d) $y=\sin \left(\cos ^{-1} x\right)$
(i) $D:-1 \leq x \leq 1$
(ii) $R: 0 \leq y \leq 1$
(iii) Let $\alpha=\cos ^{-1} x \therefore \quad x=\cos \alpha$

$$
\therefore y=\sin \alpha=\sqrt{1-x^{2}}
$$

2018 Y12 Ext. 1 Task 3 Suggested Solutions
(a)

(ii)

$$
\angle C B D=130^{\circ}
$$

(iii)

$$
\begin{aligned}
& \frac{h}{B D}=\tan 10^{\circ} \\
& B D=\frac{h}{\tan 10^{\circ}} \\
& \therefore B D=h \cot 10^{\circ}
\end{aligned}
$$

(iv) by cosine rule in $\triangle C B D$,

$$
(C D=h \cot 15)
$$

$$
\begin{aligned}
\text { by cosine rule in } \Delta 0^{2} & =\left(h \cot 10^{\circ}\right)^{2}+(h \cot 15)^{2}-2 \cdot h \cot 10 \cdot h \cot 15 \cdot \cos 130 \\
& =h^{2}\left[\cot ^{2} 10+\cot ^{2} 15-2 \cot 10 \cdot \cot 15 \cdot \cos 130\right] \\
\therefore h^{2} & =\frac{450}{\cot ^{2} 10+\cot ^{2} 15-2 \cot 10 \cdot \cot 15 \cdot \cos 130} \\
& \doteq 2762.5629 \cdots \\
\therefore h & \doteqdot 52.5600 \\
\therefore h & =52.6 \mathrm{~m}(1 \mathrm{~d} . \mathrm{p})
\end{aligned}
$$

13 (b) $\quad \ddot{x}=9(x-2)$
at $t=0, x=+4, v=-6$.

$$
\text { (i) } \left.\begin{array}{rl}
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =9 x-18 \\
\frac{1}{2} v^{2} & =\frac{9 x^{2}}{2}-18 x+c \\
\text { at } t=0, x=4, v & =-6 \\
\therefore \frac{1}{2} \cdot 36 & =\frac{9}{2} \cdot 16-18 \cdot 4+c \\
\therefore \quad \frac{1}{2} v^{2} & =\frac{9 x^{2}}{2}-18 x+18 \\
v^{2} & =9 x^{2}-36 x+36 \\
& =9\left(x^{2}-4 x+4\right) \\
\therefore \quad v^{2} & \therefore 9(x-2)^{2}
\end{array}\right]
$$

(II)

$$
\left.\begin{array}{rl}
V= \pm 3(x-2) \quad \text { But: wee } x=+4 \quad v=-6 \\
\therefore \quad v=-3(x-2) \\
\therefore \quad \frac{d x}{d t}=-3(x-2) \quad \therefore \quad \frac{d t}{d x}=-\frac{1}{3} \cdot \frac{1}{x-2} \\
\therefore \quad t=-\frac{1}{3} \ln (x-2)+c
\end{array}\right\}
$$

at $t=0, x=4$

$$
\begin{aligned}
\therefore \quad 0 & =-\frac{1}{3} \ln (2)+c \\
\therefore \quad t & =-\frac{1}{3} \ln (x-2)+\frac{1}{3} \ln 2 \\
& =\frac{1}{3}\left(\ln 2-\ln (x-2)=\frac{1}{3} \ln \left(\frac{2}{x-2}\right)\right. \\
\therefore \quad e^{3 t} & =\frac{2}{x-2} \\
\therefore \quad x-2 & =2 e^{-3 t} \\
\therefore x & =2+2 e^{-3 t}
\end{aligned}
$$

13 (c) were giver $\frac{d T}{d t}=-k(T-20)$.
(i) If $T=20+A e^{-k t}$, it $A e^{-k t}=T-20$, Them $\frac{d T}{d t}=-k A e^{-k t}$

$$
=-k(T-20)
$$

\therefore a solution.
(ii) Let $t=0$ at $10: 23 \mathrm{pm}$.
at $t=0, T=26.7$

$$
\begin{aligned}
\therefore \quad 26.7 & =20+A e^{0} \\
A & =6.7
\end{aligned}
$$

at $t=60, T=25.8$
(iii) We want t when $T=37$;

$$
\begin{aligned}
& \therefore \quad 37=20+6.7 e^{-k t} \\
& \therefore e^{-k t}=\frac{17}{6.7} \quad \therefore \quad-k t=\ln \left(\frac{17}{6.7}\right) \\
& \begin{aligned}
t=-\frac{1}{0.002404} \cdot \ln \left(\frac{17}{6.7}\right) & =-387.315 \text { mons. } \\
& =-6 \mathrm{~h}, 27.3 \text { min }
\end{aligned} \\
& =-6 \mathrm{~h}, 27.3 \mathrm{mins}
\end{aligned}
$$

$\therefore 3: 56 \mathrm{pm}$ was time 8 death.
(a) when $n=1$

$$
(1+x)^{1}-1=1+x-1=x
$$

which is divisible by x.
\therefore true for $n=1$
Assume true for $n=k$
is assume $(1+x)^{k}-1=M x$
for some integer M.

$$
\text { ie }(1+x)^{k}=M x+1
$$

Then for $n=k+1$,

$$
\begin{aligned}
& n=k+1, \\
&(1+x)^{k+1}-1=(1+x)(1+x)^{k}-1 \\
&=(1+x)(M x+1)-1 \text { by assumption } \\
&=(M x+1)+\left(M x^{2}+x\right)-1 \\
&=(M+1) x+M x^{2} \\
&=x(M+1+M x) \\
&=N x, N \text { anintege, as } M, x \text { are int ger. }
\end{aligned}
$$

\therefore true for $n=k+1$ if true for $n=k$.
Hence true by induction \#

2018 Y12 Ext. 1 Task 3 Suggested Solutions
14 (6) $x=t, \quad y=t^{2} \therefore$ carteriam qu is $y=x^{2}$

$$
\begin{aligned}
& t=-1 \Rightarrow \quad x=-1, y=1 \\
& t=2 \Rightarrow \quad x=2, y=4
\end{aligned}
$$

(i)
(ii)

$$
y=x^{2} \therefore \quad \frac{d y}{d x}=2 x!
$$

\therefore tangent at P is $\quad y-1=-2(x+1)$
Likewise, tangent at θ is $y-4=4(x-2)$
Solve simult. for R :

$$
\begin{aligned}
& \text { et. for } k: \\
& 1-2(x+1)=4+4(x-2) \\
& 1-2 x-2=4+4 x-8 \\
& \therefore \quad 6 x=3 \quad \therefore \quad x=\frac{1}{2}
\end{aligned}
$$

Thus $y=1-2\left(\frac{1}{2}+1\right)=1-3=-2$

$$
\therefore \quad R=\left(\frac{1}{2},-2\right)
$$

(iii)

Tangent at T is

$$
y-t^{2}=2 t(x-t)
$$

$$
\begin{gathered}
y-t^{2}=2 t(x-t) \\
M=\operatorname{Midpt} \eta Q R \text { is }\left(\frac{2+\frac{1}{2}}{2}, \frac{4-2}{2}\right)=\left(\frac{5}{4}, 1\right)
\end{gathered}
$$

M satisfies tangent at T

$$
\left.\begin{array}{l}
\therefore \quad 1-t^{2}=2 t\left(\frac{5}{4}-t\right) \\
4-4 t^{2}=10 t-8 t^{2} \\
4 t^{2}-10 t+4=0 \\
2 t^{2}-5 t+2=0, \quad(2 t-1)(t-2)=0
\end{array}\right] \sqrt{2}
$$

(b) (ii) eta.

But $t \neq 2$ (es t is 2 al
$\therefore t=\frac{1}{2}$ at T
tangent at is $y-t^{2}=2 t(x-t)$

$$
\left.\begin{array}{rl}
\therefore M_{\tau}=\text { gradient is } 2 t & =2\left(\frac{1}{2}\right)=1 . \\
M_{p Q}=\frac{4-1}{2+1}=1 \quad & \therefore M_{T}=M_{p Q} \text { as } \\
& \therefore \text { parallel. } \#
\end{array}\right]
$$

(c)

Let the line be $y=m x$.
\therefore when $x=1, y=m$ when $x=2, y=2 \mathrm{~m}$.

Thus shaded area is

$$
A=\frac{m+2 m}{2} \times 1=\frac{3 m}{2}
$$

\therefore remainio area is $1-\frac{3 m}{2}=\frac{2-3 m}{2}$
Thus we have

$$
\begin{aligned}
& \text { Thus we have } \\
& \qquad \begin{array}{l}
\frac{\frac{3 m}{2}}{\frac{2-3 m}{2}}=\frac{2}{1} \quad \text { or } \quad \frac{\frac{3 m}{2}}{\frac{2-3 m}{2}}=\frac{1}{2} \\
\therefore \quad 3 m=4-6 m \quad a m=2-3 m
\end{array}
\end{aligned}
$$

$$
m=\frac{4}{9} \quad \text { or } \quad m=\frac{2}{9}
$$

(i) We integrate along the y-axis:

Now, if $y=\sqrt{\frac{2-x}{x}}$ pen

$$
\begin{aligned}
& y^{2}= \frac{2-x}{x} \\
& \therefore \quad x y^{2}= 2-x \\
& x\left(y^{2}+1\right)= \therefore \quad x=\frac{2}{1+y^{2}} \\
& \therefore \quad \text { Area } A=\int_{y=0}^{y=k} \frac{2}{1+y^{2}} d y \quad 2\left[\tan ^{-1} y\right]_{0}^{k}
\end{aligned}
$$

$$
A=2 \tan ^{-1} k \text { units }^{2}
$$

(ii)

$$
\begin{aligned}
& \therefore \text { as } \quad k \rightarrow \infty, \\
& \\
& \quad \tan ^{-1} h \rightarrow \frac{\pi}{2} \\
& \therefore \quad A \rightarrow \pi \\
& \text { So } \lim _{k \rightarrow \infty} A=\pi \text { units }^{2} .
\end{aligned}
$$

