NORTH SYDNEY BoYs HIGH SCHOOL

2019 HSC ASSESSMENT TASK 3 (TRIAL HSC)

Mathematics
 Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Each new question is to be started on a new page.

Class Teacher:

(Please tick or highlight)
O Mr Berry
O Mr Ireland
O Dr Jomaa
O Ms Lee
O Mr Lin
O Ms Ziaziaris

- Attempt all questions

Student Number:

(To be used by the exam markers only.)

Question No	$1-10$	11	12	13	14	Total	Total
Mark	$\overline{10}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{70}$	$\overline{100}$

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

1. The acute angle between the lines with equations $y=3 x-2$ and $2 x-3 y+1=0$ is
A. $39^{\circ} 17^{\prime}$
B. $37^{\circ} 52^{\prime}$
C. $105^{\circ} 15^{\prime}$
D. $74^{\circ} 45^{\prime}$
2. Find the value of x

A. 80°
B. 160°
C. 100°
D. 200°
3. $\int \sin x \cos x d x=$
A. $\frac{1}{2} \sin 2 x+C$
B. $-\cos x \sin x+C$
C. $\frac{1}{2} \sin ^{2} x+C$
D. $\frac{1}{2} \cos ^{2} x+C$
4. Differentiate $x^{3} \log (\sqrt{x})$
A. $\frac{3 x^{2} \log x}{2}+\frac{x^{2}}{2}$
B. $\frac{1}{2} x^{2}$
C. $\frac{3 x^{2} \log x-x^{2}}{(\log x)^{2}}$
D. $\frac{5}{2} x^{\frac{3}{2}}$
5. A particle moving in simple harmonic motion has equation $x=2 \sin \frac{1}{2} t$ where x is the displacement of the particle after t seconds.
Find the speed of the particle when $x=\sqrt{3}$.
A. $\frac{1}{4}$
B. 1
C. $\frac{1}{2}$
D. 2
6. The graph of $y=2-\frac{x^{2}}{1-x^{2}}$
A.

C.

7. The general solution of $\sin 2 \theta=\sin \theta$ is
A. $2 n \pi \pm \frac{\pi}{3}$
B. $2 n \pi \pm \frac{\pi}{6}$
C. $n \pi$ or $2 n \pi \pm \frac{\pi}{3}$
D. $n \pi$ or $2 n \pi \pm \frac{\pi}{6}$
8. Evaluate $\lim _{x \rightarrow 0} \frac{\sin \frac{x}{2}}{3 x}$
A. 6
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{1}{6}$
9. If $y=\log _{1 / a}\left(\frac{1}{N}\right), a>0, N>0$ then which one of the following is true.
A. $y=\log _{a}(-N)$
B. $y=\log _{a}(N)$
C. $y=\log _{-a}\left(\frac{1}{N}\right)$
D. $y=\frac{\log _{1 / a} 1}{\log _{1 / a} N}$
10. The polynomial $P(x)=x^{3}+p x^{2}+q x+r$ has real roots $\sqrt{m}-\sqrt{m}$ and n. Find the value of $p q$.
A. 0
B. r
C. $-m n$
D. $-r$

Section II

60 marks

Attempt questions 11-14

Allow about 1 hour and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available. In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) A, B are the points $(-4,6)$ and $(1,-7)$ respectively. Find the coordinates of the point P dividing $A B$ externally in the ratio 2:3.
(b) Solve $\frac{3 x+4}{x-5} \geq 2$
(c) Find the domain and range of $y=2 \sin ^{-1} \frac{x}{3}$
(d) Differentiate $\sqrt{\sec x}$
(e) $\int_{4}^{16} \frac{1}{\sqrt{x}(4+x)} d x$ using $u=\sqrt{x}$. Leave answer in exact form.
(f) $\int_{0}^{\frac{\pi}{2}} \cos ^{2} 3 x d x \quad$ Leave answer in exact form.

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) Find the values of a for which $(x-a)$ is a factor of $x^{2}-(a+2) x+6$
(b) (i) Express $7 \cos \theta-\sin \theta$ in the form $R \cos (\theta+\alpha)$

$$
\begin{equation*}
\text { where } R>0 \text { and } 0^{\circ} \leq \alpha \leq 360^{\circ} . \tag{2}
\end{equation*}
$$

(ii) Hence, solve $7 \cos \theta-\sin \theta=5$ for $0^{\circ} \leq \theta \leq 360^{\circ}$
(c) If x_{1} is an approximation to the value $\sqrt[4]{m}$, show that a closer approximation is $\frac{3 x_{1}^{4}+m}{4 x_{1}^{3}}$, using Newton's Method.
(d) The acceleration of a particle moving in a straight line is given by

$$
\frac{d^{2} x}{d t^{2}}=2 x-3
$$

where x is the displacement, in metres, from the origin O and t is the time in seconds. Initially the particle is at rest at $x=4$.
(i) If the velocity of the particle is $v m / s$, show that $v^{2}=2\left(x^{2}-3 x-4\right)$. $\quad 2$
(ii) Show that the particle does not pass through the origin.
(iii) Determine the position of the particle when $v=10$. Justify your answer. 2
(e) Use the principle of mathematical induction to prove if n is a positive integer, that $n(n+3)$ is divisible by 2

Question 13 continues on the next page.

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) $\int \frac{d x}{\sqrt{9-4 x^{2}}}$
(b) In a certain University course, the rate of students dropping out of the course was proportional to the number N , still attending, in excess of 400 . This rate can be expressed by the equation $\frac{d N}{d t}=k(N-400)$, where t is the number of weeks and k is constant.
(i)Show that $N=400+A e^{k t}$ is a solution of this differential equation.
(ii) If 1000 students started the course and 10% had dropped out after 12 weeks, estimate the number of weeks it will take for half the students to remain.
(c) ABCD is a cyclic quadrilateral. The bisectors of the angles at A and C meet the circle again at E and F respectively.

Question 13 continues on the next page \qquad
(d)

The figure shows the net of an oblique pyramid with a rectangular base. In this figure, PXZYR is a straight line, $P X=15 \mathrm{~cm}, R Y=20 \mathrm{~cm}, A B=25 \mathrm{~cm}$, and $B C=10 \mathrm{~cm}$.

Further, $A P=P D$ and $B R=R C$.
When the net is folded, points P, Q, R and S all meet at the apex T, which lies vertically above the point Z in the horizontal base, as shown below.

(i)Show that $\triangle T X Y$ is right angled.
(ii) Hence show that T is 12 cm above the base. 2
(iii) Hence find the angle that the face $D C T$ makes with the base.
(e)(i) Sketch the parabola whose parametric equations are $x=t$ and $y=t^{2}$.

On your diagram mark the points P and Q which correspond to $t=-1$ and $t=2$ respectively.
(ii) Show that the tangents to the parabola at P and Q intersect at $R\left(\frac{1}{2},-2\right)$.
(iii) Let $T\left(t, t^{2}\right)$ be the point on the parabola between P and Q such that the tangent at T meets $Q R$ at the midpoint of $Q R$. Let the midpoint be M. Show that the tangent at T is parallel to $P Q$.

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) A particle moves such that $x=\frac{3(\cos 2 t-\sin 2 t)}{\sqrt{2}}$ where x represents displacement in metres and t represents time in seconds.
(i)Show that the particle is moving in simple harmonic motion.
(ii) Find the period of the motion.
(iii) Show that $x=0$ when $t=\frac{\pi}{8}$.
(iv) Find the amplitude of the motion.
(b) A flagpole 12 m high stands on the top of a building 20 m high. The flagpole subtends an angle of θ at a point P on the ground and the distance from P to the building is x metres.

(i) Show that $\theta=\tan ^{-1}\left(\frac{12 x}{x^{2}+640}\right)$
(ii) Find x that makes θ a maximum.

Question 14 continues on the next page.
(c) A frustum of height H is made by cutting off a hexagonal pyramid of base IJKLMN with side length b from a regular hexagonal pyramid of base $A B C D E F$ with side length a. It is given that the volume of the frustum is $\frac{\sqrt{3}}{2}\left(a^{2}+a b+b^{2}\right) H$

An empty glass in the form of an inverted frustum described above with the height 10 cm , the side of the base and the top are 3 cm and 4 cm respectively. Water is being poured into the glass. Let h be the depth of the water inside the glass at time t seconds where $0 \leq h \leq 10$.

i. Show that the volume $V c m^{3}$ of water inside the glass at time t is given by

$$
V=\frac{\sqrt{3}}{2000}\left(27000 h+900 h^{2}+10 h^{3}\right)
$$

ii. If the volume of the water in the glass is increasing at the rate $7 \mathrm{~cm}^{3} / \mathrm{s}$, find the rate of increase of depth of water at the instant when $\mathrm{h}=5 \mathrm{~cm}$.

Yr 12 Solutions Ext 1 Task 32019
M / C
1.B
2.B
3. C
4. A
5.C
6. A
7. C
8.D
9. B
$10 B$.
(11.) a) $\left.\begin{array}{c}x_{1}, y_{1} \\ 4,6\end{array}\right)$

$$
\begin{aligned}
& m=-2 \\
& n=3 .
\end{aligned}
$$

$$
P(x, y)=\left(\frac{n x_{1}+m x_{2}}{m+n}, \frac{n y_{1}+m y_{2}}{m+n}\right)
$$

$$
=\frac{+3(-4)-2}{1}(1), \frac{3(6)-2(-7)}{1}
$$

$$
=(-14,32)
$$

$$
\begin{aligned}
& \text { b) }(3 x+4)(x-5)-2(x-5)^{2} \geqslant 0 \text {. } \\
& (x-5)[3 x+4-2(x-5)] \geqslant 0 \\
& (x-5)[x+14] \geqslant 0 \\
& x \leqslant-14 \text { or } x>5 \quad x \neq 5 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
\text { c) } & y=2 \sin ^{-1} \frac{x}{3} \\
D: & -1 \leqslant \frac{x}{3} \leq 1 \\
& -3 \leqslant x \leqslant 3
\end{aligned}
$$

$R:-\frac{\pi}{2} \leqslant \frac{y}{2} \leqslant \frac{\pi}{2}$

$$
-\pi \leqslant y \leq \pi
$$

d)

$$
\begin{aligned}
\text { Let }_{y} & =(\sec x)^{\frac{1}{2}} \\
y & =\frac{1}{(\cos x)^{\frac{1}{2}}} \\
y & =(\cos x)^{-1 / 2} \\
\frac{d y}{d x} & =-\frac{1}{2}(\cos x)^{-3 / 2} \cdot-\sin x \quad \text { ok } . \\
& =\frac{\sin x}{2(\cos x)^{3 / 2}} \\
& =\frac{\sin x}{2 \sqrt{\cos ^{3} x}}=\left(\frac{1}{2} \tan x \sqrt{\sec x}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
\text { e) } \int_{4}^{16} \frac{1}{\sqrt{x}(4+x)} d x & \begin{array}{l}
u=\sqrt{x} \\
u
\end{array}=x^{\frac{1}{2}} \\
=2 \int_{4}^{16} \frac{1}{2 \sqrt{x}(4+x)} d x & \begin{array}{l}
d u=\frac{1}{2} x^{-1 / 2} d x \\
=2 \int_{2}^{2 \sqrt{x}} d x
\end{array} \\
=2 \times \frac{d u}{4+u^{2}} & \begin{array}{l}
x=4, u=2 \\
x=16
\end{array} \\
\left.=\tan ^{-1} \frac{u}{2}\right]_{2}^{4} & \\
=\tan ^{-1} 2-\tan ^{-1} 1 & \\
=\tan ^{-1} 2-\pi / 4
\end{array}
$$

$$
\text { f) } \begin{array}{ll}
\int_{0}^{\pi / 2} \cos ^{2} 3 x d x . & \cos 6 x=2 \cos ^{2} 3 x-1 \\
\int_{0}^{\pi / 2} \frac{\cos 6 x+1}{2} d x & \frac{\cos 6 x+1}{2}=\cos ^{2} 3 x \\
\frac{1}{2}\left[\frac{\sin 6 x}{6}+x\right]_{0}^{\pi / 2} & \\
=\frac{1}{2}\left[\frac{\sin 3 \pi}{6}+\frac{\pi}{2}-0\right] & \\
=\frac{1}{2}\left[0+\frac{\pi}{2}\right] &
\end{array}
$$

(12)
a)

$$
\text { Let } \begin{aligned}
P(x) & =x^{2}-(a+2) x+6 \\
P(a) & =0 \\
0 & =a^{2}-(a+2) a+6 \\
0 & =a^{2}-a^{2}-2 a+6 \\
2 a & =6 \\
a & =3
\end{aligned}
$$

b) (i)

$$
\begin{array}{rlrl}
7 \cos \theta-\sin \theta & =R \cos (\theta+a) & \\
& =R \cos \theta \cos a-R \sin \theta \sin a \\
\therefore R \cos a=7 & & R^{2}=50 \\
R \sin a & =1 & R=5 \sqrt{2} \\
\tan a & =\frac{1}{7} & \\
a & =\tan ^{-1} \frac{1}{7}=88^{\prime} & \\
\therefore 7 \cos \theta-\sin \theta & =5 \sqrt{2} \cos \left(\theta+8^{\prime} 8^{\prime}\right)
\end{array}
$$

(ii)

$$
\begin{aligned}
5 \sqrt{2} \cos \left(\theta+8^{\circ} 8^{\prime}\right) & =5 \\
\cos \left(\theta+8^{\circ} 8^{\prime}\right) & =\frac{1}{\sqrt{2}} \\
\theta+8^{\circ} 8^{\prime} & =45^{\circ} 315^{\circ} \\
\theta & =36^{\circ} 52^{\prime}, 306^{\circ} 52^{\prime}
\end{aligned}
$$

c) Let $x=\sqrt[4]{\mathrm{m}}$

$$
\begin{aligned}
& \therefore x^{4}=m \\
& x^{4}-m=0 \\
& \text { Lot } f(x)=x^{4}-m \\
& f^{\prime}(x)=4 x^{3} \\
& x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
& x_{2}=x_{1}-\frac{x_{1}^{4}-m}{4 x_{1}^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& x_{2}=\frac{4 x_{1}^{4}-x_{1}^{4}+m}{4 x_{1}^{3}} \\
& x_{2}=\frac{3 x_{1}^{4}+m}{4 x_{1}^{3}}
\end{aligned}
$$

d)

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}=2 x-3 \\
& \frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=x \\
& \frac{1}{2} v^{2}=\int(2 x-3) d x \\
& \frac{1}{2} v^{2}=x^{2}-3 x+c \\
& v=0, x=4 \\
& 0=16-12+c \\
& \therefore c=-4 \\
& \frac{1}{2} v^{2}=x^{2}-3 x-4 \\
& v^{2}=2\left(x^{2}-3 x-4\right)
\end{aligned}
$$

(ii) Let $x=0$

$$
\begin{aligned}
& v^{2}=2(0-0-4) \\
& v^{2}=-8
\end{aligned}
$$

which is not poss.
\therefore Particle does not pass through origin.
(iii)

$$
\begin{aligned}
& 10^{2}=2\left(x^{2}-3 x-4\right) \\
& 50=x^{2}-3 x-4 \\
& 0=x^{2}-3 x-54 \\
& 0=(x-9)(x+6) \\
& \therefore x=9 \text { or } x=-6 .
\end{aligned}
$$

Since particle starts at $x=4$ from rest and does not pass through origin, then only solution is $x=9$.
(iv) Step 1. Prove true for $n=1$ $1(1+3)=4$ which is div. by 2
\therefore True for $n=1$
Step 2: Assume true for $n=k$ ie. $k(k+3)=2 m$ for a DDs integer m ie. $k^{2}+3 k=2 m$

Step 3: Prove true for $n=k+1$
ie - $(k+1)(k+4)$ is div by 2

$$
\begin{aligned}
(k+1)(k+4) & =k^{2}+5 k+4 \\
& =k^{2}+3 k+2 k+4 \\
& =2 m+2 k+4 \quad \text { from step } 2 \text { assumption } \\
& =2(n+k+2) \\
\therefore & \text { Tinefor } n=k+1
\end{aligned}
$$

Step 4. By principle of mathematical induethen true for all positive integers.
13.a)

$$
\begin{aligned}
& \int \frac{d x}{\sqrt{9-4 x^{2}}} \\
& \int \frac{d x}{\left.\sqrt{4\left(\frac{9}{4}-x^{2}\right.}\right)} \\
&= \frac{1}{2} \int \frac{d x}{\sqrt{\frac{9}{4}-x^{2}}} \\
&= \frac{1}{2} \sin ^{-1} \frac{2 x}{3}+C
\end{aligned}
$$

b)

$$
\begin{aligned}
& \frac{d N}{d t} \propto N \\
& \frac{d N}{d t}=k(N-400)
\end{aligned}
$$

d)

$$
\begin{aligned}
& N=400+A e^{k t} \\
& \frac{d N}{d t}=k \cdot A e^{k t} \\
&= k(N-400) \text { snce } N=400+A e^{k t} \\
& A e^{k t}=N-400
\end{aligned}
$$

$$
\text { (ii) } \begin{aligned}
& t=0, N=1000 \\
& t=12, N=900 \\
& t=? N=500 \\
& N=400+A e^{k t} \\
& 1000=400+A e^{0} \\
& A=600 \\
& \therefore N=400+600 e^{k t} \\
& 900=400+600 e^{12 k} \\
& \frac{500}{600}=e^{12 k} \\
& \frac{1}{12} l n \frac{5}{6}=k
\end{aligned}
$$

$$
\begin{aligned}
& \therefore N=400+600 e^{\frac{1}{12} \ln 5 / 6 t} \\
& 500=400 \frac{1}{600} e^{\frac{1}{12} \ln 5 / 6 t} \\
& \frac{100}{600}=e^{1 / 2 \ln 5 / 6 t} \\
& \ln \frac{1}{6}=\frac{t}{12} \ln \frac{15}{6} \\
& 12 \frac{\ln \frac{1}{6}}{\ln 5 / 6}=t \quad t=117.9 \text { weeks }
\end{aligned}
$$

6)

Let $\angle D A E=\angle B A E=x$
and $\angle F C D=\angle F C B=y$.
$\begin{array}{ll}2 x+2 y & =180 \text {. (opposite angles of cyclic quad }\end{array}$ Join $A F y=90$. are supplementary $\angle B C F=\angle F A B=y$. Tangles in same segment standing on same are are. equal)

$$
\begin{aligned}
\therefore \angle F A E & =x+y \\
& =90^{\circ}
\end{aligned}
$$

$=90^{\circ} \therefore F E$ is diameter (angle in a semicircle).
d) i) If rightangled then from converse of

$$
\begin{aligned}
x y^{2} & =x T^{2}+T y^{2} \\
\text { CHS } & =25^{2} \\
& =625 \\
\text { CHS } & =15^{2}+20^{2} \\
& =225+400 \\
& =625 \\
\text { CHS } & =\text { RUS }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\tan \theta & =\frac{20}{15}=\frac{4}{3} \\
\theta & =\tan ^{-1} \frac{4}{3} \\
\therefore \sin \theta & =\frac{h}{15} \\
h & =15 \sin \left(\tan ^{-1} \frac{4}{3}\right) \\
h & =12
\end{aligned}
$$

ok using simitar Δ^{\prime} s.
(iii) Lot the angle be θ

$$
\begin{aligned}
\tan \theta & =\frac{12}{5} \\
\theta & =\tan ^{-1} \frac{12}{55} \\
& =67^{\circ} 23^{\prime}
\end{aligned}
$$

C) $x=t, y=t^{2}$
(i) $\therefore y=x^{2}$

$P(-1,1)$
$Q(2,4)$
(ii)

$$
\begin{aligned}
& y=x^{2} \\
& \frac{d y}{d x}=2 x
\end{aligned}
$$

At $x=-1$
Af $x=2$

$$
\frac{d y}{d x}=-2
$$

$$
\frac{d y}{d x}=4
$$

mof PR: $y-1=-2(x+1)$

$$
\begin{aligned}
& y=-2 x-1 \\
& : y=-2 x-1 \\
& y=4 x-4
\end{aligned}
$$

$$
y-4=4 x-8
$$

$$
y=4 x-4
$$

$$
\begin{aligned}
& \therefore \quad 4 x-4=-2 x-1 \\
& 6 x=3 \\
& x=\frac{1}{2} \\
& \therefore y=-2 \\
& \angle R\left(\frac{1}{2},-2\right)
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \frac{d y}{d x}=2 x \\
& A+T\left(t, t^{2}\right) \\
& \frac{d y}{d x}=2 t .
\end{aligned}
$$

Equin of tang-at T.

$$
y=2 t x-t^{2}
$$

Let $m=$ Midpt $2 R$

$$
\begin{aligned}
& =\left(\frac{2+\frac{1}{2}}{2}, \frac{4-2}{2}\right) \\
& =\left(\frac{5}{4}, 1\right)
\end{aligned}
$$

Sub Minto equ'n of tang. at T.

$$
\begin{aligned}
& 1=2 t\left(\frac{5}{4}\right)-t^{2} \\
& 1=\frac{5 t}{2}-t^{2} \\
& 2=5 t-2 t^{2} \\
& 2 t^{2}-5 t+2=0 \\
& 2 t X_{-2}^{-1} \\
& (2 t-1)(t-2)=0 \\
& \sim t=\frac{1}{2}, t=2 \\
& \text { But } Q, t=2 \\
& \therefore T: t=\frac{1}{2}
\end{aligned}
$$

But in of tangat

$$
\begin{aligned}
& =2 t \\
& =1
\end{aligned}
$$

$$
m \text { of } P Q=4-1 / 2+1=1
$$

\therefore tanget at T is parallel to PQ.
(4)
a) (i)

$$
\text { (xi) } \begin{aligned}
x & =\frac{3(\cos 2 t-\sin 2 t)}{\sqrt{2}} \\
\dot{x} & =\frac{3}{\sqrt{2}}(-2 \sin 2 t-2 \cos 2 t) \\
\ddot{x} & =\frac{3}{\sqrt{2}}(-4 \cos 2 t+4 \sin 2 t) \\
& =-4 \cdot \frac{3}{\sqrt{2}}(\cos 2 t-\sin 2 t)
\end{aligned}
$$

$\ddot{x}=-4 x$ which takes the form $\ddot{x}=-n^{2} x$ where $n=2$
(ii) $T=\frac{2 \pi}{n}=\frac{2 \pi}{2}=\pi$ seconds
(iii) $\operatorname{Sub} t=\frac{\pi}{8}$ into x

$$
\begin{aligned}
& x=\frac{3\left(\cos \frac{\pi}{4}-\sin \frac{\pi}{4}\right)}{\sqrt{2}} \\
& x=\frac{3}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right) \\
& x=0
\end{aligned}
$$

(iv)

Amplitude occurs at

$$
t=\frac{\pi}{8}+\frac{\pi}{4}=\frac{3 \pi}{8}
$$

(Since $x=0$ is centre of motrin)
Sub $t=\frac{3 \pi}{8} \operatorname{ing} x$

$$
\begin{aligned}
x & =\frac{3}{\sqrt{2}}\left(\cos \frac{3 \pi}{4}-\sin \frac{3 \pi}{4}\right) \\
& =\frac{3}{\sqrt{2}}\left(-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right) \\
& =\frac{3}{\sqrt{2}} \times \frac{-2}{\sqrt{2}}=-3 \quad \therefore \text { Amplitude }=3
\end{aligned}
$$

$\frac{\pi}{4}$ seconds to go from centre to endpt as pared $=\pi$.

OK let $v=0$

$$
\begin{aligned}
& \frac{3}{\sqrt{2}}(-2 \sin 2 t-2 \cos 2 t)=0 \\
& -2 \sin 2 t=2 \cos 2 t \\
& \tan 2 t=-1 \\
& 2 t=\pi-\frac{\pi}{4}, 2 \pi-\frac{\pi}{4} \\
& 2 t=\frac{3 \pi}{4}, \frac{2 \pi}{4} \\
& t=\frac{3 \pi}{4}, \frac{2 \pi}{8}
\end{aligned}
$$

$$
\operatorname{sub} t=\frac{3 \pi}{8}
$$

$$
x=\frac{3\left(\cos \frac{3 \pi}{4}-\sin \frac{3 \pi}{4}\right)}{\sqrt{2}}
$$

$$
x=\frac{3}{\sqrt{2}}\left(-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right)
$$

$$
x=\frac{3}{\sqrt{2}}-\frac{-2}{\sqrt{2}}
$$

$x^{2}-3 \quad$ Ampitude $=3$
(b) (i) $\ln \triangle P B C$

$$
\begin{aligned}
& \text { L Let } \angle B P C=\alpha \\
& \tan \alpha=\frac{20}{x}
\end{aligned}
$$

tax $\ln \triangle A P B$

$$
\begin{aligned}
& \tan (\alpha+\theta)=\frac{32}{x} \\
& \frac{\tan \alpha+\tan \theta}{1-\tan \alpha \tan \theta}=\frac{32}{x} \\
& \frac{\frac{20}{x}+\tan \theta}{1-\frac{20}{x} \cdot \tan \theta}=\frac{32}{x} \\
& \frac{20+x \tan \theta}{x} \\
& \frac{x-20 \tan \theta}{x}=\frac{32}{x} \\
& x(20+x \tan \theta)=32(x-20 \tan \theta) \\
& 20 x+x^{2} \tan \theta=32 x-640 \tan \theta \\
& x^{2} \tan \theta-12 x+640 \tan \theta=0 \text {. } \\
& \tan \theta\left(x^{2}+640\right)=12 x \text {. } \\
& \tan \theta=\frac{12 x}{x^{2}+640} \\
& \theta=\tan ^{-1}\left(\frac{12 x}{x^{2}+640}\right)
\end{aligned}
$$

(i)

$$
\begin{aligned}
\frac{d \theta}{d x} & =\frac{1}{1+\frac{(12 x)^{2}}{\left(x^{2}+640\right)^{2}}} \times \frac{\left(x^{2}+640\right) \cdot 12-12 x(2 x)}{\left(x^{2}+640\right)^{2}} \\
& =\frac{\left(x^{2}+640\right)^{2}}{\left(x^{2}+640\right)^{2}+144 x^{2}} \times \frac{12\left(x^{2}+640-2 x^{2}\right)}{\left(x^{2}+640\right)^{2}} \\
& =\frac{12\left(640-x^{2}\right)}{\left(x^{2}+640\right)^{2}+144 x^{2}}
\end{aligned}
$$

Let $\frac{d \theta}{d x}=0$

$$
\begin{aligned}
& 12\left(640-x^{2}\right)=0 . \\
& x^{2}=640 \\
& x=8 \sqrt{10} \quad x \geqslant 0
\end{aligned}
$$

Test $x=8 \sqrt{10}$

$$
\begin{array}{c|ccc}
x & 25 & 8 \sqrt{10} & 26 \\
\frac{d \theta}{d x} & 12 \times 15 & 0 & 12 x-36 \\
+ & & -
\end{array}
$$

signchange \therefore max et $x=8 \sqrt{10}$
(i)

Using similar triangles

$$
\frac{x}{1}=\frac{h}{10}
$$

$H=h$

$$
x=\frac{h}{10}
$$

$a=3+\frac{h}{10}$

$$
b=3
$$

$$
\begin{aligned}
& V=\frac{\sqrt{3}}{2}\left(\left(3+\frac{h}{10}\right)^{2}+3\left(3+\frac{h}{10}\right)+9 \ldots\right) h \\
& =\frac{h \sqrt{3}}{2}\left(9+\frac{6 h}{10}+\frac{h^{2}}{100}+9+\frac{3 h}{10}+9\right) \\
& =\frac{h \sqrt{3}}{2}\left(\frac{900+60 h+h^{2}+900+30 h+900}{100}\right) \\
& =\frac{h \sqrt{3}}{2}\left(\frac{2700+90 h+h^{2}}{100}\right) \\
& =\frac{\sqrt{3}}{2}\left(\frac{2700 h+90 h^{2}+h^{3}}{100}\right) \times \frac{10}{10} \\
& V=\frac{\sqrt{3}}{2000}\left(27000 h+900 h^{2}+10 h^{3}\right)
\end{aligned}
$$

(ii) $\frac{d V}{d t}=7$

$$
\frac{d h}{d t}=\frac{d V}{d t} x \frac{d h}{d V}
$$

$$
\begin{aligned}
& \frac{d V}{d h}=\frac{\sqrt{3}}{200}\left(27000+1800 h+30 h^{2}\right) \\
& \frac{d h}{d l}=7 \times \frac{2000}{\sqrt{3}\left(27000+1800 h+30 h^{2}\right)}
\end{aligned}
$$

\qquad
When $h=5$
\qquad

