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Total Marks – 84 
Attempt Questions 1−−−−7 
All questions are of equal value 
 
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available. 
 

 
     Marks 

Question 1 (12 marks) Use a SEPARATE writing booklet. 
 
(a) Find 
   

(i) 
2

1

9
dx

x−
⌠

⌡

          1 

 
 

(ii)  
2

x

x

e
dx

e +
⌠

⌡

          1 

 
 
 
(b) Differentiate  ( )1 2cos x

− .         2 

 
 
 
(c) The interval A(5, a) and B(b, −1) is divided externally in the ratio 2:3 to give the   2 

point (7, 2).  Find the values of a and b.        
 
 
 

(d) Find the coefficient of x5 in the expansion of   2
1
2

11

x
x

−








 .     3 

 
 
 

(e) Find the value of  
11

6

2x x dx−⌠

⌡

 using the substitution  u2 = x – 2.    3 
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     Marks 
Question 2 (12 marks) Use a SEPARATE writing booklet. 
 

(a) Solve 
8

1
3x

≥
−

.          2 

 
 
 
 

(b) Find the exact value of 
3

2
3

2

9
dx

x+
⌠
⌡

.       2 

 
 
 
 
(c) Consider the curve ( )12cos 1y x−= − . 

(i) State the domain and range.        2 

(ii)  Sketch the curve.         1 

(iii)  Find the gradient of the tangent to the curve at the point where x = 1.  2 

 
 
 
(d) Find the acute angle between the curves y = 6 − 2x  and y = 2x2 + x – 8 at the  3 

point where x = 2, giving your answer correct to the nearest degree.    
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Marks  
Question 3 (12 marks) Use a SEPARATE writing booklet.   
 
(a) (i) Show that x2 − 4x + loge x = 0 has a root between x = 3 and x = 4.   1 
 

(ii)  Using two applications of the method of halving the interval, find a   2 
 smaller interval containing the root. 

 
 
 
 
 
(b) When the polynomial ( )P x  is divided by x2 − x, the quotient is ( )Q x  

and the remainder is ( )R x ax b= + . 

 
(i) Given that ( )1 3P = , show that ( )1 3R = .      1 

 
(ii)  Further, when ( )P x  is divided by x the remainder is −4. Find ( )R x .  2 

 
 
 
 
 

(c) Evaluate  2

2

cos 2x dx
π

π

⌠

⌡

.         3 

 
 
 
 
 

(d) Prove that ( )5 2 11
nn +  is divisible by 3 for all positive integer values of n.   3 
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Marks  
Question 4 (12 marks) Use a SEPARATE writing booklet.  
    
(a) Find the exact value of ( )1 2

3sin cos π− .       1 

 
 
 
 

(b) Find ( )tan
d

x x
dx

 and hence show that
4

2

0

1
sec ln 2

4 2
x x dx

π

π= −⌠

⌡

.    3 

 
 
 

(c) Consider ( )1 2
n

x+ : 

 
(i) Write an expression for the coefficient of the term in x4.    1 
 
(ii)  The ratio of the coefficient of x4 to the coefficient of x6 is 5 :8.    3 
 Find the value of n. 

 
 
 
(d) AB is a common tangent to two circles which intersect at P and Q as illustrated  

in the diagram below.  
XPB and YPA are straight lines. XA and YB intersect at T. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(i) Copy or trace this diagram into your writing booklet. 
 
(ii)  Explain why ∠SBY = ∠BPY        1 

 
(iii)  Prove that AT = TB.          3 

T 

X 

Y 

Q 

P 

S 

R 

B 

A 

NOT 
TO 

SCALE 
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Marks  
Question 5 (12 marks) Use a SEPARATE writing booklet.  
 

Consider the function ( ) 2

3 xf x e−= . 

(a) Show that the function is even.        1 

(b) Find the stationary point of ( )y f x= .       2 

(c) Show that ( )2
2

2
2

6 2 1xd y
e x

dx
−= −  and hence find any points of inflexion.   3 

(d) Sketch the curve ( )y f x=  using the same scale on both the x and y axis.    1 

(e) State the greatest positive domain of ( )y f x=  for which an inverse function exists.  1 

(f) Sketch  ( )1y f x−=  on the same diagram as (d) above.     1 

(g) Find the equation of the inverse function and state its domain.    2 

(h) Let x = N where N < 0. Find the value of ( )( )1f f N− .     1 
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Marks 
Question 6 (12 marks) Use a SEPARATE writing booklet.  
 
(a) (i) Express ( )2cos 3sin  in the form cosAθ θ θ α+ − ,     2 

  where A > 0 and 0
2

πα≤ ≤ . 

 
 (ii) Hence or otherwise find the maximum value of 2cos 3sin 3θ θ+ − .   1 
 
 
 
 
 
(b) In order to promote a new brand of bottled water, the word WIN is printed  
 on the inside of some of the bottle caps.  
  
 The advertising slogan claims that ‘one in every five bottles wins a prize’. 
  
  (i) Sandra buys 6 bottles of the new brand of water.  

  
 Find the probability that: 
 

(α) The first bottle she opens does not win her a prize but the   1 
 next one does. 
 
(β) She will win exactly twice after opening all six of the bottles.  1 
 
 

(ii)  How many bottles would she have to open to ensure that her chance   2 
 of winning a prize is at least 95%? 

 
 
 
 
(c) (i) Prove that   ( ) ( )sin 2 sin 2 2sin cosX Y X Y X Y+ = + − .    2 

 
(ii) Hence or otherwise, solve sin sin 3 cos if 0 2θ θ θ θ π+ = ≤ ≤ .   3 



 
2008 Mathematics Extension 1 Trial HSC Examination           8 
 

Marks  
Question 7 (12 marks) Use a SEPARATE writing booklet.      
 
(a) The function ( )f x , where ( ) ln sin 5f x x x= + , has a zero between x = 1 and x = 2. This is 

illustrated in the diagram below. 
 
 
 
 
 
 
 
 
 
 
 
 
 

(i) Beginning with an approximation of x = 1⋅5, attempt to find an improved  2 
  value for this root using one application of Newton’s method.  
  

(ii)  Explain why this attempt fails.       1 
 
 
(b) An idle computer programmer decides to develop a ‘signature tune’ which will  
 play each time she logs onto her computer. She plans to use six tones which she  
 refers to as A, B, C, D, E and F.  She plans to repeat two of the tones once only  
 in the tune. For example: A B A C C F D E 
 

(i) How many such 8 tone signature tunes will she be able to program if  2 
 there is no restriction on when the repeated tones are played? 

 
(ii)  For the sake of a more ‘interesting’ tune, the repeated tones are played   2 
 together but the pairs are not to sound immediately after each other. That  
 is, A A B C C… is allowed, but A A B B C… is not. If she applies this  
 condition, how many 8 tone signature tunes will she then be able to  

program? 
 
 

(c) By considering the expansion of ( )2
1

n
x+   prove that      3 

( ) ( )
2

2 1

0

2
1 2 1 2

n
n

k

n
k k n n

k
−

=

 
− = − 

 
∑ .   

 
 

(d) Given that 2log 2log 5y xx y+ = , show that logy x  is equal to either 2 or 1
2 .  2 

 
 
 

End of paper 
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2

2

If  11, 9

3 taking 0

If  6, 4

2 taking 0

x u

u u

x u

u u

= =
= >

= =
= >

Trial HSC Mathematics Extension 1 Solutions 2008 
 
Question 1  
 

(a) (i) 1

2

1
sin

39

x
dx C

x

−  = + 
 −

⌠

⌡

  

(ii)  ( )ln 2
2

x
x

x

e
dx e C

e
= + +

+
⌠

⌡

  

      
(b)   
 
 
 
 
 
 
 
(c) A(5, a)  B(b, −1)  
   
  −2:3   

 
( ) ( )( )

( )

3 2 15 3 2
7, 2 ,

2 3 2 3

15 2 , 3 2

ab

b a

 + − −× −=  − + − + 

= − +

  

       

 
15 2 7 and 3 2 2

i.e. 4 and 0

b a

b a

∴ − = + =
= =

 

 
 
(d)  
 
 
 
 
 
 
 
 
 
 
 

11

2

6

2

(e) 2 let 2

2

2

2

x x dx u x

x u

dx
u

du
dx u du

− = −

= +

=

=

⌠

⌡

  

( )( )
( )

( )

2

1 22

22

2 4

2

1
cos 2

1

2

1

2

4

x

x

x

d
x

dx

x

x x

− −−= ⋅ −
−

=
−

=
−

( ) ( )

( )

11

2

11 11 11 3
2

5

211 2

1
A general term of 2 has the form

11 111
2 2 1

For the term in : 11 3 5

3 6

2

11
the required coefficient is 2 1 28160

2

k
k kk k

x
x

x x
k kx

x k

k

k

− − −

−

 − 
 

    − = −    
    

− =
=
=

 
∴ − = 
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( ) ( )

( )

( ) ( ) ( ) ( )

( )

311

22

6 2

3
4 2

2

35 3

2

5 3 5 3

164611
15 15

22Now 2

2 4

2 4

5 3

2 3 4 3 2 2 4 2

5 3 5 3

109 109.73

u u duux x dx

u u du

u u

+− =

= +

 
= + 
 

 
= + − + 

  

= =

⌠⌠
 
⌡ ⌡

∫

ɺ

 

Question 2 
 
(a)  
 
 
 
 

 
 
 
 
 
 
 
   3 11x∴ < ≤  
 

 

33
1

2
3 3

1 1

1 1

2 2
(b) tan

9 3 3

2 3 2 3
tan tan

3 3 3 3

2 2 1
tan 1 tan

3 3 3

2 2

3 4 3 6

18

x
dx

x

π π

π

−

− −

− −

  =   +   

  = −        

 = −  
 

   = −   
   

=

⌠
⌡

 

 

( )

( )

1

1

(c) 2cos 1

(i) cos 1
2

y x

y
x

−

−

= −

= −
 

Domain: 1 1 1 Range: 0
2

0 2 0 2

y
x

x y

π

π

− ≤ − ≤ ≤ ≤

≤ ≤ ≤ ≤
 

 

( ) ( )
( ) ( )

( ) ( )( )
( )( )

( )( )

2

2

8
1 3

3

8 3 3

8 3 3 0

3 8 3 0

3 8 3 0

3 11 0

x
x

x x

x x

x x

x x

x x

≥ ≠
−

− ≥ −

− − − ≥

− − − ≥

− − + ≥

− − ≥
3 11 
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(ii)   

 

 

 

( )

( )

1

2

(iii) 2cos 1

2

1 1

y x

dy

dx x

−= −
−=

− −

 

( )2

2
At 1: 2

1 1 1

dy
x

dx

−= = = −
− −

 

∴ the gradient of the tangent at x = 1 is −2. 

 
(d) y = 6 − 2x  has m1 = −2 

 

( )

2

2

For 2 8 : 4 1

At 2 : 4 2 1 9 9

dy
y x x x

dx
dy

x m
dx

= + − = +

= = + = ∴ =
 

Let θ  be the acute angle between curves where x = 2, then 

( )( )
2 9

tan
1 2 9

11

17

32 54

33 correct to thenearest degree

θ

θ

− −=
+ −

=

′=
=

�

�

 

 
Question 3  
(a) (i) ( ) 2Let 4 logef x x x x= − +  

( ) ( )
( ) ( )

2

2

Now 3 3 4 3 log 3 1 901...

and 4 4 4 4 log 4 1 386...

e

e

f

f

= − + = − ⋅

= − + = ⋅
 

∴ as the sign of the function changes over the interval 3 ≤ x ≤ 4, and the function is  
    continuous over this domain, there is a root between x = 3 and x = 4. 
 

( ) ( )

( ) ( )

2

2

3 4
(ii) Now 3 5 3 5 4 3 5 log 3 5 0 497...

2

the root lies in the interval  3 5 4

3 5 4
3 75 3 75 4 3 75 log 3 75 0 384...

2

the root lies in the interval  3 5 3 75

e

e

f f

x

f f

x

+  = ⋅ = ⋅ − ⋅ + ⋅ = − ⋅ 
 

∴ ⋅ < <
⋅ +  = ⋅ = ⋅ − ⋅ + ⋅ = ⋅ 

 

∴ ⋅ < < ⋅

 

2π 

O 

y 

2 
x 

1 

π 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

2

(b) (i) Let

Now  1 1 1 1 1

i.e.  1 1 but 1 3 1 3

P x x x Q x R x

P Q R

P R P R

= − +

= − +

= = ∴ =

 

 

( ) ( ) ( ) ( )
( )

( ) ( )
( ) ( )

( ) ( )

( )

2(ii) Now as

When  is divided by , the remainder is 4

i.e.  0 4 0

Now 0 4 : 0 4 4

But 1 3: 1 3

Substituting 4 : 4 3 7

7 4

P x x x Q x ax b R x ax b

P x x

P R

R a b b

R a b

b a a

R x x

= − + + = +

−

= − =

= − + = − ∴ = −

= + =
= − − = ∴ =

∴ = −

 

 

 
(c)   
 
 
 
 
 
 
 
 
 
 
 
 
 

(d) Aim: Prove that ( )5 2 11
nn +  is divisible by 3 for all positive integer values of n. 

 

( )

( )

11Test the result for 1: 5 2 11 5 22

27

3 9 which is divisible by 3

n = + = +
=
=

  

 ∴the result is true for n = 1 
 
 Let n = k be a value of n for which the result is true: 

 i.e. ( )5 2 11 3
kk M+ =  where M is an integer  (1) 

 then     ( )5 3 2 11
kk M= −  

 
 Test the result for n = k + 1:   

 ( ) ( ) ( )( )115 2 11 5 5 2 11 11
k kk k++ + = +   

  
( ) ( )

( ) ( )

5 5 22 11

5 3 2 11 22 11

kk

k k
M

= +

 = − +
 

 

( )2 2

2 2

2

1 4 1coscos 2 as cos 4 2cos 2 1
2

1 1
sin 4

2 4

1 1 1 1
sin 4 sin 4

2 4 2 4 2 2

2 4

4

dxxx dx x x

x x

ππ

π π

π

π

π ππ π

π π

π

+= = −

 = +  

    = + − +       

= −

=

⌠⌠
 
⌡ ⌡
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( ) ( )

( )
5 3 12 11 by (1)

3 5 4 11

k

k

M

M

= +

 = +
 

 

 Now as M and k are both integral, ( )5 4 11
k

M +
 

is an integer, say N 

 ∴ ( )3 5 4 11 3 where   is an integer
k

M N N + =
 

 

 and hence  ( ) 115 2 11 3
kk N

++ + =  which is divisible by 3. 

 ∴ by Mathematical induction, the result is true for all positive integral values of n.  
 
Question 4 
 

( )1 12
3

1
(a) sin cos sin

2

6

π

π

− −  = − 
 

= −
 

(b) ( ) 2tan sec tan
d

x x x x x
dx

= +   

 

( )

( )

( )

( )

2

4 42

00

4 4

00

4

0

4

0

 Now       sec tan tan

sec tan tan

tan tan

sin
tan 0 tan 0

4 4 cos

log cos
4

log cos log cos0
4 4

1
log log1

4 2

d
x x x x x

dx

d
x x dx x x x dx

dx

dxx x x

x
dx

x

x

π π

π π

π

π

π π

π

π π

π

= −

 ∴ = − 
 

 
= − 
 

= − −

 
= +  

 

 = + − 
 

 = + − 
 

=

⌠ ⌠

⌡⌡

⌠

⌡

⌠
⌡

( )
1

2log 2
4

1
ln 2

4 2

π

π

−+

= −
 

 

 

( ) ( )

( )44

(c) (i) A general term of 1 2 2

 the coefficient of the term in 2
4

n kn
x x

k

n
x

 
+ =  

 

 
∴ =  
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( )66(ii) The coefficient of the term in 2
6

n
x

 
=  
 

 

  
4

6

coefficient of 5

coefficient of 8

x

x
∴ =  

 

   

( )

( )

( ) ( )
( )

( )
( ) ( )
( )

( )( )
( )( )

( )( )

4

6

4 6

7 6

2

2
4 5

8
2

6

8 2 5 2
4 6

! 2 5 ! 2

4! 4 ! 6! 6 !

2 5

4 5 6 5

12 4 5

9 8 0

8 1 0

1, 8

n

n

n n

n n

n n

n n

n n

n n

n n

n

 
 
  =
 
 
 

   
=   

   

=
− −

=
− − ×

= − −

− + =
− − =

=  
6But 6 for the  term to exist

8

n x

n

≥
∴ =

 

 
(d) (i) 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(ii)  ∠SBY = ∠BPY  as ∠SBY is the angle between the tangent SR and the chord BY and  
 ∠BPY  is the angle in the alternate segment standing on BY. 

 

T 

X 

Y 

Q 

P 

S 

R 

B 

A 

NOT 
TO 

SCALE 
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(iii)  ∠TBA  = ∠SBY   (vertically opposite) 
  = ∠BPY   (angle in the alternate segment) 
  = ∠APX   (vertically opposite) 
  = ∠RAX   (angle between the tangent and the chord AX) 
  = ∠TAB  (vertically opposite) 
 ∴  ∠TBA = ∠TAB 
 ∴   AT = TB  (opposite equal sides in ∆TAB) 
 

Question 5  
 
(a)  
  
 
 
 

 ∴ the function is even 
 
 
(b)  
  
 

Stationary points occur when( ) 0f x′ =  

 

( )
( )

2

2

2

20

6 0

0 or 0

but 0 for all values of 

the only stationary point occurs at 0

0 3 3

0,3  is the only stationary point.

x

x

x

xe

x e

e x

x

f e

−

−

−

−

∴ − =

= =

>
∴ =

= =

∴

 

 
(c)  
 
 
 
 

  
 Points of inflexion occur when ( ) 0f x′′ =  and concavity changes sign 

 

( )2

2 2

2

2

6 2 1 0

1
or 0 but 0 for all values of 

2
1

2

x

x x

e x

x e e x

x

−

− −

∴ − =

= = >

∴ = ±

 

x 
1

2

−
 − 
 

 
1

2
−  1

2

+
 − 
 

 
1

2

−
 
 
 

 
1

2
 1

2

+
 
 
 

 

( )f x′′  + 0 − − 0 + 
 ∴ the concavity changes sign at both values of x. 

( )
( ) ( )

( )

2

2

2

3

3

3

x

x

x

f x e

f x e

e

f x

−

− −

−

=

− =

=
=

( )
( )

2

2

3

6

x

x

f x e

f x xe

−

−

=

′ = −

( )
( ) ( ) ( )

( )

2

2 2

2 2

6

6 2 6

6 2 1   as required

x

x x

x

f x xe

f x x xe e

e x

−

− −

−

′ = −

′′ = − − + −

= −
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2

2

2

2

2

Let  3

Then  the inverse is 3

 Now
3

ln
3

3
ln

3
ln   

but the domain of the function is 0 so the range of the inverse function is 0

 the inverse function is 

x

y

y

y e

x e

x
e

x
y

y
x

y
x

x y

−

−

−

=

=

=

  = − 
 

  = 
 

 = ±  
 

≥ ≥

∴ ( ) 3
ln  f x

x
 ′ =  
 

 
( ) ( )

( ) ( )
1 1
2 2

1 1
2 2

1 1
2 2

1 1
2 2

3   and 3

i.e.  inflexions occur at , 3  and , 3

f e f e

e e

− −

− −

= − =

−
 

(d) and (f) 
 

 
 
 
 
 
 
 
 
 
 
(e) D: x ≥ 0 

(f) See above 

(g)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The domain of the inverse function is D: 0 < x ≤ 3 
 
(h) Let x = N where N < 0. 

 
( )( ) ( )( ) ( )1 1Then     as  is an even functionf f N f f N f x

N

− −= −

= −
 

 
Question 6 
 
(a) (i)  
   

 

Equating coefficients gives:

2 cos

3 sin

A

A

α
α

=
=

 

3 

3 

1

y 

( )y f x=  
( )1y f x−=  

( )2cos 3sin  = cos where  0 and 0
2

cos sin sin cos

A A

A A

πθ θ θ α α

θ α θ α

+ − > ≤ ≤

= +
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( )

( )( )

1 3
2

2 2 2 2 2

2 2 2

1 3
2

sin 3

cos 2
3

tan
2

tan

Also sin cos

2 3

13  as 0

2cos 3sin 13 cos tan

A

A

A A A

A

A A

α
α

α

α

α α

θ θ θ

−

−

∴ =

=

=

+ =

∴ + =

= >

∴ + = −

 

 
 (ii)  . 
  
 
 
 
 
(b)  (i) (α) P(win) = 1

5  

   ∴ P(lose then win) = 4 1 4
5 5 25× =  

 
(β)   
 
 
 

 
 
 
 

 (ii)   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) (i)
  
 

 

( )( )
( )

( )( )

1 3
2

1 3
2

Now   2cos 3sin 3 13 cos tan 3

But the maximum value of 13 cos 13

 the maximum value of 13 cos tan 3 13 3

x

θ θ θ

θ

−

−

+ − = − −

=

∴ − − = −

( )
( ) ( )

( ) ( )

61 4
5 5

2 41 4
5 5

Probabilities are given by the terms of  

win exactly twice 2

6

2

0 24576

P P X

+

= =

 
=  
 

= ⋅

( ) ( )
( )
( )

( ) ( )

( )
( )

( )

1 4
5 5

01 4
5 5

4
5

4
5

4
5

Now probabilities are given by  and we need 1 0 95

1 0 0 95

0 0 05

0 05
0

0 05

ln ln 0 05

ln 0 05

ln

13 425...

 she would have to open 14 bottles

n

n

n

P X

P X

P X

n

n

n

+ ≥ = ⋅

∴ − = = ⋅

= = ⋅

 
= ⋅ 

 

= ⋅

= ⋅

⋅=

= ⋅
∴

( ) ( )
[ ][ ]
( )2 2 2 2

2sin cos

2 sin cos cos sin cos cos sin sin

2 sin cos cos sin cos sin cos sin cos sin cos sin

X Y X Y

X Y X Y X Y X Y

X Y X X Y Y X Y Y X X Y

+ −

= + +

= + + +
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( ) ( )
[ ]
[ ]

2 2 2 2

1 1
2 2

2 sin cos cos sin sin cos cos sin

2 sin cos sin cos

2 sin 2 sin 2

sin 2 sin 2

X X Y Y Y Y X X

X X Y Y

X Y

X Y

 = + + + 

= +

= +

= +

 

 
(ii)   

 
 
 

 

 ( )
1
2

3 5 13 17
2 2 6 6 6 6

3 5 13 17
2 2 12 12 12 12

Now  sin sin 3 cos

becomes   2sin 2 cos cos

2sin 2 cos cos 0

cos 2sin 2 1 0

cos 0    or    sin 2 but  0 2

,   or 2 , , , as  0 2 4

, , , , ,

π π π π π π

π π π π π π

θ θ θ
θ θ θ

θ θ θ
θ θ
θ θ θ π
θ θ θ π
θ

+ =
=

∴ − =
− =

= = ≤ ≤
∴ = = ≤ ≤
∴ =

 

 

Question 7  
 

(a) (i) 
 
 
 

 
 

 
 
 
 
 
 

 (ii) This attempt fails because a stationary point is very close to x = 1⋅5 and consequently  
the tangent to the curve at x = 1⋅5 has a small gradient. This causes the tangent to 
intersect the x-axis closer to the root between 0 and 1 than the root between 1 and 2. 
This argument is illustrated in the diagram below.     
   
 
 
 
 
 
 
 

 
 
 

( ) ( )
( ) ( )

Let sin sin 3 sin 2 sin 2

then 2   and 2 3   and hence 2   and 

as sin 2 sin 2 2sin cos   from (i) above

i.e.       sin sin 3 2sin 2 cos   but  cos cos

sin sin 3 2sin 2 cos

X Y

X Y X Y X Y

X Y X Y X Y

θ θ
θ θ θ θ

θ θ θ θ θ θ
θ θ θ θ

+ = +
= = + = − = −

∴ + = + −

+ = − − =
∴ + =

( ) ( )

( )
( )

( )
( )

0

1

1
ln sin 5  then 5cos5

Let 1 5

1 5
Then 1 5

1 5

ln1 5 sin 5 1 5
1 5

1
5cos5 1 5

1 5
0 940... which is obviously not between 1 and 2

f x x x f x x
x

x

f
x

f

′= + = +

= ⋅
⋅

= ⋅ −
′ ⋅

⋅ + ⋅
= ⋅ −

+ ⋅
⋅

= ⋅

DIAGRAM 
TO 

SCALE 
1⋅5 

1 

0⋅5 

1 2 

y 

x 
1⋅5 
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(b) (i) A B C D E F  and 2 doubles 

         Number of tunes  =6 2

8!

2! 2!
C ×

×
 

     = 151 200 
 

(ii)  Number of choices for the double tones = 6
2C  

 The 4 remaining tones can be arranged in 4! ways. 
  
  __ tone __ tone__ tone__ tone__  
 
 Between these tones, there are 5 ‘gaps’, so the first double tone can be placed in any  
 of these gaps. The second double tone then has only 4 gaps into which it can be  
 placed. 
 Number of ways of placing the double tones = 6

2 4! 5 4C × × ×  

       = 7200 
 

(c) ( )2 2 3 4 22 2 2 2 2 2
Consider 1 ...

0 1 2 3 4 2
n nn n n n n n

x x x x x x
n

           
+ = + + + + + +           

           
  

Differentiating both sides with respect to x: 

( )2 1 2 3 2 12 2 2 2 2
2 1 2 3 4 ... 2

1 2 3 4 2
n nn n n n n

n x x x x n x
n

− −         
+ = + + + + +         

         
 

Differentiating both sides again: 

( )( ) ( ) ( ) ( )2 2 2 2 22 2 2 2
2 2 1 1 2 3 2 4 3 ... 2 2 1

2 3 4 2
n nn n n n

n n x x x n n x
n

− −       
− + = + + + + −       

       
  

Substituting x = 1: 

( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

2 2

2 2

2 2

2 2 2 2
2 2 1 1 1 2 3 2 4 3 ... 2 2 1

2 3 4 2

2 2 2 2
2 2 1 2 2 3 2 4 3 ... 2 2 1

2 3 4 2

Observing the pattern:

2 2 2
2 2 1 2 0 1 1 0 2 1

0 1 2

n

n

n

n n n n
n n n n

n

n n n n
n n n n

n

n n n
n n

−

−

−

       
− + = + + + + −       

       

       
− = + + + + −       

       

   
− = − + +   

   
( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )

2 1

2
2 1

0

2 2
3 2 ... 2 2 1

3 2

2 2 2 2 2
2 1 2 0 1 1 0 2 1 3 2 ... 2 2 1

0 1 2 3 2

2
2 1 2 1

n

n
n

k

n n
n n

n

n n n n n
n n n n

n

n
n n k k

k

−

−

=

     
+ + + −     

     

         
− = − + + + + + −         

         

 
− = −  

 
∑

 i.e. ( ) ( )
2

2 1

0

2
1 2 1 2

n
n

k

n
k k n n

k
−

=

 
− = − 

 
∑  as required   

 
(e)  
 

( ) ( )2 2

2log 2log 5

2log 2log
5

log log

2 log 2 log 5log log

y xx y

x y

y x

x y x y

+ =

+ =

+ =
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( ) ( )
( ) ( )

2 2

1
2

2 log 5log log 2 log 0

2log log log 2log 0

2log log    or   log 2log

log 1 log
    or    2

log 2 log

log   or  2y

x x y y

x y x y

x y x y

x x

y y

x

− + =

− − =
∴ = =

= =

∴ =

 

 
 
 
 

End of Solutions 


