2007
TRIAL HSC EXAMINATION

## Mathematics Extension 1

## General Instructions

- Reading Time -5 minute
- Working Time -2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total Marks - 84
Attempt Questions 1-7 All questions are of equal value

At the end of the examination, place you At the end of the examination, place your question paper on top. Submit one bundle. The bundle will be separated before markin commences so that anonymity will be commences
maintained.

Teacher: $\qquad$
Student Name:
$\qquad$

| QUESTION | MARK |
| :---: | ---: |
| 1 | $/ 12$ |
| 2 | $/ 12$ |
| 3 | 112 |
| 4 | 112 |
| 5 | 112 |
| 6 | 112 |
| 7 | 112 |
| TOTAL | 184 |

## Total Marks - 84

Attempt Questions 1-7
All questions are of equal value
Begin each question in a SEPARATE writing booklet. Extra writing booklets are available.

## Question 1 (12 Marks) Use a SEPARATE writing booklet

## Marks

(a) Indicate the region on the number plane satisfied by $y \geq|2 x-5|$.
(b) Differentiate $5 x \tan ^{-1} x$ with respect to $x$.
(c) Solve the inequality $\frac{x+4}{x-3} \leq 2$.
(d) Use the substitution $u=16-x^{2}$ to find $\int_{0}^{2} x \sqrt{16-x^{2}} d x$.
(e) The interval $A B$ has endpoints $A(3,2)$ and $B(4,5)$. Find the coordinates 2 of the point $P$ which divides the interval $A B$ externally in the ratio of $3: 4$.

Question 2 (12 Marks) Use a SEPARATE writing booklet
(a) Evaluate $\lim _{x \rightarrow 0}\left(\frac{\sin 4 x}{5 x}+\cos x\right)$.
(b) The security lock of a building has 12 buttons labelled as shown.


Each person using the lock is given a 4 letter access code.
(i) How many different access codes are possible if the letters can be repeated and their order is important?
(ii) How many different access codes are possible if letters cannot be repeated and their order is important?
(iii) Now suppose that the lock operates by holding 4 buttons down together, so that the order is not impotant. How many different access codes are possible?
(c)


The diagram shows the graph of the parabola $x^{2}=4 a y$. The tangent to the parabola at $p\left(2 a p, a p^{2}\right)$ cuts the $x$-axis at $T$. The normal to the parabola at $P$ cuts the $y$-axis at $N$
(i) Show that the equation of the tangent at $P$ is $y=p x-a p^{2}$ and find the coordinates of 7 .
(ii) Show that the coordinates of $N$ are $\left(0, a\left(p^{2}+2\right)\right)$.
(iii) Let $M$ be the midpoint of $N T$. Find the Cartesian equation of the locus 3 of $M$ and describe this locus geometrically.

## Question 3 (12 Marks) Use a SEPARATE writing booklet

(a) When the polynomial $P(x)$ is divided by $x^{2}-5 x+6$, the remainder is $5 x+2$.
(b) Show that the expression

$$
\frac{\sin 3 \theta}{\sin \theta}-\frac{\cos 3 \theta}{\cos \theta} ; \quad \sin \theta \neq 0, \quad \cos \theta \neq 0
$$

is independent of $\theta$.
(c) Find the derivative of $\log _{z}(\cos x)$. Hence find the area enclosed by the curve

$$
y=\tan x, \text { the } x \text {-axis and the lines } x=0 \text { and } x=\frac{\pi}{3} \text {. }
$$

(d) A plane is observed in the air at point $P, 500$ metres above ground level. An observer standing at $A$ observes the plane at an angle of elevation of $32^{\circ}$. A second observer at $B$ observes the angle of elevation of the plane to be $24^{\circ}$. $A$ is due East of $Q . B$ is $S 42^{\circ} E$ of $Q$


Diagram not to scale

Calculate the distance from $A$ to $B$. Answer to the nearest metre

Question 4 (12 Marks) Use a SEPARATE writing booklet

## Marks

(a) $A B$ and $C D$ are intersecting chords of a circle. $C D$ is parallel to the tangent to the circle at $B$.

(i) Copy this diagram into your writing booklet.
(ii) Prove that $A B$ bisects $\angle C A D$
(b) Using the substitutions for $t=\tan \frac{\theta}{2}$, solve the equation
$3 \cos \theta+5 \sin \theta=4,0 \leq \theta \leq 2 \pi$
(c) Use the principle of mathematical induction to prove that

## Question 5 ( 12 Marks) Use a SEPARATE writing booklet

Marks
(a) Solve the polynomial equation $x^{3}-12 x^{2}+12 x+80=0$ if the roots of this equation are in arithmetic progression.
(b) The function $g(x)$ is given by $g(x)=\sin ^{-1} x+\cos ^{-1} x, 0 \leq x \leq 1$
(i) Find $g^{\prime}(x)$
(ii) Sketch the graph of $y=g(x)$
(c) An egg at room temperature, $20^{\circ} \mathrm{C}$ is placed in a saucepan of boiling water which is maintained at $100^{\circ} \mathrm{C}$. When the egg has been in the boiling water for $t$ minutes the internal temperature of the egg is $T^{\circ} \mathrm{C}$. The rate at which the internal temperature of the egg rises is proportional to the difference between the egg's internal temperature and that of the boiling water i.e. $T$ satisfies the equation

$$
\frac{d T}{d t}=k(T-100), \text { where } k \text { is a constant. }
$$

(i) Show that $T=100+A e^{6}$ satisfies the equation.
(ii) The internal temperature of the egg rises to $60^{\circ} \mathrm{C}$ after 10 minutes. Find the values of $A$ and $k$.
(iii) How long does it take for the internal temperature of the egg to reach $90^{\circ} \mathrm{C}$ ?
(iv) What would happen to the internal temperature of the egg if the egg was left 2 in the boiling water indefinitely? Justify your answer.

## Question 6 (12 Marks) Use a SEPARATE writing booklet

(a) Grain is poured at a constant rate of 6 cubie metres per minute. It forms a conical pile, with the semi-vertical angle of the cone equal to $60^{\circ}$. The height of the pile pile, with the semi-vertical angle of the cone equ


Diagram not to scale
(i) Show that $r=\sqrt{3} h$. 1
(ii) Find an expression for the volume of the pile. 1
(iii) Hence find the rate at which the height of the pile is increasing when the $\mathbf{2}$ height of the pile is 3 metres.
(b) Consider the function $f(x)=(x-1)^{2}-4, x \geq 0$
(i) Sketch the function showing clearly any intercepts and the coordinates of its vertex, using the same scale on the $x$ and $y$ axes.
(ii) What is the largest domain, containing $x=2$, for which the function has an inverse function $f^{-1}(x)$ ?
(iii) What is the domain of the inverse function $f^{-1}(x)$ ?
(iv) Sketch the graph of $y=f^{-1}(x)$ on the same set of axes as part (i). 1
(v) Find the equation of the inverse function as a function of $x$. 2
(vi) Find the $x$-coordinate of the point of intersection of the two curves $y=f(x) \quad 2$ and $y=f^{-1}(x)$.

## Marks

(a) The region enclosed by the curve $y=\sin ^{-1} x$ and the $y$-axis between $x=0 \quad 5$ Marks and $x=\frac{\sqrt{3}}{2}$ is rotated about the $y$-axis to form a solid. Find the volume of this solid.
(b) Let each different arrangement of all the letters of the word "DELETED" be considered a word.
(i) How many words are possible altogether? 1
(ii) In how many ways can the three Es be together? 1
(iii) Show that there are 240 ways that two Es can be together and one separate. 3
(iv) What is the probability that all the Es are apart?

## End of paper

## STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE : } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$



Question 2
y) $\lim _{x \rightarrow 0} \frac{\sin 4 x}{4 x 1} \times \frac{4}{5}+\cos x$
$=1 \times 4+1$
$=14 / 5$

b) (i) ${ }^{122^{4}}$| (ii) $P^{12}$ | $(20736)$ |
| :--- | :--- |
| (iii) ${ }^{12} C_{4}$ | $(11880)$ |
|  | $(495)$ |

$$
\begin{aligned}
& \text { ai) } \begin{aligned}
y & =\frac{d a}{a \alpha} \\
\frac{d y}{d x} & =\frac{x}{2 a} \\
x=2 a p, \frac{d y}{d x} & =\frac{2 a p}{2 a} \\
= & =p \\
y-a p^{2} & =p(x-2 a p) \\
y-a p^{2} & =p x-2 a p^{2} \\
y & =p x-a p^{2}
\end{aligned}
\end{aligned}
$$

$$
\text { For } T \Rightarrow y=0
$$

$$
\begin{aligned}
& T \Rightarrow y=0 \\
& 0=p x=-a p^{2}
\end{aligned}
$$

$$
\begin{aligned}
& p x=a p^{2} \\
& x=a p
\end{aligned}
$$

$$
\begin{gathered}
x=\alpha p \\
T(a p, o)
\end{gathered}
$$

(ii) Gradient $\varepsilon_{q, n}$ of of normal io EqM of normal at $p$

For $N \Rightarrow x=0$ $y-a p^{2}=-\frac{1}{p}(-2 a p)$

$$
\begin{aligned}
& y-a p^{2}=2 a \\
& y=\alpha p^{2}+2 a \\
&=a\left(p^{2}+2\right) \\
& \therefore N\left(0, a\left(p^{2}+2\right)\right)
\end{aligned}
$$

$\begin{aligned} \text { (iii) } & M \\ x=\frac{a p+0}{2} & y=\frac{o+a\left(p^{2}+2\right)}{2} \\ x=\frac{a p}{2} & y=\frac{a\left(p^{2}+2\right)}{2} \\ \Rightarrow p=\frac{2 x}{a} & \end{aligned}$
$\begin{aligned} y & =\frac{a}{2}\left(\left(\frac{2 x}{2}\right)^{2}+2\right) \\ & \left.=\frac{2}{2}\left(\frac{4 x}{a}\right)^{2}+2\right)\end{aligned}$
$y=\frac{2 x^{2}}{2}+a$
$a y=2 x^{2}+a^{2}$
$2 x^{2}=a y-a^{2}$
$2 x^{2}=a(y-a)$
$x^{2}=\frac{1}{2} a(y-a)$
$4 A=\dot{\lambda} \cdot$
$A=\frac{1}{82}$
This is a parabotio with
vertex $(0, \infty)$ and

$P(2)=(2-3)(2-2) Q(2)+(5(2)+2)$
$0+12$
12
b)

```
-\operatorname{sin}30
```

- $\sin 3 \theta \cos \theta-\cos 3 \theta \sin \theta$ $\sin \theta \cos \theta$
$=\frac{\sin (3 \theta-\theta)}{\sin \theta \cos \theta}$
$=\frac{\sin 2 \theta}{\sin \theta \cos \theta}$
$=\frac{2 \sin \theta \cos \theta}{\sin \theta \cos \theta}$
$=2$
which
c) $\frac{d}{d x}\left(\log _{e}(\cos x)\right) d \alpha$

$\Rightarrow A D \int_{0}^{I} \tan x d x$
$=[-\log .(\cos x)]_{6}^{\frac{\pi}{3}}$
$=\left(-\log _{2} \cos \frac{\pi}{3}\right)-\left(-\log _{e} \cos 0\right)$
$=\left(-\log _{2} \frac{1}{2}\right)-\left(-\log _{1} 1\right)$
$=\left(-\log _{x} \frac{1}{2}\right)-\left(-\log _{e} 1\right)$
$=-\log _{e} \frac{1}{2}+0$
$=\log _{\log _{e} 2} 2$
d) $\frac{500}{Q A}=\tan 32^{\circ}$
$Q_{A}=\frac{500}{\tan 32^{\circ}}$
$\frac{500}{Q B}=\tan 24^{\circ}$
$Q B=\frac{500}{\tan 2 t^{\circ}}$
$A B^{2}=Q B^{2}+Q B^{2}-2(Q A)(B B) \cos 48^{\circ}$ $A B \doteqdot 835.986$.

Thitance is approxemately

| Question 4 |  |
| :---: | :---: |
| a) Join $A C, A D, D B$ let $\angle D B Q=\theta$ | c) Show true for $n-1$ $4^{\prime}+14=18$ |
| $\angle B A D=\theta$ augle between ar. | which is aminnible by 6 . |
| tangent a chord ot tha point | Assume true for $n=k$ ce |
| of contact is equal to the amgle in the alternate sagment. | $4^{k}+14=6 M$ where Mis anintege |
| $\angle C D B=\theta$ olternate angles equal $C D \\| P Q$ | Prove true for nom ket 1 ce $4^{k+1}+14=6 \mathrm{~N}$ where N is an. untrger |
| $\angle C A B=\angle C D B$ angles standing on the wome arc are equari. | $\begin{aligned} \text { LHS } & =4+4^{+1} \\ & =4 \cdot 4^{*}+14 \\ & =4\left(4^{k}+14\right)-3 \times 14 \\ & =4(6 M)-42 \end{aligned}$ |
| $\therefore \angle C A B=\angle B A D$ beth $\theta$ | $=6(4 M-7)$ <br> which is a multiple of 6 |
| $\therefore A B$ biocets LCAD | Suncer true for $u=1$ and |
| b) $\begin{aligned} & 3 \cos \theta+5 \sin \theta=4 \\ & 3 \times \frac{1-t^{2}}{1+t^{2}}+5 \times \frac{2 t}{1+t^{2}} \times 4\end{aligned}$ | proved trase for $n \cdots k_{n}+1$ whem asoumed trwe for $n=k$, it follows to doe treve for |
| $\begin{aligned} 3\left(1-t^{2}\right)+6(2 t) & =4\left(1+t^{2}\right) \\ 3-3 t^{2}+10 t & =4+4 t^{2} \\ 7 t^{2}-10 t+1 & =0 \end{aligned}$ | $n \cdots m=2, m+2+1=3$ utc oll posciture integral values of $n \neq 1$. |
| $t=\frac{10 \pm \sqrt{160-28}}{14}$ |  |
| - $\frac{10 \pm \sqrt{72}}{74}$ |  |
| $\tan \theta=\frac{5 \pm 3 \sqrt{2}}{7}$ |  |
| $\begin{aligned} & \theta=0.922,0.108 \ldots \\ & \theta=1.85^{\circ}, 0.22^{2} \end{aligned}$ |  |

(ii) $T=90, t=$ ? tet
$90=100-802$
$-10=-80 e^{k}$
$\frac{10}{8}=e^{-k t}$
kt $-\log _{e} \frac{1}{8}$
$x-\frac{1}{k} \log _{e} \frac{1}{8}$
$-\frac{10}{\lg _{2} \frac{1}{2}} \log e \frac{1}{8}$
$=30$
at thase about 3 omius
(19) $T=100-80 a^{k t}$
$k<0$
$\therefore x \rightarrow \infty, e^{k t} \rightarrow 0$ $100-80 e^{k t} \rightarrow 100$ frcmumb
egt temperature $\rightarrow 100^{\circ} \mathrm{C}$

```
c) (1) \(T=100+A e^{k t}\)
c) (1) \(T=100+A e^{k t}\)
c) (1) \(T=100+A e^{k t}\)
    \(\frac{d T}{d}=k\left(A e^{k t}\right)\)
    \(\frac{d T}{d}=k\left(A e^{k t}\right)\)
    \(\frac{d T}{d}=k\left(A e^{k t}\right)\)
    \(\frac{d T}{a t}=-k(T-1 \infty)\)
    \(\frac{d T}{a t}=-k(T-1 \infty)\)
    \(\frac{d T}{a t}=-k(T-1 \infty)\)
(ii) \(x=0, T=20^{\circ} \mathrm{C}\)
(ii) \(x=0, T=20^{\circ} \mathrm{C}\)
(ii) \(x=0, T=20^{\circ} \mathrm{C}\)
        \(20=100+A .0\)
        \(20=100+A .0\)
        \(20=100+A .0\)
        \(A=-80\)
        \(A=-80\)
        \(A=-80\)
    tato, \(T=60^{\circ} \mathrm{C}\)
    tato, \(T=60^{\circ} \mathrm{C}\)
    tato, \(T=60^{\circ} \mathrm{C}\)
        \(60=100-80 e^{\text {4.rio }}\)
        \(60=100-80 e^{\text {4.rio }}\)
        \(60=100-80 e^{\text {4.rio }}\)
        \(-40=-80 \mathrm{a}\)
        \(-40=-80 \mathrm{a}\)
        \(-40=-80 \mathrm{a}\)
        \(e^{10 k} . \frac{1}{2}\)
        \(e^{10 k} . \frac{1}{2}\)
        \(e^{10 k} . \frac{1}{2}\)
            \(10 k=\log _{2} \frac{1}{2}\)
            \(10 k=\log _{2} \frac{1}{2}\)
            \(10 k=\log _{2} \frac{1}{2}\)
            \(k=\frac{1}{b} \log _{e} \frac{1}{z}\)
\((\div-0.069 \ldots)\)
            \(k=\frac{1}{b} \log _{e} \frac{1}{z}\)
\((\div-0.069 \ldots)\)
            \(k=\frac{1}{b} \log _{e} \frac{1}{z}\)
\((\div-0.069 \ldots)\)
b) 0\() ~ g(x)=\sin ^{-1} x+\cos ^{-1} x\)
b) 0\() ~ g(x)=\sin ^{-1} x+\cos ^{-1} x\)
    \(g^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{1-x^{2}}}\)
    \(g^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{1-x^{2}}}\)
        \(=0\)
        \(=0\)
(ii) \(g(x)\) is a constant
(ii) \(g(x)\) is a constant
    \(g(0)=-\sin ^{-1} O+\cos ^{-1} \theta\)
    \(g(0)=-\sin ^{-1} O+\cos ^{-1} \theta\)


Qestion 5 \(\alpha-d, \alpha, \alpha+d\) \(\delta \alpha=-\frac{b}{2}\) \(3 \alpha=12\)
\(\alpha=4\) *
\(4-\alpha, 4\)
\(\sum \alpha \beta=-\frac{x^{3}}{a}\). \(4(4-d)(4+d)=-80\) \(16-d^{2}=-20\) \(d^{2}=36\)
(If with protuce same root
If will protuce same roo
\(\therefore\) roats are \(-2,4,10\).
b) 0\() \begin{aligned} g(x) & =\sin ^{-1} x+\cos ^{-1} x \\ g^{\prime}(x) & =\frac{1}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{1-x^{2}}}\end{aligned}\)

(b) (i) No restriction: 7 letters with 2 Ds and 3 Es ie \(\frac{7!}{2!3!}=420\)
(ii) All Es together ie (EEE) X XXX where X represents a letter from D LTD There are 5 objects with 2 repetitions ie \(\frac{5!}{2!}=60\)
(iii) Let X represent a letter from D L T D and S represents a space. ALTERNATIVE 1
Arrange the letters D LT D - this can be done in \(\frac{4!}{2!}=12\) ways.
Now S D S L S T S D S is one such possible arrangement.
To keep EE and E separate, we have to choose 2 spaces to insert them
This can be done in \({ }^{5} C_{2}=10\) ways.
Then the EE and E could be swapped in 2 ways.
Total \(\frac{4!}{2!} \times{ }^{5} C_{2} \times 2=12 \times 10 \times 2=240\)

\section*{ALTERNATIVE 2}

Case 1: (EE X E) X X X ie group the EE and E with one letter between them There are 4 choices for the \(X\) between EE and \(E\) and then we have 4 objects with 2 repetitions.
ie \(4 \times \frac{4!}{2!}=48\). However the EE and E could be swapped making it \(4 \times \frac{4!}{2!} \times 2=96\)
Case 2: (EE X X E) X X ie group the EE and E with two letters between them. There are \({ }^{4} P_{2}=12\) arrangements of the \(X\) between \(E E\) and \(E\) and then we have 3 objects with 2 repetitions.
ie \(12 \times \frac{3!}{2!}=36\).
However the EE and E could be swapped making it \(12 \times \frac{3!}{2!} \times 2=72\)
Case 3: (EE X X X E) \(X\) ie group the EE and \(E\) with three letters between them. There are \({ }^{4} P_{3}=24\) arrangements of the \(X\) between \(E E\) and \(E\) and then we have 2 objects with 2 repetitions
ie \(24 \times \frac{2!}{2!}=24\).
However the EE and E could be swapped making it \(24 \times \frac{2!}{2!} \times 2=48\)
Case 4: (EE X X X XE) ie group the \(E E\) and \(E\) with four letters between
them. There are \(\frac{{ }^{4} P_{4}}{2!}=12\) arrangements of the \(X\) between \(E E\) and \(E\), given
2 Ds. However the EE and E could be swapped making it \(\frac{24!}{2!} \times 2=24\)
Total \(96+72+48+24=240\)

\section*{ALTERNATIVE 3}

Case 1: EEX (E) (E) (E) (E)
ie there are 4 possibilities for the position of the second \(E\) and then the other letters need arrangement.
ie \(4 \times \frac{4!}{2!}=48\)
Case 2: \(\quad X E E X(E)(E)(E)\)
ie there are 3 possibilities for the position of the second E and then the other letters need arrangement.
ie \(3 \times \frac{4!}{2!}=36\)
Case 3: (E) X EE X (E) (E)
te there are 3 possibilities for the position of the second \(E\) and then the other letters ne there are 3 possi
ie \(3 \times \frac{4!}{2!}=36\)
Case 4: (E) (E) XEEX (E)
ie there are 3 possibilities for the position of the second \(E\) and then the other letters need arrangement.
ie \(3 \times \frac{4!}{2!}=36\)
Case 5: (E) (E) (E) X EEX
ie there are 3 possibilities for the position of the second E and then the other letters need arrangement.
ie \(3 \times \frac{4!}{2!}=36\)
Case 6: (E) (E) (E) (E) XEE
ie there are 4 possibilities for the position of the second \(E\) and then the other letters need arrangement
ie \(4 \times \frac{4!}{2!}=48\)
Total \(2 \times 48+4 \times 36=240\)
(iv) ALTERNATIVE 1

From (ii) and (iii) the number of ways of having all the Es apart is
\(420-(60+240)=120\)
So the probability of having all the Es apart is \(\frac{120}{420}=\frac{2}{7}\).

\section*{ALTERNATIVE 2}

Arrange the letters DL T D -tluis can be done in \(\frac{4!}{2!}=12\) ways.
Now S D S L S T S D S is one such possible arrangenent.
To keep ALL the Es separate, we have to choose 3 spaces to insert thern.
This can be done in \(C_{3}=10\) ways.
Total \(\frac{4!}{2!} \times{ }^{5} C_{3}=12 \times 10=120\).
So the probability of having all the Es apart is \(\frac{120}{420}=\frac{2}{7}\).```

